L^P-MULTIPLIERS OF MIXED-NORM TYPE ON LOCALLY COMPACT VILENKIN GROUPS

C. W. ONNEWEER and T. S. QUEK

(Received 15 October 1997; revised 13 August 1998)

Communicated by A. H. Dooley

Abstract

Let G be a locally compact Vilenkin group with dual group Γ . We prove Littlewood-Paley type inequalities corresponding to arbitrary coset decompositions of Γ . These inequalities are then applied to obtain new $L^{p}(G)$ multiplier theorems. The sharpness of some of these results is also discussed.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43A70, 43A22.

1. Introduction

Given a sequence $\{g_n\}$ of Fourier multipliers for $L^p(\mathbb{R})$, $1 , let <math>g := \sum_{-\infty}^{\infty} g_n \chi_n$, where χ_n denotes the characteristic function of the dyadic interval $[2^n, 2^{n+1}]$ in \mathbb{R} . In an earlier paper [OQ] we proved that if the sequence $\{g_n\}$ belongs to a certain mixed-norm space, then g is also an $L^p(\mathbb{R})$ multiplier. A similar result was established for Fourier multipliers for $L^p(G)$ -spaces, where G is a locally compact Vilenkin group. In that case we considered the decomposition of Γ , the dual group of G, into sets that are comparable to the dyadic intervals in \mathbb{R} .

In this paper we consider essentially the same problem for decompositions of Γ into a union of arbitrary disjoint cosets of subgroups of Γ . The proof of the resulting multiplier theorem, Theorem 5, depends on a one-sided extension of the Littlewood-Paley inequality in the context of Vilenkin groups. This generalizes a similar result of Rubio de Francia for functions in $L^{p}(\mathbb{R})$, $2 \leq p < \infty$. We also prove another one-sided Littlewood-Paley-type inequality for functions in $L^{p}(G)$, 1 . This inequality is then used to obtain an additional multiplier theorem, Theorem 6. Finally, we discuss the sharpness of some of our results, see Theorems 7, 8 and 9.

^{© 1998} Australian Mathematical Society 0263-6115/98 \$A2.00 + 0.00

2. Definitions and notation

Throughout this paper G will denote a locally compact Vilenkin group, that is to say, G is a locally compact Abelian topological group containing a strictly decreasing sequence of open compact subgroups $(G_n)_{-\infty}^{\infty}$ such that $\bigcup_{-\infty}^{\infty} G_n = G$ and $\bigcap_{-\infty}^{\infty} G_n = \{0\}$. In [EG, Section 4.1.4] such groups are called groups with a suitable family of compact open subgroups $(G_{-n})_{-\infty}^{\infty}$. Clearly, such groups are totally disconnected. Examples of locally compact Vilenkin groups are the *p*-adic numbers and, more generally, the additive group of a local field, see [EG] or [Ta] for further details.

Let Γ denote the dual group of G, and for each $n \in \mathbb{Z}$, let Γ_n denote the annihilator of G_n , that is,

$$\Gamma_n = \{ \gamma \in \Gamma : \gamma(x) = 1 \text{ for all } x \in G_n \}.$$

Then we have $\bigcup_{-\infty}^{\infty} \Gamma_n = \Gamma$, $\bigcap_{-\infty}^{\infty} \Gamma_n = \{1\}$ and order $(\Gamma_{n+1}/\Gamma_n) = \text{order} (G_n/G_{n+1})$ for all $n \in \mathbb{Z}$.

We choose Haar measures μ on G and λ on Γ so that $\mu(G_0) = \lambda(\Gamma_0) = 1$. Then $\mu(G_n) = (\lambda(\Gamma_n))^{-1}$ for all $n \in \mathbb{Z}$; we set $m_n := \lambda(\Gamma_n)$.

For p with $1 \le p \le \infty$ we shall denote its conjugate by p'; thus 1/p + 1/p' = 1. For an arbitrary set E we denote its characteristic function by χ_E . The symbols \land and \land will be used to denote the Fourier and inverse Fourier transform, respectively. It is easy to see that for each $n \in \mathbb{Z}$ we have

$$(\chi_{\Gamma_n})^{\vee} = (\mu(G_n))^{-1}\chi_{G_n} := \Delta_n.$$

For a definition of the spaces of test functions and distributions on G and Γ , see [Ta]; these spaces will be denoted by $\mathscr{S}(G)$, $\mathscr{S}'(G)$, $\mathscr{S}(\Gamma)$ and $\mathscr{S}'(\Gamma)$. We can also extend the Fourier and inverse Fourier transform to $\mathscr{S}'(G)$ and $\mathscr{S}'(\Gamma)$ in the standard way and the usual properties hold, see [Ta] for details.

Let f be a locally integrable function on G. The function $M_2 f$ is defined on G by

$$M_2 f(x) := \sup_{k \in \mathbb{Z}} \left\{ \frac{1}{\mu(x + G_k)} \int_{x + G_k} |f(y)|^2 d\mu(y) \right\}^{1/2}.$$

Thus $M_2 f = \{M(|f|^2)\}^{1/2}$, where M is the Hardy-Littlewood maximal operator on G.

The sharp function f^* is defined on G by

$$f^{\#}(x) := \sup_{n \in \mathbb{Z}} \left\{ \frac{1}{\mu(x+G_n)} \int_{x+G_n} |f(y) - f_{x+G_n}| d\mu(y) \right\},\$$

where

$$f_{x+G_n}=\frac{1}{\mu(x+G_n)}\int_{x+G_n}f(y)d\mu(y).$$

For $1 \le p \le \infty$ let $L^p(G)$ be the space of all *p*-th integrable functions on *G*, with obvious modification for $p = \infty$. For a measurable function *f* on *G* we set

$$\sigma(f, y) = \mu\{x \in G : |f(x)| > y\}, \qquad y > 0,$$

and

$$f^*(t) = \inf\{y > 0 : \sigma(f, y) \le t\}, \quad t > 0.$$

For $1 \le p < \infty$ and $1 \le q \le \infty$, the Lorentz space $L^{p,q}(G)$ is the collection of all measurable functions f on G such that $||f||_{L^{p,q}(G)}^* < \infty$, where

$$\|f\|_{L^{p,q}(G)}^{*} = \begin{cases} \left(q/p \int_{0}^{\infty} (t^{1/p} f^{*}(t))^{q} \frac{dt}{t}\right)^{1/q} & \text{if } 1 \le p < \infty, \quad 1 \le q < \infty \\ \sup_{t>0} t^{1/p} f^{*}(t) & \text{if } 1 \le p < \infty, \quad q = \infty. \end{cases}$$

Next, the function f^{**} is defined on \mathbb{R}^+ by

$$f^{**}(t) = \sup_{t \le \mu(E)} \left\{ \frac{1}{\mu(E)} \int_E |f(x)|^{1/2} d\mu(x) \right\}^2.$$

We denote $||f^{**}||_{L^{p,q}(\mathbb{R}^{-})}^{*}$ by $||f||_{L^{p,q}(G)}$. It is easy to see that $(f^{**})^{*} = f^{**}$ and $f^{*}(t) \leq f^{**}(t) \leq (f^{*})^{**}(t)$ for all t > 0. Hence we have

$$\|f\|_{L^{p,q}(G)}^* \le \|f\|_{L^{p,q}(G)} \le \|f^*\|_{L^{p,q}(\mathbb{R}^+)}$$

By Hardy's inequality we also have

$$\|f^*\|_{L^{p,q}(\mathbb{R}^+)} \leq C \|f\|^*_{L^{p,q}(G)}$$

We note that $L^{p,q}(G) \subseteq L^{p,s}(G)$ if $q \leq s$. We equip $L^{p,q}(G)$ with either $\|\cdot\|_{L^{p,q}(G)}^{*}$ or $\|\cdot\|_{L^{p,q}(G)}$ to define its topology. We observe that $L^{p,p}(G) = L^{p}(G)$ and we simply denote $\|\cdot\|_{L^{p,q}(G)}$ by $\|\cdot\|_{p,q}$ and $\|\cdot\|_{p,p}$ by $\|\cdot\|_{p}$ if there is no confusion likely. The same notational simplifications also apply to $\|\cdot\|_{L^{p,q}(G)}^{*}$.

Let $\phi \in L^{\infty}(\Gamma)$ and define T_{ϕ} on $\mathscr{S}(G)$ by $(T_{\phi}f)^{\wedge} = \phi \hat{f}, f \in \mathscr{S}(G)$. The function ϕ is said to be a multiplier from $L^{p,q}(G)$ into $L^{r,\gamma}(G)$ if there exists a positive constant *C* so that for all $f \in \mathscr{S}(G)$ we have

$$||T_{\phi}f||_{r,s} \leq C ||f||_{p,q},$$

where $1 \le p, r < \infty, 1 \le q, s \le \infty$. We say that ϕ is a multiplier of weak type (p, p) if it is a multiplier from $L^p(G)$ to $L^{p,\infty}(G)$. The collection of all multipliers from $L^p(G)$ into $L^p(G)$ is denoted by $\mathcal{M}(L^p(G))$ and the corresponding multiplier norm is denoted by $\|\cdot\|_{\mathcal{M}(L^p)}$.

[4]

3. A Littlewood-Paley inequality for arbitrary coset decompositions of Γ ; the case $2 \le p < \infty$

Let $\{I_k\}_{k=0}^{\infty}$ be a sequence of mutually disjoint intervals of \mathbb{R} . For $f \in L^1(\mathbb{R})$ and $1 < r < \infty$ define the function $\tilde{\Delta}_r f$ on \mathbb{R} by

$$\tilde{\Delta}_r f := \left(\sum_{k=0}^\infty |S_{I_k} f|^r\right)^{1/r},$$

where

$$(S_{I_k}f)^{\wedge}(\xi) := \chi_{I_k}(\xi)f(\xi).$$

The following result was proved by Rubio de Francia in [R, Theorem 1.2].

THEOREM R. Let $2 \le p < \infty$. There exists a constant C_p such that

$$\|\tilde{\Delta}_2 f\|_p \le C_p \|f\|_p, \quad f \in L^p(\mathbb{R}).$$

In [Sj] Sjölin gave a different proof of Theorem R. In this section we use Sjölin's method to obtain an analogue of Theorem R on locally compact Vilenkin groups G.

THEOREM 1. Let $2 \le p < \infty$ and let $\{\Lambda_k\}_{k=0}^{\infty} := \{\gamma_k + \Gamma_{n_k}\}_{k=0}^{\infty}$ be a decomposition of Γ into mutually disjoint cosets of various subgroups of Γ . For $f \in \mathscr{S}(G)$ define the function Δf on G by

$$\Delta f := \left(\sum_{k=0}^{\infty} |S_{\Lambda_k} f|^2\right)^{1/2},$$

where

$$(S_{\Lambda_k}f)^{\wedge}(\gamma) := \chi_{\Lambda_k}(\gamma)f(\gamma).$$

Then

$$\|\Delta f\|_p \le C_p \|f\|_p$$

and this inequality can be extended to all $f \in L^{p}(G)$.

PROOF. It follows immediately from Plancherel's equality that

(1)
$$\|\Delta f\|_2 = \|f\|_2.$$

Thus we may assume that $2 . For each <math>k \ge 0$ we define $\psi_k : G \to \mathbb{C}$ by $\psi_k(x) = \gamma_k(x)\Delta_{n_k}(x)$, so that $(\psi_k)^{\wedge}(\gamma) = \chi_{\Gamma_{n_k}}(\gamma - \gamma_k) = \chi_{\Lambda_k}(\gamma)$. Thus for $f \in \mathscr{S}(G)$ we have

$$\Delta f(x) = \left\{ \sum_{k=0}^{\infty} |\psi_k * f(x)|^2 \right\}^{1/2}$$

The theorem will follow from the following string of inequalities as in Rubio de Francia [R, p. 5]:

$$\|\Delta f\|_{p} \leq C \|(\Delta f)^{\#}\|_{p} \leq C \|M_{2}f\|_{p} \leq C \|f\|_{p}.$$

It is clear that the last inequality holds as long as $2 and we only have to justify the second inequality the proof of which will be given in Lemma 1 below. <math>\Box$

LEMMA 1. Let $f \in \mathscr{S}(G)$. Then $(\Delta f)^{\#}(x) \leq CM_2 f(x)$ for all $x \in G$.

PROOF. Take any $x_0 \in G$ and let $I_0 := x_0 + G_{k_0}$ be a coset containing x_0 . Decompose f into

$$f = f \chi_{I_0} + f \chi_{G \setminus I_0} := g + h$$

Let

$$a := \left(\sum_{k \in S_0} |\psi_k * h(x_0)|^2\right)^{1/2}$$

where $S_0 = \{k : n_k \le k_0\}$; that is to say, we sum over those values of k for which the corresponding function ψ_k has the property:

$$G_{k_0} \subset G_{n_k} = \operatorname{supp}(\psi_k).$$

For every $x \in G$ we have

(†)
$$|\Delta f(x) - a| \le |\Delta f(x) - \Delta h(x)| + |\Delta h(x) - a|.$$

We analyze each of the two terms in (†). By the ℓ^2 -triangle inequality we have

$$\Delta f(x) = \left(\sum_{k} |\psi_{k} * g + \psi_{k} * h|^{2}(x)\right)^{1/2}$$

$$\leq \left(\sum_{k} |\psi_{k} * g(x)|^{2}\right)^{1/2} + \left(\sum_{k} |\psi_{k} * h(x)|^{2}\right)^{1/2}$$

$$= \Delta g(x) + \Delta h(x),$$

[6]

that is,

$$\Delta f(x) - \Delta h(x) \le \Delta g(x).$$

Similarly,

$$\Delta h(x) = \Delta (f - g)(x) \le \Delta f(x) + \Delta g(x)$$

so that

$$\Delta h(x) - \Delta f(x) \le \Delta g(x).$$

Therefore,

$$|\Delta f(x) - \Delta h(x)| \le \Delta g(x).$$

For the second term in (\dagger) we have

$$\begin{split} |\Delta h(x) - a| &= \left| \left(\sum_{k} |\psi_{k} * h(x)|^{2} \right)^{1/2} - \left(\sum_{k \in S_{0}} |\psi_{k} * h(x_{0})|^{2} \right)^{1/2} \right| \\ &= \left| \left(\sum_{k} |\psi_{k} * h(x)\overline{y_{k}(x)}|^{2} \right)^{1/2} - \left(\sum_{k \in S_{0}} |\psi_{k} * h(x_{0})\overline{y_{k}(x_{0})}|^{2} \right)^{1/2} \right| \\ &\leq \left(\sum_{k \notin S_{0}} |\psi_{k} * h(x)|^{2} \right)^{1/2} + \left(\sum_{k \in S_{0}} |F_{k}(x)|^{2} \right)^{1/2}, \end{split}$$

where

$$F_{k}(x) := \psi_{k} * h(x)\overline{\gamma_{k}(x)} - \psi_{k} * h(x_{0})\overline{\gamma_{k}(x_{0})}$$

$$= \int_{G} \psi_{k}(x - y)h(y)\overline{\gamma_{k}(x)}dy - \int_{G} \psi_{k}(x_{0} - y)h(y)\overline{\gamma_{k}(x_{0})}dy$$

$$= \int_{G} [\Delta_{n_{k}}(x - y) - \Delta_{n_{k}}(x_{0} - y)]\overline{\gamma_{k}(y)}h(y)dy.$$

Thus we see that

$$\begin{aligned} |\Delta f(x) - a| &\leq \Delta g(x) + \left(\sum_{k \notin S_0} |\psi_k * h(x)|^2 \right)^{1/2} + \left(\sum_{k \in S_0} |F_k(x)|^2 \right)^{1/2} \\ &:= A_1(x) + A_2(x) + A_3(x). \end{aligned}$$

We now consider in turn $\frac{1}{\mu(I_0)} \int_{I_0} A_i(x) dx$, i = 1, 2, 3. We have

$$\begin{split} \frac{1}{\mu(I_0)} \int_{I_0} A_1(x) dx &= m_{k_0} \int_{I_0} \Delta g(x) dx \\ &\leq m_{k_0} \left(\int_{I_0} |\Delta g(x)|^2 dx \right)^{1/2} \left(\int_{I_0} dx \right)^{1/2} \\ &\leq (m_{k_0})^{1/2} \left(\int_G \sum_k |\psi_k * g(x)|^2 dx \right)^{1/2} \\ &\leq (m_{k_0})^{1/2} \left(\sum_k \int_{\Gamma} |(\psi_k * g)^{\wedge}(\gamma)|^2 d\gamma \right)^{1/2} \\ &\leq (m_{k_0})^{1/2} \left(\int_{\Gamma} |\hat{g}(\gamma)|^2 d\gamma \right)^{1/2} \\ &= (m_{k_0})^{1/2} \left(\int_{I_0} |f(x)|^2 dx \right)^{1/2} \quad \text{since} \quad g(x) = f(x) \chi_{I_0}(x) \\ &= \left(\frac{1}{\mu(I_0)} \int_{I_0} |f(x)|^2 dx \right)^{1/2} \\ &\leq C M_2 f(x_0). \end{split}$$

To find an estimate for

$$\frac{1}{\mu(I_0)} \int_{I_0} A_2(x) dx = \frac{1}{\mu(I_0)} \int_{I_0} \left(\sum_{k \notin S_0} |\psi_k * h(x)|^2 \right)^{1/2} dx$$

we observe that for $x \in I_0$ and $k \notin S_0$ we have

$$\begin{aligned} |\psi_k * h(x)| &= |\psi_k * h(x)\gamma_k(x)| \\ &= \left| \int_G \psi_k(x-y)h(y)\overline{\gamma_k(x)} \, dy \right| \\ &= \left| \int_G \Delta_{n_k}(x-y)\overline{\gamma_k(y)}h(y) \, dy \right| \\ &= \left| \int_{G\setminus I_0} \Delta_{n_k}(x-y)\overline{\gamma_k(y)}f(y) \, dy \right| \end{aligned}$$

For $x \in I_0 = x_0 + G_{k_0}$ and $y \notin I_0$ we have $x - y \notin G_{k_0}$. Also, $k \notin S_0$ implies that $G_{n_k} \subset G_{k_0}$. Thus $x - y \notin G_{n_k}$ and, hence, $\Delta_{n_k}(x - y) = 0$. That is,

$$\frac{1}{\mu(I_0)}\int_{I_0}A_2(x)dx=0.$$

To find an estimate for

$$\frac{1}{\mu(I_0)}\int_{I_0}A_3(x)dx = \frac{1}{\mu(I_0)}\int_{I_0}\left(\sum_{k\in S_0}|F_k(x)|^2\right)^{1/2}dx$$

we observe that

(i) if $x \in I_0$ and $k \in S_0$ and $y \in x_0 + G_{n_k}$ then we have $x - y \in G_{n_k}$ and $x_0 - y \in G_{n_k}$, so that

$$\Delta_{n_k}(x-y) - \Delta_{n_k}(x_0-y) = m_{n_k} - m_{n_k} = 0.$$

(ii) if $x \in I_0$ and $k \in S_0$ and $y \notin x_0 + G_{n_k}$ then $x - y \notin G_{n_k}$ and $x_0 - y \notin G_{n_k}$, so that

$$\Delta_{n_k}(x-y) - \Delta_{n_k}(x_0-y) = 0.$$

We see that for $x \in I_0$ and $k \in S_0$ we have $F_k(x) = 0$, so that

$$\frac{1}{\mu(I_0)}\int_{I_0}A_3(x)dx=0.$$

Thus we may conclude that

$$\frac{1}{\mu(I_0)}\int_{I_0}|\Delta f(x)-a|dx|\leq CM_2f(x_0),$$

so that

$$(\Delta f)^{\#}(x_0) \leq CM_2 f(x_0).$$

This completes the proof of the Lemma.

4. A Littlewood-Paley-type inequality for arbitrary coset decompositions of Γ ; the case 1

For the case $1 . Rubio de Francia conjectured that for each <math>f \in L^{p}(\mathbb{R})$ we have

$$\|\tilde{\Delta}_{p'}f\|_p \le C_p \|f\|_p.$$

In this section we shall prove an inequality that is related to but weaker than the inequality in Rubio de Francia's conjecture.

THEOREM 2. Let $1 and let <math>\{\Lambda_k\}_{k=0}^{\infty} := \{\gamma_k + \Gamma_{n_k}\}_{k=0}^{\infty}$ be a decomposition of Γ into mutually disjoint cosets of various subgroups of Γ . If T is the operator defined for a simple function f on G by $Tf = \{\sum_{0}^{\infty} |S_{\Lambda_k}f|^{p'}\}^{1/p'}$, then $\|Tf\|_{p,p'} \le C \|f\|_p$. Hence T can be extended to a bounded operator from $L^p(G)$ into $L^{p,p'}(G)$.

PROOF. For each $k \ge 0, x \in G$ and $f \in \mathscr{S}(G)$ we have

$$|S_{\Lambda_k} f(x)| = |\psi_k * f(x)|$$

$$= \left| \int_G \gamma_k (x - y) \Delta_{n_k} (x - y) f(y) \, dy \right|$$

$$(*) \qquad \leq \Delta_{n_k} * |f|(x)$$

$$\leq M f(x).$$

Thus,

(**)
$$\sup_{k} |S_{\Lambda_{k}} f(x)| \le M f(x)$$

so that the mapping

(2)
$$f \to \sup_{k} |S_{\Lambda_k} f|$$
 is of weak type (1,1).

We now choose θ such that $1/p = 1 - \theta/2$, that is, $\theta = 2(1 - 1/p)$; then $0 < \theta < 1$. Let $\Omega := \{z \in \mathbb{C} : 0 \le \text{Re } z \le 1\}$ and let $f \in \mathscr{S}(G)$ such that $||f||_p = 1$. For $z \in \Omega$ define the function f_z on G by

$$f_z(x) = \begin{cases} \frac{f(x)}{|f(x)|} |f(x)|^{p(1-z/2)} & \text{if } f(x) \neq 0\\ 0 & \text{if } f(x) = 0. \end{cases}$$

Then $f_z \in \mathscr{S}(G)$ for each $z \in \Omega$. Moreover we have $f_{\theta} = f$, $||f_{it}||_1 = 1$ and $||f_{1+it}||_2 = 1$. For $N \in \mathbb{N}$, $z \in \Omega$ and $x \in G$ define the sequence $\{(T_N f_z)_k(x)\}_{k=0}^{\infty}$ by

$$(T_N f_z)_k(x) = \begin{cases} S_{\Lambda_k} f_z(x) & \text{if } 0 \le k \le N \\ 0 & \text{if } k > N. \end{cases}$$

Let $[\ell^{\infty}, \ell^2]_{\theta}$ be the complex interpolation space. Then $[\ell^{\infty}, \ell^2]_{\theta} = \ell^{p'}$ (see [Tr, 1.18.1, (12)]). For each $x \in G$ define $U_N f_{\theta}(x)$ by

...

...

$$U_N f_{\theta}(x) := \left\| \{ (T_N f_{\theta})_k(x) \}_{k=0}^{\infty} \right\|_{[t^{\infty}, t^2]_{\theta}}$$
$$= \sum_{k=0}^{N} \left(\left| S_{\Lambda_k} f_{\theta}(x) \right|^{p'} \right)^{1/p'}.$$

It follows from [Tr, 1.10.3, (9)] that

(3)
$$\log U_N f_{\theta}(x) \leq \int_{-\infty}^{\infty} P_0(\theta, t) \log \|\{(T_N f_{it})_k(x)\}\|_{\ell^{\infty}} dt + \int_{-\infty}^{\infty} P_1(\theta, t) \log \|\{(T_N f_{1+it})_k(x)\}\|_{\ell^2} dt$$

where $P_0(\theta, t) \ge 0$, $P_1(\theta, t) \ge 0$, $\int_{-\infty}^{\infty} P_0(\theta, t) dt = 1 - \theta$ and $\int_{-\infty}^{\infty} P_1(\theta, t) dt = \theta$. Thus, taking exponentials in (3) we have

$$U_{N}f_{\theta}(x) \leq \left[\left\{ \exp\left(\frac{1}{(1-\theta)} \int_{-\infty}^{\infty} P_{0}(\theta,t) \log \|\{(T_{N}f_{it})_{k}(x)\}\|_{\ell^{\infty}}^{1/2} dt \right) \right\}^{2} \right]^{(1-\theta)} \\ \times \left[\left\{ \exp\left(\frac{1}{\theta} \int_{-\infty}^{\infty} P_{1}(\theta,t) \log \|\{(T_{N}f_{1+it})_{k}(x)\}\|_{\ell^{2}}^{1/2} dt \right) \right\}^{2} \right]^{\theta}.$$

It follows from Jensen's inequality that

$$U_N f_{\theta}(x) \leq \{H_{N,0}(x)\}^{(1-\theta)} \{H_{N,1}(x)\}^{\theta},$$

where

$$H_{N,0}(x) = \left(\frac{1}{1-\theta} \int_{-\infty}^{\infty} P_0(\theta, t) \|\{(T_N f_{ii})_k(x)\}\|_{\ell^{\infty}}^{1/2} dt\right)^2$$

and

$$H_{N,1}(x) = \left(\frac{1}{\theta}\int_{-\infty}^{\infty} P_1(\theta, t) \|\{(T_N f_{1+it})_k(x)\}\|_{\ell^2}^{1/2} dt\right)^2.$$

For each measurable subset E of G we have

$$\begin{split} \left(\frac{1}{\mu(E)} \int_{E} (U_{N} f_{\theta}(x))^{1/2} dx\right)^{2} \\ &\leq \left(\frac{1}{\mu(E)} \int_{E} \{H_{N,0}(x)\}^{(1-\theta)/2} \{H_{N,1}(x)\}^{\theta/2} dx\right)^{2} \\ &\leq \left(\frac{1}{\mu(E)} \int_{E} \{H_{N,0}(x)\}^{1/2} dx\right)^{2(1-\theta)} \left(\frac{1}{\mu(E)} \int_{E} \{H_{N,1}(x)\}^{1/2} dx\right)^{2\theta}. \end{split}$$

It follows that for y > 0

$$(U_N f_{\theta})^{**}(y) = \sup_{y \le \mu(E)} \left(\frac{1}{\mu(E)} \int_E (U_N f_{\theta}(x))^{1/2} dx \right)^2 \\ \le \{H_{N,0}^{**}(y)\}^{(1-\theta)} \{H_{N,1}^{**}(y)\}^{\theta}.$$

,

Since $(U_N f_\theta)^{**} = \{(U_N f_\theta)^{**}\}^*$ we have, for 1 .

$$\begin{split} \|U_N f_\theta\|_{p,p'} &= \left(\frac{p'}{p} \int_0^\infty (t^{1/p} (U_N f_\theta)^{**}(t))^{p'} \frac{dt}{t}\right)^{1/p'} \\ &\leq \left(\frac{p'}{p} \int_0^\infty (t^{1/p} \{H_{N,0}^{**}(t)\}^{(1-\theta)} \{H_{N,1}^{**}(t)\}^{\theta})^{p'} \frac{dt}{t}\right)^{1/p'} \\ &= \left(\frac{p'}{p} \int_0^\infty \{t H_{N,0}^{**}(t)\}^{(1-\theta)p'} \{t^{1/2} H_{N,1}^{**}(t)\}^{\theta p'} \frac{dt}{t}\right)^{1/p'} \\ &= \left(\frac{p'}{p} \int_0^\infty \{t H_{N,0}^{**}(t)\}^{(1-\theta)p'} \{t^{1/2} H_{N,1}^{**}(t)\}^2 \frac{dt}{t}\right)^{1/p'}, \end{split}$$

since $\theta p' = 2(1 - 1/p)p' = 2$. By Hölder's inequality we have

$$\|U_N f_{\theta}\|_{p,p'} \leq \sup\{t H_{N,0}^{**}(t)\}^{(1-\theta)} \left(\frac{p'}{p} \int_0^\infty \{t^{1/2} H_{N,1}^{**}(t)\}^2 \frac{dt}{t}\right)^{\theta/2} \\ \leq B \|H_{N,0}\|_{1,\infty}^{(1-\theta)} \|H_{N,1}\|_2^{\theta},$$

where we use $1/p' = \theta/2$ in the first inequality.

We shall estimate $||H_{N,0}||_{1,\infty}$. For y > 0 we have

$$H_{N,0}^{**}(y) = \sup_{y \le \mu(E)} \left(\frac{1}{\mu(E)} \int_{E} |H_{N,0}(x)|^{1/2} d\mu(x) \right)^{2}$$

=
$$\sup_{y \le \mu(E)} \left[\frac{1}{\mu(E)} \int_{E} \left(\frac{1}{(1-\theta)} \int_{-\infty}^{\infty} P_{0}(\theta, t) \|\{(T_{N} f_{it})_{k}(x)\}\|_{t^{\infty}}^{1/2} dt \right) d\mu(x) \right]^{2}$$

=
$$\left[\frac{1}{(1-\theta)} \int_{-\infty}^{\infty} P_{0}(\theta, t) \left(\sup_{y \le \mu(E)} \frac{1}{\mu(E)} \int_{E} \|\{(T_{N} f_{it})_{k}(x)\}\|_{t^{\infty}}^{1/2} d\mu(x) \right) dt \right]^{2},$$

where the last equality follows from Fubini's theorem. Now

$$\|\{(T_N f_{it})_k(x)\}\|_{\ell^{\infty}} = \sup_{0 \le k \le N} |S_{\Lambda_k} f_{it}(x)| \le \sup_{0 \le k} |S_{\Lambda_k} f_{it}(x)| := F_{it}(x).$$

Therefore

$$\begin{aligned} H_{N,0}^{**}(y) &\leq \left[\frac{1}{(1-\theta)} \int_{-\infty}^{\infty} P_0(\theta, t) \left(\sup_{y \leq \mu(E)} \frac{1}{\mu(E)} \int_E (F_{it}(x))^{1/2} d\mu(x)\right) dt\right]^2 \\ &\leq \left[\frac{1}{(1-\theta)} \int_{-\infty}^{\infty} P_0(\theta, t) \left((F_{it})^{**}(y)\right)^{1/2} dt\right]^2 \\ &\leq (F_{it})^{**}(y). \end{aligned}$$

Consequently we have

$$\|H_{N,0}\|_{1,\infty} \leq \|F_{it}\|_{1,\infty} = \|\|\{S_{\Lambda_k}f_{it}\}\|_{t^\infty}\|_{1,\infty} \leq C \|f_{it}\|_1 = C,$$

where the last inequality follows from (2). Similarly we have

$$\|H_{N,1}\|_{2} \leq C \left(\frac{1}{\theta} \int_{-\infty}^{\infty} P_{1}(\theta, t) \|f_{1+it}\|_{2}^{1/2} dt\right)^{2}$$

$$\leq C \|\Delta f_{1+it}\|_{2}$$

$$= C \|f_{1+it}\|_{2} \quad (\text{using (1)})$$

$$= C$$

It follows that $||U_N f_{\theta}||_{p,p'} \le C$ if $||f||_p = 1$. Since $||Tf||_{p,p'} = \lim_{N \to \infty} ||U_N f_{\theta}||_{p,p'}$, we have $||Tf||_{p,p'} \le C ||f||_p$ for $f \in \mathscr{S}(G)$. Now $\mathscr{S}(G)$ is dense in $L^p(G)$ and so T can be extended to all functions in $L^p(G)$ and our proof is complete.

We observe that inequality (**) in the proof of Theorem 2 above shows that for each r > 1 we have

(4)
$$\left\|\sup_{\lambda} |S_{\lambda_{\lambda}}f|\right\|_{r} \leq \|Mf\|_{r} \leq C \|f\|_{r}.$$

Interpolation between (1) and (4) yields the following theorem.

THEOREM 3. Let $1 and let <math>\{\Lambda_k\}_{k=0}^{\infty}$ be as in Theorem 2. If s > p', then

$$\left\|\sum_{k=0}^{\infty} \left(\left|S_{\Lambda_{k}}f\right|^{s}\right)^{1/s}\right\|_{p} \leq C \|f\|_{p}.$$

Another result we can derive from inequality (*) in the proof of Theorem 2 is the following theorem.

THEOREM 4. Assume $\{\Lambda_k\}_{k=0}^{\infty} = \{\gamma_k + \Gamma_{n_0}\}_{k=0}^{\infty}$ for some fixed n_0 (i.e. we have a partition of Γ into the cosets of a fixed subgroup Γ_{n_0} of Γ). Then

(5)
$$\left\|\sum_{k=0}^{\infty} \left(\left|S_{\Lambda_{k}}f\right|^{p^{*}}\right)^{1/p^{*}}\right\|_{p} \leq C \|f\|_{p}$$

PROOF. According to (*) in the proof of Theorem 2, we have for every $k \ge 0$,

$$|S_{\Lambda_k}f(x)| \leq \Delta_{n_0} * |f|(x),$$

so that

(6)
$$\left\|\sup_{k} |S_{\Lambda_{k}}f|\right\|_{1} \leq \left\|\Delta_{n_{0}}*|f|\right\|_{1} \leq \|\Delta_{n_{0}}\|_{1}\|f\|_{1} = \|f\|_{1}.$$

Interpolation between (1) and (6) yields (5).

REMARK. Note that a slight generalization of this result can be obtained by considering partitions $\{\Lambda_k\}_{k=0}^{\infty} = \{\gamma_k + \Gamma_{n_k}\}_{k=0}^{\infty}$ satisfying the condition $\sup_k \lambda(\gamma_k + \Gamma_{n_k}) = \sup_k m_{n_k} = m_{n_k}$ for some $n_{\alpha} \in \mathbb{Z}$. In this case we have for each $k \ge 0$,

$$|S_{\Lambda_{i}}f(x)| \leq \Delta_{n_{i}} * |f|(x)$$

so that

$$\sup_{k} |S_{\Lambda_{k}}f(x)| \leq \sum_{\ell=0}^{\alpha} \Delta_{n_{\ell}} * |f|(x).$$

Therefore,

$$\left\|\sup_{k} |S_{\Lambda_{k}} f| \right\|_{1} \leq \sum_{\ell=0}^{\alpha} \|\Delta_{n_{\ell}} * |f| \Big\|_{1} \leq C \|f\|_{1},$$

yielding again (5).

5. Multipliers on $L^{p}(G)$

In [OQ] we considered the decomposition of Γ into disjoint sets $\Gamma_{k+1} \setminus \Gamma_k$ and in [OQ, Theorem 2.1] the following multiplier theorem was proved.

THEOREM OQ. Let $1 and let <math>\{\phi_k\}_{k=-\infty}^{\infty} \in \ell^s(\mathcal{M}(L^p(G)))$ for some $0 < s \le |2p/(2-p)|$. If $\phi := \sum_{-\infty}^{\infty} \phi_k \chi_{\Gamma_{k-1} \setminus \Gamma_k} \in L^{\infty}(\Gamma)$ then $\phi \in \mathcal{M}(L^p(G))$.

As an application of Theorem 1 we prove a comparable result for decompositions of Γ as considered in the present paper, see Theorem 5. Our proof was motivated by [CFF, Theorem 2] and is similar to that of [OQ, Theorem 2.1]. We shall discuss the sharpness of Theorem 5 in Theorem 8.

THEOREM 5. Let $\{\Lambda_k\}_{k=0}^{\infty} = \{\gamma_k + \Gamma_{n_k}\}_{k=0}^{\infty}$ be as in Theorem 1 and let 1 . $Let <math>\{\phi_k\}_{k=0}^{\infty} \in \ell^s(\mathscr{M}(L^p(G)))$ for s = |p/(2-p)| and assume $\phi := \sum_{k=0}^{\infty} \phi_k \chi_{\Lambda_k} \in L^{\infty}(\Gamma)$. Then $\phi \in \mathscr{M}(L^p(G))$.

PROOF. We may assume that 2 and that <math>s = p/(p - 2). Take any $f \in \mathscr{S}(G)$. A direct computation for the cases p = 2 and $p = \infty$, followed by an interpolation argument shows that the following inequality holds:

$$\left\|\left(\phi\hat{f}\right)^{\vee}\right\|_{p}^{p'} = \left\|\sum_{k}\psi_{k}*\left(\phi_{k}\chi_{\Lambda_{k}}\hat{f}\right)^{\vee}\right\|_{p}^{p'} \leq C\sum_{k}\left\|\left(\phi_{k}\chi_{\Lambda_{k}}\hat{f}\right)^{\vee}\right\|_{p}^{p'}.$$

[13]

Therefore,

$$\begin{split} \|(\phi \hat{f})^{\vee}\|_{p}^{p'} &\leq C \sum_{k} \|\phi_{k}\|_{\mathscr{M}(L^{p})}^{p'} \|S_{\Lambda_{k}}f\|_{p}^{p'} \\ &\leq C \left(\sum_{k} \|\phi_{k}\|_{\mathscr{M}(L^{p})}^{p'/(2-p')}\right)^{2-p'} \left(\sum_{k} \|S_{\Lambda_{k}}f\|_{p}^{p}\right)^{p'/p} \\ &= C \left(\sum_{k} \|\phi_{k}\|_{\mathscr{M}(L^{p})}^{s}\right)^{p'/s} \left(\int_{G} \sum_{k} |S_{\Lambda_{k}}f(x)|^{p} dx\right)^{p'/p} \\ &\leq C \left(\sum_{k} \|\phi_{k}\|_{\mathscr{M}(L^{p})}^{s}\right)^{p'/s} \left(\int_{G} \left\{\sum_{k} |S_{\Lambda_{k}}f(x)|^{2}\right\}^{p/2} dx\right)^{p'/p} \\ &\leq C \|f\|_{p}^{p'}. \end{split}$$

where the penultimate inequality holds because 2 < p, while the final inequality follows from Theorem 1.

As an additional application of Theorems 1 and 2 we have

THEOREM 6. Let $\{\Lambda_k\}_{k=0}^{\infty}$ be a decomposition of Γ as in Theorem 1.

(i) If $\{a_k\}_{k=0}^{\infty} \in \ell^2$, then $\sum_{k=0}^{\infty} a_k \chi_{\Lambda_k}$ is a multiplier on $L^p(G)$ for 1 .

(ii) If $\{a_k\}_{k=0}^{\infty} \in \ell^s$ for some s > 2, then $\sum_{k=0}^{\infty} a_k \chi_{\Lambda_\ell}$ is a multiplier from $L^p(G)$ into $L^{p,p'}(G)$ for $2s/(2+s) \le p \le 2$.

PROOF. (i) It follows from Theorem 1 that for $2 \le p < \infty$ we have

$$\left\|\sum_{k=0}^{\infty} (a_k \chi_{\Lambda_k} \hat{f})^{\vee}\right\|_p \leq \left\{\sum_{k=0}^{\infty} |a_k|^2\right\}^{1/2} \left\|\left\{\sum_{k=0}^{\infty} |S_{\Lambda_k} f|^2\right\}^{1/2}\right\|_p \leq C \|f\|_p$$

. . 0

Hence $\sum_{k=0}^{\infty} a_k \chi_{\Lambda_k}$ is a multiplier on $L^p(G)$ for $2 \le p < \infty$. The case 1 follows from duality.

(ii) Applying real interpolation (see [Tr, 1.18.6, Theorem 2]) to the inequalities obtained from the cases p = 2 and $p = r^*$ for some $r^* > r$ of Theorem 1, we obtain

(7)
$$\left\| \left\{ \sum_{k=0}^{\infty} |S_{\Lambda_k} f|^2 \right\}^{1/2} \right\|_{r,q} \le C \|f\|_{r,q}$$

for $2 < r < \infty$ and $1 \le q < \infty$. Also, an argument as in [St, Chapter IV, 5.3.1] shows that for all $f, g \in \mathcal{S}(G)$

(8)
$$\int_G f(x)\overline{g(x)}dx = \sum_{k=0}^{\infty} \int_G S_{\Lambda_k} f(x)\overline{S_{\Lambda_k}g(x)}dx.$$

Next, a standard argument using (7), (8) and the converse of Hölder's inequality for Lorentz spaces shows that for 1

(9)
$$||f||_{p,p'} \le C \left\| \left(\sum_{k=0}^{\infty} |S_{\Lambda_k} f|^2 \right)^{1/2} \right\|_{p,p'}$$

Finally, set t = 2s/(2 + s); using inequality (9), Hölder's inequality and Theorem 2 (see the proof in [CFF, p.341]) shows that

$$\left\|\sum_{k=0}^{\infty} (a_k \chi_{\Lambda_k} \widehat{f})^{\vee}\right\|_{t,t'} \leq C \left\|\left(\sum_{k=0}^{\infty} |a_k S_{\Lambda_k} f|^2\right)^{\perp 2}\right\|_{t,t'} \leq C \|f\|_{t}.$$

Hence $\sum_{k=0}^{\infty} a_k \chi_{\Lambda_k}$ is a multiplier from $L^t(G)$ into $L^{t,t'}(G)$. The result now follows because $\sum_{k=0}^{\infty} a_k \chi_{\Lambda_k}$ is also a multiplier on $L^2(G)$.

6. Sharpness of certain results

The following theorem shows that Theorem 2 is sharp in a certain sense.

THEOREM 7. Let 1 and let <math>s < p'. There exists a decomposition $\{\Lambda_k\}_{k=0}^{\infty}$ of Γ into mutually disjoint cosets of various subgroups of Γ such that the mapping $f \rightarrow \left\{\sum_{k=0}^{\infty} |S_{\Lambda_k}f|^s\right\}^{1/s}$ is not bounded from $L^p(G)$ to $L^{p,p'}(G)$.

PROOF. Take $\{\Lambda_k\}_{k=0}^{\infty} = \{\gamma_k + \Gamma_0\}_{k=0}^{\infty}$, that is, partition Γ into the cosets of Γ_0 and choose the γ_k in such a way that for each $l \ge 0$, we have

$$\bigcup_{0\leq k< m_l}\gamma_k+\Gamma_0=\Gamma_l.$$

Next, for $l \ge 0$, let $f_l(x) = \Delta_l(x)$, so that $||f_l||_p = (m_l)^{1/p^2}$ and $(f_l)^{\wedge}(\gamma) = \chi_{\Gamma_l}(\gamma)$. Then

$$S_{\Lambda_k} f_l(x) = \begin{cases} \chi_{G_0}(x) \gamma_k(x) & \text{if } k < m_l \\ 0 & \text{if } k \ge m_l. \end{cases}$$

Therefore,

$$\left\| \left(\sum_{k=0}^{m_l-1} |S_{\Lambda_k} f_l|^s \right)^{1/s} \right\|_{p,p'}^* = (m_l)^{1/s}.$$

If there were a constant C such that

$$\left\|\left(\sum_{k=0}^{m_l-1}|S_{\Lambda_k}f_l(x)|^s\right)^{1/s}\right\|_{p,p'}^*\leq C\|f_l\|_p,$$

then we would have $(m_l)^{1/s} \leq C(m_l)^{1-1/p}$ for all $l \geq 0$. But this is impossible because s < p'.

Theorem 7 has the following obvious corollary which shows that Theorem 1 is not necessarily true if 1 .

COROLLARY. Let $1 . Then there exists a decomposition <math>\{\Lambda_k\}_{k=0}^{\infty}$ of Γ into mutually disjoint cosets of various subgroups of Γ such that the mapping $f \to \Delta f$ is not bounded on $L^p(G)$, where Δf is as defined in Theorem 1.

Next we prove the sharpness of Theorem 5. The example constructed in the proof of Theorem 8 below is analogous to [CFF, Example 2].

THEOREM 8. Let 1 and assume that <math>q > s = |p/(2 - p)|. Then there exists a decomposition $\{\Lambda_k\}_{k=0}^{\infty}$ of Γ as in Theorem 1 and functions $\{\phi_k\} \in \mathcal{M}(L^p(G))$ such that

- (a) supp $\phi_k = \Lambda_k$ for all non-negative integers k,
- (b) $\{\phi_k\} \in l^q(\mathscr{M}(L^p(G))),$
- (c) if $\phi := \sum_{0}^{\infty} \phi_k$ then $\phi \in L^{\infty}(\Gamma)$ and $\phi \notin \mathcal{M}(L^p(G))$.

PROOF. We assume that 1 so that <math>s = p/(2 - p). Take $\{\Lambda_k\}_{k=0}^{\infty} = \{\gamma_k + \Gamma_0\}_{k=0}^{\infty}$ and choose the γ_k so that for each $l \ge 0$, we have

$$\bigcup_{0 \le k < m_l} \gamma_k + \Gamma_0 = \Gamma_l.$$

Choose α so that $1/q < \alpha < 1/s$. For each $k \ge 0$ choose an $x_k \in G_{-k} \setminus G_{-k+1}$ and define the functions $\phi_k : \Gamma \to \mathbb{C}$ by

$$\phi_{k}(\gamma) = (k+1)^{-\alpha} \overline{\gamma(x_{k})} \chi_{\Lambda_{k}}(\gamma).$$

Then we have $(\phi_k)^{\vee}(x) = (k+1)^{-\alpha} \gamma_k(x) \chi_{G_0}(x-x_k)$, so that $\|\phi_k\|_{\mathscr{M}(L^p)} \le \|\phi_k\|_1 = (k+1)^{-\alpha}$. Hence the sequence $\{\phi_k\}$ satisfies conditions (*a*) and (*b*).

Moreover, if we define $\phi := \sum_{0}^{\infty} \phi_k$, then it can be shown as in [OQ, Theorem 2.2] that $\phi \notin \mathcal{M}(L^p(G))$. This completes the proof of Theorem 8.

Our last result shows that Theorem 6 is also best possible in a certain sense.

THEOREM 9. Let G be the dyadic group. Let $2 < s < \infty$ and let $p = \frac{2s}{2+s}$. Then there exists a sequence $\{a_k\}_{k=1}^{\infty} \in \ell^s$ and a decomposition of Γ as in Theorem 1 so that $\sum_{k \in \mathbb{N}} a_k \chi_{\Lambda_k}$ is not a multiplier from $L^r(G)$ into $L^{r,r'}(G)$ for any r such that 1 < r < p.

PROOF. Following [GI, Example 5.2], we construct Rudin-Shapiro-like polynomials on G as follows:

For $0 \le n$, fix γ_0^n in $\Gamma_{2n+2} \setminus \Gamma_{2n+1}$ and let

$$\rho_0^n = \sigma_0^n = \chi_{G_n} \gamma_0^n.$$

Next, for k = 1, ..., n + 1, set

$$\rho_k^n = \rho_{k-1}^n + \gamma_k^n \sigma_{k-1}^n.$$

and

$$\sigma_k^n = \rho_{k-1}^n - \gamma_k^n \sigma_{k-1}^n.$$

where γ_k^n are chosen from Γ_{2n+1} such that $(\rho_k^n)^{\wedge}$ and $(\sigma_k^n)^{\wedge}$ are both constant and non-zero on precisely 2^k cosets of Γ_n in $\Gamma_{2n+2} \setminus \Gamma_{2n+1}$. Now define Θ on Γ by

$$\Theta(\gamma) = \begin{cases} \operatorname{sgn}(\rho_{n+1}^n)^{\wedge}(\gamma) & \text{if } \gamma \in \Gamma_{2n+2} \setminus \Gamma_{2n+1}, & n \ge 0\\ 0 & \text{otherwise.} \end{cases}$$

Choose q such that r < q < p and choose α so that $q < 2/(2 - \alpha) < p$; then $0 < \alpha < 1$. Define Φ on Γ by

$$\Phi(\gamma) = \sum_{n \in \mathbb{N}} 2^{(\alpha-1)n/2} \chi_{\Gamma_{2n} \setminus \Gamma_{2n-1}}(\gamma) \Theta(\gamma)$$

Note that for $n \ge 1$, $\Phi(\gamma)$ is constant $(= \pm 2^{(\alpha-1)n/2})$ on the 2^n cosets of Γ_{n-1} in $\Gamma_{2n} \setminus \Gamma_{2n-1}$ and is zero elsewhere. Denote the 2^n cosets of Γ_{n-1} in $\Gamma_{2n} \setminus \Gamma_{2n-1}$ by $\Lambda_{(2n,k)}$ for $k = 1, \ldots, 2^n$. Now define the sequence $\{a_{(2n,k)}\}$ such that

$$|a_{(2n,k)}| = 2^{(\alpha-1)n/2}$$
 for $n \in \mathbb{N}, k = 1, ..., 2^n$

and satisfying

$$\sum_{n\in\mathbb{N}}\sum_{k=1}^{2^n}a_{(2n,k)}\chi_{\Lambda_{(2n,k)}}(\gamma)=\sum_{n\in\mathbb{N}}2^{(\alpha-1)n/2}\chi_{\Gamma_{2^n}\cdot\Gamma_{2n-1}}(\gamma)\Theta(\gamma).$$

•

It is easy to see that

$$\sum_{n\in\mathbb{N}}\sum_{k=1}^{2^n}|a_{(2n,k)}|^s<\infty.$$

Now suppose Φ were a multiplier from $L^r(G)$ to $L^{r,r'}(G)$, then Φ would be a multiplier on $L^q(G)$ because Φ is a multiplier on $L^2(G)$ and r < q < p < 2. But by [GI, Example 5.2] Φ is not a multiplier on $L^q(G)$. Hence we have a contradiction.

References

- [CFF] M. Cowling, G. Fendler and J. J. F. Fournier, 'Variants of Littlewood-Paley theory', Math. Ann. 285 (1989), 333–342.
- [R] J. L. Rubio de Francia, 'A Littlewood-Paley inequality for arbitrary intervals', Rev. Mat. Iberoamericana 1(2) (1985), 1–14.
- [EG] R. E. Edwards and G. I Gaudry, *Littlewood-Paley and multiplier theory* (Springer-Verlag, Berlin, 1977).
- [GI] G. I. Gaudry and I. R. Inglis, 'Weak-strong convolution operators on certain disconnected groups', *Studia Math.* 64 (1979), 1–10.
- [OQ] C. W. Onneweer and T. S. Quek, 'On L^p-multipliers of mixed-norm type', J. Math. Anal. Appl. 187 (1994), 490–497.
- [Sj] P. Sjölin, 'A note on Littlewood-Paley decompositions with arbitrary intervals', J. Approx. Theory 48 (1986), 328–334.
- [St] E. M. Stein, Singular integrals and differentiability properties of functions (Princeton University Press, Princeton, NJ, 1970).
- [Ta] M.H. Taibleson, Fourier analysis on local fields (Princeton University Press, Princeton, NJ, 1975).
- [Tr] H. Triebel, Interpolation theory, function spaces, differential operators (North Holland, Amsterdam, 1978).

Department of Mathematics University of New Mexico Albuquerque, NM 87131 USA e-mail: onneweer@math.unm.edu Department of Mathematics National University of Singapore Singapore 119260 Republic of Singapore e-mail: matqts@leonis.nus.sg

[18]