THE FIXED SUBRING OF SOME GROUPS OF RING AUTOMORPHISMS

BY
MARY DOWLEN

Abstract

Let Z_{m} denote the ring of integers modulo an integer $m>1$ and let $G\left(Z_{m}\right)$ be the group under composition of all Z_{m}-automorphisms of $Z_{m}[X]$. In this paper we determine $Z_{m}[X]^{G\left(Z_{m}\right)}$, the subring of $Z_{m}[X]$ left fixed by elements of $G\left(Z_{m}\right)$.

1. Introduction. Let R be a commutative ring with identity and let $R[X]$ be the polynomial ring in one variable over R. A ring automorphism σ of $R[X]$ is said to be an R-automorphism of $R[X]$ if $\sigma(r)=r$ for each $r \in R$. The set $G(R)$ of all R-automorphisms of $R[X]$ is a group under composition. If H is a subgroup of $G(R)$, then we denote by $R[X]^{H}$ the fixed subring of H-that is,

$$
R[X]^{H}=\{f \in R[X] \mid \sigma(f)=f \text { for each } \sigma \in H\}
$$

In this paper we determine the ring $R[X]^{G(R)}$, where $R=Z_{m}$ is the ring of integers modulo an integer $m>1$. Using the standard direct sum decomposition of Z_{m}, most of our work goes into the case where $m=p^{k}$ is a prime power (this case is considered in Section 2). If $k=1, Z_{p}$ is a field, and little work is required because of results that are known. To wit, if R is an integral domain, then standard results from Galois theory show that if H is infinite then $R[X]^{H}=R$, whereas a result of Samuel [2] shows that if H is finite then $R[X]^{H}=R[f]$, where $f=\prod_{\sigma \in H} \sigma(X)$.

Before proceeding it is necessary to consider the elements of $G(R)$ more closely and to establish some notation. It is well known that an R endomorphism of $R[X]$ is determined by $\sigma(X)$-that is, if $\sigma(X)=h$, then $\sigma(f(X))=f(h)$ for each $f(X) \in R[X]$; we denote this endomorphism by σ_{h}. Moreover, in [1] Gilmer gave the following characterization of the elements of $G(R)$: If $h=\sum_{i=0}^{n} h_{i} X^{i} \in R[X]$, then σ_{h} is an R-automorphism of $R[X]$ if and only if h_{1} is a unit of R and h_{i} is nilpotent for $i \geq 2$. From this characterization we see that $G\left(Z_{m}\right)$ is an infinite group if Z_{m} contains a nonzero nilpotent element. However, it turns out that $Z_{m}[X]^{G\left(Z_{m}\right)}$ is a finite ring extension of Z_{m} properly containing Z_{m}. In the case where m is a prime p, we show in Section 2 using Samuel's result for integral domains that $Z_{p}[X]^{G\left(Z_{p}\right)}=Z_{p}\left[\left(X^{p}-X\right)^{p-1}\right]$.

In the case where m is not prime, we determine in Sections 2 and 3 a set of generators for $Z_{m}[X]^{G\left(Z_{m}\right)}$ as a finite ring extension of Z_{m}.
2. A prime power modulus. In this section we determine a finite set $\left\{g_{i}\right\}_{i=1}^{t}$ of polynomials in $Z_{m}[X]$ such that $Z_{m}[X]^{G\left(Z_{m}\right)}=Z_{m}\left[g_{1}, \ldots, g_{t}\right]$, where $m=p^{k}$ is a prime power. For any positive integer j, define $v(j)$ as the highest power of p that divides j. That is, $p^{v(j)} \mid j$, but $p^{v(i)+1} \nmid j$. Furthermore, let

$$
g_{i}(X)=p^{k-1-v(i)}\left(X^{p}-X\right)^{(p-1) i} \quad \text { for all } \quad 1 \leq i \leq p^{k-1} .
$$

Lemma 1. $Z_{p}[X]^{G\left(Z_{p}\right)}=Z_{p}\left[\left(X^{p}-X\right)^{p-1}\right]$.
Proof. By Samuel's result [2] it suffices to show that $\prod_{\sigma \in G\left(Z_{p}\right)} \sigma(X)=$ $\left(X^{p}-X\right)^{p-1}$. Let $\sigma \in G\left(Z_{p}\right)$. Then by the characterization of elements of $G\left(Z_{p}\right)$ [1] we have $\sigma(X)=a+b X$, where $a, b \in Z_{p}$ and $b \neq 0$. Hence,

$$
\begin{aligned}
\prod_{\sigma \in G\left(Z_{p}\right)} \sigma(X) & =\prod_{a \in Z_{p}} \prod_{b \in Z_{p} /\{0\}}(a+b X) \\
& =\prod_{a \in Z_{p}} \prod_{b \in Z_{p} /\{0\}} b\left(a b^{-1}+X\right) \\
& =\prod_{c \in Z_{p}} \prod_{b \in Z_{p} /\{0\}} b(c+X) \\
& =\prod_{b \in Z_{p} /\{0\}} b \prod_{c \in Z_{\rho}}(c+X) \\
& =\prod_{b \in Z_{p} /\{0\}} b\left(X^{p}-X\right) \\
& =\left(X^{p}-X\right)^{p-1}
\end{aligned}
$$

Lemma 2. Let n be a positive integer. Then $p^{v(n)+1} \left\lvert\,\binom{ n}{i} p^{i}\right.$ for all $1 \leq i \leq n$.
Proof. It suffices to show that $p^{v(n)+1-i} \left\lvert\,\binom{ n}{i}\right.$ for $1 \leq i \leq v(n)+1$. Let $n=$ $p^{v(n)} \cdot r$ and $i=p^{v(i)} \cdot s$. Then

$$
\binom{n}{i}=(n / i)\binom{n-1}{i-1}=p^{v(n)-v(i)}(r / s)\binom{n-1}{i-1} .
$$

since $\binom{n}{i}$ is an integer and s is relatively prime to p, then $(r / s)\binom{n-1}{i-1}$ is an integer. Hence, it suffices to show that $p^{v(n)+1-i} \mid p^{v(n)-v(i)}$ for $1 \leq i \leq v(n)+1$. But this is trivially true since $i \geq v(i)+1$ for all positive integers i. Thus, $p^{v(n)+1} \left\lvert\,\binom{ n}{i} p^{i}\right.$ for $1 \leq i \leq n$.

Lemma 3. Let $f(X)=\sum_{i=0}^{n} f_{i} X^{i} \in Z_{p^{k}}[X]^{G\left(Z_{p} k\right)}$. Then $p(p-1) \mid n$.

Proof. Let $\sigma_{1+X} \in G\left(Z_{\mathrm{p}^{\mathrm{k}}}\right)$. Then $\sigma_{1+X}(f)=f$ or $\sigma_{1+X}(f)-f=0$. If we equate the coefficients of X^{n-1}, we obtain $f_{n-1}+n f_{n}-f_{n-1}=0$ or $n f_{n}=0$. Since $f_{n} \neq 0$, then $n \in(p)$ so $p \mid n$.

Next choose an element b of $Z_{p^{k}}$ such that $b+(p)$ is a $(p-1)^{s t}$-primitive root of unity in $Z_{p^{k}} /(p)$. Since $b \notin(p)$, then b is a unit in $Z_{p^{k}}$. Also, if $(p-1) \nmid i$, then $b^{i}-1 \notin(p)$. Now $\sigma_{b x}(f)=f$ because $\sigma_{b x} \in G\left(Z_{p^{k}}\right)$. If we equate the coefficients of X^{n} in this equation, we have $b^{n} f_{n}=f_{n}$ or $f_{n}\left(b^{n}-1\right)=0$. Since $f_{n} \neq 0$, then $b^{n}-1 \in(p)$ so $(p-1) \mid n$. Thus, $p(p-1) \mid n$.

Theorem 1. $Z_{p^{k}}[X]^{G\left(Z_{p}^{k}\right)}=Z_{p^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{p^{k-1}}\right]$.
Proof. Let $\sigma_{h} \in G\left(Z_{p^{k}}\right)$, where $h=h_{0}+h_{1} X+\cdots+h_{m} X^{m}$, and fix $1 \leq i \leq$ p^{k-1}. Then we show that $\sigma_{h}\left(g_{i}(X)\right)=g_{i}(X)$. We can write $h=h_{0}+h_{1} X+$ $p h *(X)$, since h_{j} is nilpotent for $2 \leq j \leq m$. Moreover, by Fermat's theorem we know that $h_{i}^{p}=h_{i}+p r_{h i}$ for $i=0,1$. Then using these facts we can simplify

$$
\sigma_{h}\left(X^{p}-X\right)=h(X)^{p}-h(X)=h_{1} X^{p}-h_{1} X+p m(X),
$$

where

$$
\begin{aligned}
m(X)= & r_{h 1} X^{p}+r_{h 0}-h^{*}(X)+\sum_{j=1}^{p}\binom{p}{j} p^{i-1} h^{*}(X)^{j}\left(h_{0}+h_{1} X\right)^{p-i} \\
& +\sum_{j=1}^{p-1}\left[\binom{p}{j} / p\right] h_{0}^{j} h_{1}^{p-i} X^{p-j} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\sigma_{h}\left(g_{i}(X)\right)= & p^{k-1-v(i)}\left(h_{1} X^{p}-h_{1} X+p m(X)\right)^{(p-1) i} \\
= & p^{k-1-v(i)}\left(h_{1} X^{p}-h_{1} X\right)^{(p-1) i} \\
& +\sum_{j=1}^{(p-1) i} p^{k-1-v(i)}\binom{(p-1) i}{j} p^{i} m(X)^{i}\left(h_{1} X^{p}-h_{1} X\right)^{(p-1) i-j}
\end{aligned}
$$

By Lemma 2, we know that $p^{k} \left\lvert\, p^{k-1-v(i)}\binom{(p-1) i}{j} p^{i}\right.$ for all $1 \leq i \leq(p-1) i$. Hence,

$$
\sigma_{h}\left(g_{i}(X)\right)=p^{k-1-v(i)} h_{1}^{(p-1) i}\left(X^{p}-X\right)^{(p-1) i}
$$

Again using Lemma 2 and writing $h_{1}^{\mathrm{p}-1}=1+p r_{h 1} h_{1}^{-1}$, we get $p^{k-1-v(i)} h_{1}^{(p-1) i}=$ $p^{k-1-v(i)}\left(1+p r_{h 1} h_{1}^{-1}\right)^{i}=p^{k-1-v(i)}$. So finally,

$$
\sigma_{h}\left(g_{i}(X)\right)=p^{k-1-v(i)}\left(X^{p}-X\right)^{(p-1) i}=g_{i}(X)
$$

Thus, $Z_{p^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{k-1}\right] \subseteq Z_{p^{k}}[X]^{G\left(Z_{p}\right)}$.
Let $f=\sum_{i=0}^{n} f_{i} X^{i} \in Z_{p^{k}}[X]^{G\left(Z_{p^{k}}\right)}$, then by Lemma 3 we know $n=p(p-1) r$. we use induction on n. If $n=0$, then $f=f_{0} \in Z_{p^{k}} \subseteq Z_{p^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{k-1}\right]$. We assume the hypothesis is true for all polynomials of degree less than n. Let $r=p^{k-1} s+t$, where $0 \leq t<p^{k-1}$. We note that $v(r)=v(t)$ because $t<p^{k-1}$. From the proof
of Lemma 3 we know that $f_{n} \in\left(p^{k-1-v(t)}\right)$, so we write $f_{n}=p^{k-1-v(t)} c$. We consider

$$
f^{*}(X)=f(X)-c\left[g_{p^{k-1}}(X)\right]^{s}\left[g_{t}(X)\right] .
$$

Clearly, $f^{*}(X) \in Z_{p^{k}}[X]^{G\left(Z_{\mathrm{p}^{\mathrm{k}}}\right)}$ and $\operatorname{deg} f^{*}(X)<n$ so $f^{*}(X) \in Z_{\mathrm{p}^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{p^{k-1}}\right]$ by the induction hypothesis. Hence $f(X)$ is also in $Z_{p^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{p_{i=1}^{k-1}}\right]$. This completes the proof that $Z_{p^{k}}[X]^{G\left(Z_{p^{k}}\right)}=Z_{p^{k}}\left[\left\{g_{i}(X)\right\}_{i=1}^{p^{k-1}}\right]$.
3. The general case. In order to extend Theorem 1 to the case of modulus m, we use the standard direct sum decomposition of Z_{m}. If m is written as a product of distinct powers

$$
m=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}
$$

then the ring Z_{m} can be represented as a direct sum of rings

$$
Z_{m} \stackrel{\phi}{\cong} Z_{\mathrm{p}_{1}^{k}} \oplus \cdots \oplus Z_{\mathrm{p}_{\mathrm{t}}^{k}}
$$

The isomorphism ϕ is defined using the Chinese Remainder Theorem.

$$
\begin{equation*}
\phi(a)=\left(a_{1}, \ldots, a_{r}\right), \quad \text { where } \quad a=a_{i}\left(\bmod p_{j}^{k_{i}}\right) \quad j=1,2, \ldots, r . \tag{1}
\end{equation*}
$$

The isomorphism ϕ extends to the polynomial ring $Z_{m}[X]$ and induces an isomorphism ϕ^{*} between $Z_{m}[X]$ and $Z_{p_{1}{ }_{1}{ }_{1}}[X] \oplus \cdots \oplus Z_{p_{r_{r}^{k}}}[X]$ defined by

$$
\begin{gather*}
\phi^{*}\left(f_{0}+f_{1} X+\cdots+f_{n} X^{n}\right)=\left(f_{10}+\cdots+f_{1 n} X^{n}, \ldots, f_{r 0}+\cdots+f_{r n} X^{n}\right) \tag{2}\\
\text { where } \quad \phi\left(f_{i}\right)=\left(f_{1 i}, f_{2 i}, \ldots, f_{r i}\right) \quad i=1, \ldots, n .
\end{gather*}
$$

Moreover, it can be verified that ϕ^{*} restricted to the subring $Z_{m}[X]^{G\left(Z_{m}\right)}$ maps $Z_{m}[X]^{G\left(Z_{m}\right)}$ onto the subring $Z_{p_{1}, k_{1}}[X]^{G\left(Z_{p_{1}}{ }^{k_{1}}\right)} \oplus \cdots \oplus Z_{p_{r}{ }^{k_{r}}}[X]^{G\left(Z_{p_{r}} k_{r}\right)}$, yielding the following theorem.

Theorem 2. Let $m \in Z^{+}$be such that $m=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$, where p_{1}, \ldots, p_{r} are primes and $k_{i}>0$ for all $1 \leq i \leq r$. Let ϕ and ϕ^{*} be defined as in (1) and (2). For all $1 \leq i \leq r$ and $1 \leq j \leq p_{i}^{k_{i-1}}$ define $\mathrm{g}_{i j}^{*}=\left(h_{i 1}, \ldots, h_{i r}\right)$, where $h_{i m}=0$ for $i \neq m$ and

$$
h_{i i}=g_{j} .
$$

Then $\quad Z_{m}[X]^{G\left(Z_{m}\right)}=Z_{m}\left[f_{11}, \ldots, f_{1 p_{1}{ }^{k_{1}-1}}, \ldots, f_{r 1}, \ldots, f_{r p_{r}^{k r}}{ }^{k^{-1}}\right]$, where $f_{i j}=$ $\left[\left(\phi^{*}\right)^{-1}\left(g_{i j}^{*}\right)\right]$.

Example. $M=12$. Let $Z_{12} \cong Z_{4} \oplus Z_{3}$. We have seen that $Z_{3}[X]^{G\left(Z_{3}\right)}=$ $Z_{3}\left[\left(X^{3}-X\right)^{2}\right]$ and that $Z_{4}[X]^{G\left(Z_{4}\right)}=Z_{4}\left[2\left(X^{2}-X\right),\left(X^{2}-X\right)^{2}\right]$. By Theorem 2 we see that $Z_{12}[X]^{G\left(Z_{12}\right)}=Z_{12}\left[6\left(X^{2}-X\right), 9\left(X^{2}-X\right)^{2}, 4\left(X^{3}-X\right)^{2}\right]$.

References

1. R. Gilmer, R-automorphisms of $R[X]$, Proc. London Math. Soc. (3) 18 (1968), 328-336.
2. P. Samuel, Groupes finis d'automorphismes des anneaux de séries formelles, Bull. Sc. Math., 2^{e} série, 90, 1966, 97-101.

Mathematics Department

Florida State University
Tallahassee, FL 32306

