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Abstract

Let C be a locally compact Vilenkin group with dual group F. We prove Littlewood-Paley type inequalities
corresponding to arbitrary coset decompositions of f. These inequalities are then applied to obtain new
L''(G) multiplier theorems. The sharpness of some of these results is also discussed.

1991 Mathematics subject classification (Amer. Math. Soc): primary 43A70. 43A22.

1. Introduction

Given a sequence {g,,} of Fourier multipliers for LP(R), 1 < p < oo, let g :=
H^x8"Xni where x» denotes the characteristic function of the dyadic interval [2".
2"+l] in R. In an earlier paper [OQ] we proved that if the sequence {g,,\ belongs to
a certain mixed-norm space, then g is also an LP(R) multiplier. A similar result was
established for Fourier multipliers for L''(G)-spaces, where G is a locally compact
Vilenkin group. In that case we considered the decomposition of F, the dual group of
G, into sets that are comparable to the dyadic intervals in R.

In this paper we consider essentially the same problem for decompositions of F
into a union of arbitrary disjoint cosets of subgroups of F. The proof of the resulting
multiplier theorem, Theorem 5, depends on a one-sided extension of the Littlewood-
Paley inequality in the context of Vilenkin groups. This generalizes a similar result
of Rubio de Francia for functions in LP(R), 2 < p < oo. We also prove another
one-sided Littlewood-Paley-type inequality for functions in LP(G), 1 < p < 2. This
inequality is then used to obtain an additional multiplier theorem, Theorem 6. Finally,
we discuss the sharpness of some of our results, see Theorems 7, 8 and 9.
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2. Definitions and notation

Throughout this paper G will denote a locally compact Vilenkin group, that is to
say, G is a locally compact Abelian topological group containing a strictly decreasing
sequence of open compact subgroups (G,,)^x such that U*xGn = G and n ^ G , , =
{0). In [EG, Section 4.1.4] such groups are called groups with a suitable family of
compact open subgroups (G_ , , ) ^ . Clearly, such groups are totally disconnected.
Examples of locally compact Vilenkin groups are the p-adic numbers and, more
generally, the additive group of a local field, see [EG] or [Ta] for further details.

Let F denote the dual group of G, and for each n e l , let F,, denote the annihilator
of G,,, that is,

F,, = {y € f : y(x) = 1 for all x € G,,}.

Then we have U ^ F , , = F. n ^ T , , = {1} and order (F,,+i/ F,,) = order (G,,/G,,+i)
for all n e I.

We choose Haar measures fx on G and A. on F so that fJ.(G0) = A.(r0) = 1. Then
H(Gn) = (A.(F,,))-' for all // e 1; we set/n,, := A.(F,,).

For p with 1 < p < oc we shall denote its conjugate by p'\ thus \/p + 1/p' = 1.
For an arbitrary set E we denote its characteristic function by \E- The symbols A and

will be used to denote the Fourier and inverse Fourier transform, respectively. It is
easy to see that for each n e 7L we have

(Xr,y = (M(Gn))-'xc,, := A,,.

For a definition of the spaces of test functions and distributions on G and F, see
[Ta]; these spaces will be denoted by Y(G), y'(G), y{T) and y'(V). We can also
extend the Fourier and inverse Fourier transform to y\G) and y'(T) in the standard
way and the usual properties hold, see [Ta] for details.

Let / be a locally integrable function on G. The function M2f is defined on G by

i i r
M2f{x) := sup / \f(y)\2dn(y)

r
/

Thus M2f = [M( | /p)} 1 / 2 , where M is the Hardy-Littlewood maximal operator on
G.

The sharp function / * is defined on G by

/*(*) := sup j \ f |/(v) - Ucjdn(y)
,,el \IX(X + Gn) JX+GII

where

/.-+<;,. = , } „ , f f(y)dii(y).
fl(X + G,,) J.\+G,i

https://doi.org/10.1017/S1446788700035941 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035941


372 C. W. Onneweer and T. S. Quek [3]

For 1 < p < oc let L''(G) be the space of all p-lh integrable functions on G. with
obvious modification for p — oc. For a measurable function / on G we set

o(f. v) = M(.V € G : | /( .v)| > y). v > 0.

and

f*(t) = inffy > 0 : o(f. y) < t). t > 0.

For 1 < /:> < oc and 1 < q < oc, the Lorentz space L''A'(G) is the collection of all
measurable functions / on G such that ||/|^,.,l(;> < oc. where

11/11* = ( ( i / p f ? ( t i "f*{t))* T ) ' " i f l < / ; < o c . l<
[ sup , > ( ) r

l / / ' / * (O if 1 < p < oc. q =

Next, the function /** is denned on K* by

r* (O= sup (—!— [ \f(x)\[;2d/M.x)

We denote | | / " | I I , , ( a - , by | | / | | / .» ( C l . It is easy to see that ( / " ) * = / " and
f*(t) < f**(t) < (/*)**(O for all t > 0. Hence we have

II/III,.,(C) < ll/lk-MG, < \\r\\L- ;••,,•

By Hardy's inequality we also have

11 r 11/.»,»-, < c 11/11;. Cl.

We note that L'"'(G) c L'K'(G) if q <s. We equip L>"HG) with either || • i|*,..,jC;h or

|| • II//.MG1 to define its topology. We observe that LPI'(G) = U'(G) and we simply

denote || • Wi^no by || • II,,.,, and || • ||,,.,, by || • ||,, if there is no confusion likely. The

same notational simplifications also apply to || • \\*LI,.,(G|.

Let 4> e L^-(F) and define T0 on y(G) by (T^f) = </>/, / e ¥{G). The

function 0 is said to be a multiplier from L ' " ' ( G ) into L' "(G) if there exists a positive

constant C so that for all / e y(G) we have

II7"*/II,., 5 C | | / 1 | , , , ,

where 1 < p. r < oc, 1 < q, s < oc. We say that 0 is a multiplier of weak type
(p, p) if it is a multiplier from Lr(G) to L1' ^(G). The collection of all multipliers
from LP(G) into Lr(G) is denoted by .#(L''(G)) and the corresponding multiplier
norm is denoted by || • \\.#an-
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3. A Littlewood-Paley inequality for arbitrary coset decompositions of F; the
case 2 < p < oo

Let {/A-}£1() be a sequence of mutually disjoint intervals of R. For / e L'(R) and
1 < r < oo define the function A r / on R by

\<=o

where

The following result was proved by Rubio de Francia in [R, Theorem 1.2].

THEOREM R. Let 2 < p < oo. There exists a constant Cp such that

I |A2/ | | , <Cp\\f\\p, / e L " ( R ) .

In [Sj] Sjolin gave a different proof of Theorem R. In this section we use Sjolin's
method to obtain an analogue of Theorem R on locally compact Vilenkin groups G.

THEOREM 1. Let 2 < p < oo and let {Ak } l̂0 := {yk + F,,, } ^ 0 be a decomposition
ofT into mutually disjoint cosets of various subgroups ofT. For f e y{G) define
the function A / on G by

A/:=(£|SAj/|

where

1/2

2 \

Then

\\*f\\p<Cp\\f\\p

and this inequality can be extended to all f e Ln(G).

PROOF. It follows immediately from Plancherel's equality that

(1)
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Thus we may assume that 2 < p < oo. For each k > 0 we define \j/k. : G -> C
by i/^M = ytU)An((x), so that (^)A(y) = Xr,I((y - Yk) = X\SY)- Thus for
/ € y(G) we have

,r
The theorem will follow from the following string of inequalities as in Rubio de
Francia [R, p. 5]:

| |A/| |p < C| |(A/)# | | , < C\\M2f\\p < C\\f\\p.

It is clear that the last inequality holds as long as 2 < p < oo and we only have to
justify the second inequality the proof of which will be given in Lemma 1 below. •

LEMMA 1. Let f e y(G). Then (A/)#(x) < CM2f(x) for all x e G.

PROOF. Take any x0 e G and let Io := x0+G^beacosetcontainingx0. Decompose
/ into

/ = /*/„ + fXG\i0 •= g + h.

Let

where 50 = {k : nk < k0}; that is to say, we sum over those values of k for which the
corresponding function \//k has the property:

Gko C G,H = supp

For every x e G we have

(t) | A / ( J C ) -a\< \Af(x) - Ah(x)\ + \Ah(x) - a\.

We analyze each of the two terms in (t). By the €2-triangle inequality we have

/ \ ' / 2

Af(x)= \y 2 \
\ k i

I \1/2 / \1/2

< I > lifrjt

= Ag(x) + Ah(x),
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that is,

Similarly,

so that

Z.p-multipliers of mixed-norm type

A/00 - Ah(x) < Ag(x).

Ah(x) = A(f - g)(x) < Af(x) + Ag(x)

375

A/200 - A/00 < Ag(x).

Therefore,

|A/Or) - A/*OO| < Ag(x).

For the second term in (t) we have

\Ah(x) -a
1/2 1/2

keS0

keS0

keSo

where

1/2

Fk(x) :— fk * h(x)yk(x) - \j/k * h(xo)yk(xo)

= / irk(x - y)h(y)yk(x)dy - / \//k(x0 - y)h(y)yk{x0)dy
JG JC

= / [A,H(x - j ) - Ant(x0 - :
JG

y)]Yk(y)h(y)dy.

Thus we see that

/ \
\Af(x) -a\< Ag(x) + ( £ \fk * h(x)\2 I +
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We now consider in turn

We have

1

C. W. Onneweer and T. S. Quek

1 h
Jin

(x)dx, i = 1,2.3.

/ Ai(x)dx=mko / Ag(x)dx
Ji0 Ji0

dx

1/2

( f \
< K ) ( / \g(Y)\ dy\

= (mk()y
/2 (f \f(x)\2dx

( 1 f i
= / \f(x)\ a

\ M ( 4 ) JI0

1/2

since

< CM2f(x0).

To find an estimate for

1

M(/o)
f A2(x)dx =

/.(;
*h(x)\2) dx

we observe that for x & Io and k £ 50 we have

L
L
JG\

- y)h(y)yk(x) dy

ittlc(x - y)yk{y)h(y) dy

Ant(x-y)yk(y)f(y)dy

[7]

For x € /o = x0 + G^ and j g /0 we have x - y £ Gkti. Also, k <£ So implies that
Gnt c Gk(l. Thus x — y £ Gnk and, hence, Ank(x — y) = 0. That is,

1

J k
A2(x)dx = 0.
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To find an estimate for

1/2
1 ( \

T\Fk(x)\2) dx

we observe that

(i) if x e /0 and k e 50 and v € x0 + G,,k then we have x — y € G,n and
XQ — v € G,,(, so that

A,,( (x - y) - A,1( Uo - y) = mm - m,h = 0.

(ii) if .v e 70 and A: e 5() and y £ xo + G,h then x — y £ G,n and x0 — y £ G,,,, so
that

A , ? 1 U - y ) - A n i ( x 0 - y ) = 0 .

We see that for x e /() and A e 50 we have FA(x) = 0, so that

1

Ji«
(x)dx = 0.

Thus we may conclude that

—!— [ \Af(x)-a\dx < CM->f(x0),
M('(i) JI,,

so that

(A/)#(x0) < CM2f(x0).

This completes the proof of the Lemma. •

4. A Littlewood-Paley-type inequality for arbitrary coset decompositions of F;
the case 1 < p < 2

For the case 1 < p < 2. Rubio de Francia conjectured that for each / e Z/(R) we
have

In this section we shall prove an inequality that is related to but weaker than the
inequality in Rubio de Francia's conjecture.
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378 C. W. Onneweer and T. S. Quek [9]

THEOREM 2. Let I < p < 2 and let {Ak}^LQ := {yk + V,^}^ be a decomposition of
F into mutually disjoint cosets of various subgroups ofV. IfT is the operator defined
for a simple function f on G by Tf = { £ ~ | 5 A l / | " ' } ' " , then \\Tf\\^ S C\\f\\p.
Hence T can be extended to a bounded operator from LP(G) into Lpp (G).

PROOF. For each k > 0, x e G and / e y(G) we have

/ Yk(x - y)Ant(x - y)f(y) dy
Jc

(*) < ABt * \f\(x)

< Mf(x).

Thus,

(**) sup|5Al/(jc)| <Mf(x)

so that the mapping

(2) / - > s u p | S A t / | is of weak type (1,1).
k

We now choose 0 such that \/p = 1-0/2, that is, 0 = 2 ( 1 - l/p); thenO < 0 < 1.
Letfi := {z € C : 0 < Rez < 1} and let / e ^ ( G ) such that | |/ | |p = 1. Forz € Q
define the function / . on G by

[0 if fix) =0.

Then / . e y{G) for each z e fi. Moreover we have fv = / , ||/,,||i = 1 and
||/i+,-, ||2 = 1. For N € N, z e f2and* e G define the sequence {(7^/;)*(*)}£!„ by

i SAJ:(x) ifO <k < N

0 i fJ t>A/.

Let [£°°, €2]e be the complex interpolation space. Then [£oc, £2]# = lp (see [Tr,
1.18.1,(12)]). For each* € G define UNfB{x) by
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It follows from [Tr, 1.10.3, (9)] that

logUNfH(x)< f Po(0,t)log\\[(TNfit)k(x)}\\t~dt
J -x

+ f Pde,t)log\\{(TNfi+i,)k(x)]\\r-dt,
J -X

379

(3)

where P0(6, t) > 0, P,(0, t) > 0, f~x P0(9, t)dt = 1 - 6 and /_°^ P,(6>, t)dt = 6.
Thus, taking exponentials in (3) we have

< exp

exp

I - 0) J_
, r)iog

It follows from Jensen's inequality that

UNfH(x) <

where

HN.0(x) = \'2-< n\\{{TNfi,)k{x)}\\\'2-dt

and

HNA(x) = (- PdO, t)\\{(TNfl+il)k(x)}\\\?dt

For each measurable subset E of G we have

(I/yv/eOr))1^*

{//w.o(Jc)}"-e)/2{tf/¥.i(Jf)r2dac

2(1-0)

j{HN.0(x)}1/2dx\
20

It follows that for v > 0

(UNfe)**(y)= sup (-^- f(UNfe(x))i/2dx\
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Since (UNfg)** = {(UNfe)**}* we have, for 1 < p < oo.

(p' fx 1/p ** p ' °
PP \ P Jo

~ \ P Jo N'°

(p' fx „ (l-tf) • 11 tf.'^A

1/7''

!//>'

since Op' = 2(1 — l/p)p' = 2. By Holder's inequality we have

tS\\tl II

n.o\\\.

where we use l/p' = 6/2 in the first inequality.
We shall estimate \\HN 0\\lx. For y > 0 we have

H**0(y)= sup (-L- f \HN.0(x)\1/2dn(x)\

= sup \-L- f (-L- f Po(e,t)\\{(Ts-fMx)}\\l
t£-dt)dn(x)\

-"—- / />o(«.of sup —i— / ||{(7;v/-,)tW}||^MU)Vr

.(1

where the last equality follows from Fubini's theorem. Now

\\{(TNfitMx)}\\t- = sup |SAt/-,(*)l < sup|SAl./;,(x)| := Fit(x).
0<k<N 0<k

Therefore

W^oCy) < / P 0 (^ ,0 I sup / (F,,{x))x'-dix{x)\dt

1 fX ** 1/2 I 2

I - 6) J_x " y \
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Consequently we have

where the last inequality follows from (2). Similarly we have

381

-,||, =C .

<C\\Af]+,,\\2

= C | | / 1 + / , | b (us ing (1))

= C.

It follows that \\Uyf4,,,, < C if Il/H,, = 1. Since | | r / | | p . , , = l i m , v ^ \\UxfH\\p,iy,
we have \\Tf\\p.,, < C\\f\\,, for / e .y;(G). Now y(G) is dense in U'(G) and so 7"
can be extended to all functions in L''(G) and our proof is complete. •

We observe that inequality (**) in the proof of Theorem 2 above shows that for
each r > 1 we have

(4) sup |SAl / | < \\Mf\\r <

Interpolation between (1) and (4) yields the following theorem.

THEOREM 3. Let 1 < /; < 2 and let {AA.}^1() be as in Theorem 2. If s > p', then

Another result we can derive from inequality (*) in the proof of Theorem 2 is the
following theorem.

THEOREM 4. Assume {A;}^1() = {y^ + r,,n}^i0/or some fixed n0 (i.e. we have a
partition ofY into the cosets of a fixed subgroup Vll{l ofV). Then

(5)

PROOF. According to (*) in the proof of Theorem 2, we have for every k > 0,

|S,v/( .v) | < A,,(1 * l/K-v).

so that

(6) s u p | 5 A ( / < A,,,, *

Interpolation between (1) and (6) yields (5). •
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REMARK. Note that a slight generalization of this result can be obtained by consid-
ering partitions {At.}^i0 = {yk + F,,(}j?L0 satisfying the condition supA k(yk + F,,() =
supA m,h = m,,u for some na € 2. In this case we have for each k > 0,

so that

\SAJ(x)\ < A,,, *\f\(x)

sup|5A(/U)| <

Therefore,

sup|5Al/| II A , , , * 1 —

yielding again (5).

5. Multipliers on Lp(G)

In [OQ] we considered the decomposition of F into disjoint sets
[OQ, Theorem 2.1] the following multiplier theorem was proved.

and in

THEOREM OQ. Let 1 < p < oc and let

0 < 5 < \2p/(2 - p)\. If<p := Y,~

e V(^(LP(G))) for some
then 4> e

As an application of Theorem 1 we prove a comparable result for decompositions
of F as considered in the present paper, see Theorem 5. Our proof was motivated by
[CFF, Theorem 2] and is similar to that of [OQ, Theorem 2.1]. We shall discuss the
sharpness of Theorem 5 in Theorem 8.

THEOREM 5. Let {Aj}^,, = {yk + F,,( } ^ 0 be as in Theorem 1 and let 1 < p < oc.
Let {0A}̂ L{) e V(^t(L1''(G))) for s = \p/(2 — p)\ and assume <p '•= '^Z'k=o4>kXAL e

L^(Y). Then 0 G ,//(L''(G)).

PROOF. We may assume that 2 < p < oo and that v = p/(p - 2). Take any
/ G y(G). A direct computation for the cases p = 2 and p = oc, followed by an
interpolation argument shows that the following inequality holds:

u<pfy\\; =
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Therefore,

\\(4>fY\\p
P' s

L ''-multipliers of mixed-norm type 383

PIP

= cE LV

where the penultimate inequality holds because 2 < p, while the final inequality
follows from Theorem 1. D

As an additional application of Theorems 1 and 2 we have

THEOREM 6. Let {A/J^i,, be a decomposition ofV as in Theorem 1.

(i) If {dk}^=o e ^2. then JZitlo^XA, is a multiplier on Lp(G)for \ < p < oo.
(ii) //{a*}^) £ Is for some s > 2, f/ien X^o^^ 'V (s a multiplier from LP(G)

into LPn'(G)for2s/(2 +s) < p < 2.

PROOF, (i) It follows from Theorem 1 that for 2 < p < oo we have

f „ 1 1/2

Hence X]̂ loa*A'A< is a multiplier on L''(G) for 2 < p < oo. The case 1 < p < 2
follows from duality.
(ii) Applying real interpolation (see [Tr, 1.18.6, Theorem 2]) to the inequalities ob-
tained from the cases p = 2 and p — r* for some r* > r of Theorem 1, we obtain

(7)

1/2

< c\\f\\r,q
r.q

for 2 < r < oo and 1 < <y < oo. Also, an argument as in [St, Chapter IV, 5.3.1]
shows that for all / , g e y (G)

(8) f f(x)g(x)dx = E / StiJ{x)SAkg(x)dx.
Jc k=0 Jc
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384 C. W. Onneweer and T. S. Quek [15]

Next, a standard argument using (7), (8) and the converse of Holder's inequality for
Lorentz spaces shows that for 1 < p < 2

(9) 11/11,..,- <

Finally, set t = 2s/(2 + s); using inequality (9), Holder's inequality and Theorem 2
(see the proof in [CFF, p.341]) shows that

< c

Hence ^ ^ ^ A X A , is a multiplier from L'(G) into L ' ' (G). The result now follows

because X!A*=O fl*Xv ' s a ' s o a multiplier on L2(G). •

6. Sharpness of certain results

The following theorem shows that Theorem 2 is sharp in a certain sense.

THEOREM 7. Let 1 < p < 2 and lets < p. There exists a decomposition {A*}^,,
of F into mutually disjoint cosets of various subgroups of Y such that the mapping
f -+ {J2T=a I^A,/!1}"1 is not bounded from L''(G) to L1''' (C).

PROOF. Take (AA}^t0 = {yk + ro}^lo, that is, partition F into the cosets of T,, and
choose the yk in such a way that for each / > 0, we have

N e x t , f o r / > 0 , l e t f ( x ) = A , ( x ) , s o t h a t \\f,\\p = ( m , ) 1 '' a n d ( f ) ' ( y ) =

T h e n

Xcn\
x)Yk(x) it k < nil

0 if k >/?;,.

Therefore,

'»„-! = (« / ) ' (.
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If there were a constant C such that

<C\\f,\\P,
, k=()

p-p

then we would have (w,)17' < C(m,)' l//) for all/ > 0. But this is impossible because
s < />'. D

Theorem 7 has the following obvious corollary which shows that Theorem 1 is not
necessarily true if 1 < p < 2.

COROLLARY. Let 1 < p < 2. Then there exists a decomposition {Ak}fL0 ofV into
mutually disjoint cosets of various subgroups ofT such that the mapping f —• A / is
not bounded on Ln(G), where A / is as defined in Theorem 1.

Next we prove the sharpness of Theorem 5. The example constructed in the proof
of Theorem 8 below is analogous to [CFF, Example 2].

THEOREM 8. Let 1 < p < oo and assume that q > s = \p/(2 — p)\. Then there
exists a decomposition {A;}^0 ofT as in Theorem 1 andfunctions {<pk} £ ^
such that

(a) supp 4>k = A* for all non-negative integers k,
(b) {&} G/"(.#(L"(G))),
(c) if4> := £ (?& r/i<?n 0 e L X (D

PROOF. We assume that 1 < p < 2 so that 5 = p/(2 - p). Take
{"A + Toltlo and choose the yk so that for each / > 0, we have

U Yk + r0 = r,.
Q<k<m,

Choose a so that \/q < a < \/s. For each k > 0 choose an xA e G_<- \ G_t+I and
define the functions <pk : V -> C by

Then we have (0*)v(x) = (k + l)-ayt(x)xcAx ~ xk), so that \\4>k\\.*{Ln < \\4>kh =
(k + \)~a. Hence the sequence {<pk} satisfies conditions (a) and (b).

Moreover, if we define <p := J ^ <pk, then it can be shown as in [OQ, Theorem 2.2]
that <p i .#(L ' ' (G)) . This completes the proof of Theorem 8. •

Our last result shows that Theorem 6 is also best possible in a certain sense.
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THEOREM 9. Let G be the dyadic group. Let 2 < s < oo and let p = 2s/(2 + s).

Then there exists a sequence [ak}^=[ € V and a decomposition ofV as in Theorem 1

so that Yit€K akX\t is not a multiplier from L' (G) into L'r (G) for any r such that

1 < r < p.

PROOF. Following [GI, Example 5.2], we construct Rudin-Shapiro-like polynomi-
als on G as follows:

For 0 < n, fix ]/<J' in r2,,+2\r2,,+i and let

Pa =°a = XcYo-

Next, for A: = 1 n + 1, set

and

where yt" are chosen from ri,,+i such that (p'k')
A and (<y[')A are both constant and

non-zero on precisely 2k cosets of V,, in ^,,+2^2,1+1. Now define 0 on F by

= |sgn(^,7+I)
A(y) if y € r 2 n + 2 \ r : , , + i, n > 0

10 otherwise.

Choose q such that r < q < p and choose a so that q < 2/(2 — a) < p\ then
0 < a < 1. Define <t> on F by

Note that for n > 1, «J>(y) is constant (= ±2(O"II"/2) on the 2" cosets of F,,_, in
Fi/ATi/i-i and is zero elsewhere. Denote the 2" cosets of F,,_| in r2,,\r2,,_i by A^.t ,
for k = 1 2". Now define the sequence {aanJc)) such that

|a<2».*)l = 2 ( " - | ) " / 2 for n € N, k = \ 2"

and satisfying
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It is easy to see that

Now suppose <t> were a multiplier from Lr{G) to Lrr (G), then <t> would be a multiplier

on Lq(G) because <J> is a multiplier on L2(G) and r < q < p < 2. But by [GI,

Example 5.2] <J> is not a multiplier on Lq{G). Hence we have a contradiction. •
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