THE FIXED SUBRING OF SOME GROUPS OF RING AUTOMORPHISMS

ΒY

MARY DOWLEN

ABSTRACT. Let Z_m denote the ring of integers modulo an integer m > 1 and let $G(Z_m)$ be the group under composition of all Z_m -automorphisms of $Z_m[X]$. In this paper we determine $Z_m[X]^{G(Z_m)}$, the subring of $Z_m[X]$ left fixed by elements of $G(Z_m)$.

1. Introduction. Let *R* be a commutative ring with identity and let R[X] be the polynomial ring in one variable over *R*. A ring automorphism σ of R[X] is said to be an *R*-automorphism of R[X] if $\sigma(r) = r$ for each $r \in R$. The set G(R)of all *R*-automorphisms of R[X] is a group under composition. If *H* is a subgroup of G(R), then we denote by $R[X]^H$ the fixed subring of *H*—that is,

 $R[X]^{H} = \{f \in R[X] \mid \sigma(f) = f \text{ for each } \sigma \in H\}.$

In this paper we determine the ring $R[X]^{G(R)}$, where $R = Z_m$ is the ring of integers modulo an integer m > 1. Using the standard direct sum decomposition of Z_m , most of our work goes into the case where $m = p^k$ is a prime power (this case is considered in Section 2). If k = 1, Z_p is a field, and little work is required because of results that are known. To wit, if R is an integral domain, then standard results from Galois theory show that if H is infinite then $R[X]^H = R$, whereas a result of Samuel [2] shows that if H is finite then $R[X]^H = R[f]$, where $f = \prod_{\alpha \in H} \sigma(X)$.

Before proceeding it is necessary to consider the elements of G(R) more closely and to establish some notation. It is well known that an Rendomorphism of R[X] is determined by $\sigma(X)$ —that is, if $\sigma(X) = h$, then $\sigma(f(X)) = f(h)$ for each $f(X) \in R[X]$; we denote this endomorphism by σ_h . Moreover, in [1] Gilmer gave the following characterization of the elements of G(R): If $h = \sum_{i=0}^{n} h_i X^i \in R[X]$, then σ_h is an R-automorphism of R[X] if and only if h_1 is a unit of R and h_i is nilpotent for $i \ge 2$. From this characterization we see that $G(Z_m)$ is an infinite group if Z_m contains a nonzero nilpotent element. However, it turns out that $Z_m[X]^{G(Z_m)}$ is a finite ring extension of Z_m properly containing Z_m . In the case where m is a prime p, we show in Section 2 using Samuel's result for integral domains that $Z_p[X]^{G(Z_p)} = Z_p[(X^p - X)^{p-1}]$.

Received by the editors November 30, 1982 and, in revised form, March 22, 1983. AMS Subject Classification: 13B10.

[©] Canadian Mathematical Society, 1984.

In the case where *m* is not prime, we determine in Sections 2 and 3 a set of generators for $Z_m[X]^{G(Z_m)}$ as a finite ring extension of Z_m .

2. A prime power modulus. In this section we determine a finite set $\{g_i\}_{i=1}^t$ of polynomials in $Z_m[X]$ such that $Z_m[X]^{G(Z_m)} = Z_m[g_1, \ldots, g_i]$, where $m = p^k$ is a prime power. For any positive integer *j*, define v(j) as the highest power of *p* that divides *j*. That is, $p^{v(j)} | j$, but $p^{v(j+1)} \nmid j$. Furthermore, let

$$g_i(X) = p^{k-1-\upsilon(i)}(X^p - X)^{(p-1)i} \quad \text{for all} \quad 1 \le i \le p^{k-1}.$$

Lemma 1. $Z_p[X]^{G(Z_p)} = Z_p[(X^p - X)^{p-1}].$

Proof. By Samuel's result [2] it suffices to show that $\prod_{\sigma \in G(Z_p)} \sigma(X) = (X^p - X)^{p-1}$. Let $\sigma \in G(Z_p)$. Then by the characterization of elements of $G(Z_p)$ [1] we have $\sigma(X) = a + bX$, where $a, b \in Z_p$ and $b \neq 0$. Hence,

$$\prod_{\sigma \in G(Z_p)} \sigma(X) = \prod_{a \in Z_p} \prod_{b \in Z_p \setminus \{0\}} (a + bX)$$
$$= \prod_{a \in Z_p} \prod_{b \in Z_p \setminus \{0\}} b(ab^{-1} + X)$$
$$= \prod_{c \in Z_p} \prod_{b \in Z_p \setminus \{0\}} \prod_{c \in Z_p} b(c + X)$$
$$= \prod_{b \in Z_p \setminus \{0\}} b \prod_{c \in Z_p} (c + X)$$
$$= \prod_{b \in Z_p \setminus \{0\}} b(X^p - X)$$
$$= (X^p - X)^{p-1}$$

LEMMA 2. Let n be a positive integer. Then $p^{\nu(n)+1} \left| {n \choose i} p^i \text{ for all } 1 \le i \le n. \right|$

Proof. It suffices to show that $p^{v(n)+1-i} \binom{n}{i}$ for $1 \le i \le v(n)+1$. Let $n = p^{v(n)} \cdot r$ and $i = p^{v(i)} \cdot s$. Then

$$\binom{n}{i} = (n/i)\binom{n-1}{i-1} = p^{\upsilon(n)-\upsilon(i)}(r/s)\binom{n-1}{i-1}.$$

since $\binom{n}{i}$ is an integer and s is relatively prime to p, then $(r/s)\binom{n-1}{i-1}$ is an integer. Hence, it suffices to show that $p^{v(n)+1-i} | p^{v(n)-v(i)}$ for $1 \le i \le v(n)+1$. But this is trivially true since $i \ge v(i)+1$ for all positive integers *i*. Thus, $p^{v(n)+1} | \binom{n}{i} p^i$ for $1 \le i \le n$.

LEMMA 3. Let
$$f(X) = \sum_{i=0}^{n} f_i X^i \in Z_{p^k}[X]^{G(Z_pk)}$$
. Then $p(p-1) \mid n$.

Proof. Let $\sigma_{1+X} \in G(\mathbb{Z}_{p^k})$. Then $\sigma_{1+X}(f) = f$ or $\sigma_{1+X}(f) - f = 0$. If we equate the coefficients of X^{n-1} , we obtain $f_{n-1} + nf_n - f_{n-1} = 0$ or $nf_n = 0$. Since $f_n \neq 0$, then $n \in (p)$ so $p \mid n$.

Next choose an element b of Z_{p^k} such that b + (p) is a $(p-1)^{st}$ -primitive root of unity in $Z_{p^k}/(p)$. Since $b \notin (p)$, then b is a unit in Z_{p^k} . Also, if $(p-1) \nmid i$, then $b^i - 1 \notin (p)$. Now $\sigma_{bX}(f) = f$ because $\sigma_{bX} \in G(Z_{p^k})$. If we equate the coefficients of X^n in this equation, we have $b^n f_n = f_n$ or $f_n(b^n - 1) = 0$. Since $f_n \neq 0$, then $b^n - 1 \in (p)$ so $(p-1) \mid n$. Thus, $p(p-1) \mid n$.

THEOREM 1. $Z_{p^k}[X]^{G(Z_{p^k})} = Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}].$

Proof. Let $\sigma_h \in G(Z_{p^k})$, where $h = h_0 + h_1 X + \cdots + h_m X^m$, and fix $1 \le i \le p^{k-1}$. Then we show that $\sigma_h(g_i(X)) = g_i(X)$. We can write $h = h_0 + h_1 X + ph * (X)$, since h_j is nilpotent for $2 \le j \le m$. Moreover, by Fermat's theorem we know that $h_i^p = h_i + pr_{h_i}$ for i = 0, 1. Then using these facts we can simplify

$$\sigma_h(X^p - X) = h(X)^p - h(X) = h_1 X^p - h_1 X + pm(X),$$

where

$$m(X) = r_{h1}X^{p} + r_{h0} - h^{*}(X) + \sum_{j=1}^{p} {p \choose j} p^{j-1}h^{*}(X)^{j}(h_{0} + h_{1}X)^{p-j} + \sum_{j=1}^{p-1} \left[{p \choose j} / p \right] h_{0}^{j}h_{1}^{p-j}X^{p-j}.$$

Hence,

$$\begin{aligned} \sigma_{h}(\mathbf{g}_{i}(X)) &= p^{k-1-\upsilon(i)}(h_{1}X^{p}-h_{1}X+pm(X))^{(p-1)i} \\ &= p^{k-1-\upsilon(i)}(h_{1}X^{p}-h_{1}X)^{(p-1)i} \\ &+ \sum_{j=1}^{(p-1)i} p^{k-1-\upsilon(i)}\binom{(p-1)i}{j} p^{j}m(X)^{j}(h_{1}X^{p}-h_{1}X)^{(p-1)i-j} \end{aligned}$$

By Lemma 2, we know that $p^k | p^{k-1-\upsilon(i)} {\binom{(p-1)i}{j}} p^i$ for all $1 \le i \le (p-1)i$. Hence,

$$\sigma_{h}(g_{i}(X)) = p^{k-1-\upsilon(i)}h_{1}^{(p-1)i}(X^{p}-X)^{(p-1)i}$$

Again using Lemma 2 and writing $h_1^{p-1} = 1 + pr_{h_1}h_1^{-1}$, we get $p^{k-1-\nu(i)}h_1^{(p-1)i} = p^{k-1-\nu(i)}(1 + pr_{h_1}h_1^{-1})^i = p^{k-1-\nu(i)}$. So finally,

$$\sigma_h(g_i(X)) = p^{k-1-v(i)}(X^p - X)^{(p-1)i} = g_i(X).$$

Thus, $Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}] \subseteq Z_{p^k}[X]^{G(Z_p)}.$

Let $f = \sum_{i=0}^{n} f_i X^i \in Z_{p^k}[X]^{G(Z_{p^k})}$, then by Lemma 3 we know n = p(p-1)r. we use induction on *n*. If n = 0, then $f = f_0 \in Z_{p^k} \subseteq Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}]$. We assume the hypothesis is true for all polynomials of degree less than *n*. Let $r = p^{k-1}s + t$, where $0 \le t < p^{k-1}$. We note that v(r) = v(t) because $t < p^{k-1}$. From the proof

1984]

M. DOWLEN

of Lemma 3 we know that $f_n \in (p^{k-1-\upsilon(t)})$, so we write $f_n = p^{k-1-\upsilon(t)}c$. We consider $f^*(X) = f(X) - c[g_{p^{k-1}}(X)]^s[g_t(X)].$

Clearly, $f^*(X) \in Z_{p^k}[X]^{G(Z_{p^k})}$ and deg $f^*(X) < n$ so $f^*(X) \in Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}]$ by the induction hypothesis. Hence f(X) is also in $Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}]$. This completes the proof that $Z_{p^k}[X]^{G(Z_{p^k})} = Z_{p^k}[\{g_i(X)\}_{i=1}^{p^{k-1}}]$.

3. The general case. In order to extend Theorem 1 to the case of modulus m, we use the standard direct sum decomposition of Z_m . If m is written as a product of distinct powers

$$m=p_1^{k_1}\cdots p_r^{k_r},$$

then the ring Z_m can be represented as a direct sum of rings

$$Z_m \stackrel{\phi}{\cong} Z_{p_1^k} \oplus \cdots \oplus Z_{p_r^k}$$

The isomorphism ϕ is defined using the Chinese Remainder Theorem.

(1)
$$\phi(a) = (a_1, \dots, a_r)$$
, where $a = a_j \pmod{p_j^{k_j}}$ $j = 1, 2, \dots, r$.

The isomorphism ϕ extends to the polynomial ring $Z_m[X]$ and induces an isomorphism ϕ^* between $Z_m[X]$ and $Z_{p_1^{k_1}}[X] \oplus \cdots \oplus Z_{p_r^{k_r}}[X]$ defined by

(2)
$$\phi^*(f_0 + f_1X + \dots + f_nX^n) = (f_{10} + \dots + f_{1n}X^n, \dots, f_{r0} + \dots + f_{rn}X^n),$$

where $\phi(f_i) = (f_{1i}, f_{2i}, \dots, f_{ri})$ $i = 1, \dots, n.$

Moreover, it can be verified that ϕ^* restricted to the subring $Z_m[X]^{G(Z_m)}$ maps $Z_m[X]^{G(Z_m)}$ onto the subring $Z_{p_1^{k_1}}[X]^{G(Z_{p_1^{k_1}})} \oplus \cdots \oplus Z_{p_r^{k_r}}[X]^{G(Z_{p_r^{k_r}})}$, yielding the following theorem.

THEOREM 2. Let $m \in Z^+$ be such that $m = p_1^{k_1} \cdots p_r^{k_r}$, where p_1, \ldots, p_r are primes and $k_i > 0$ for all $1 \le i \le r$. Let ϕ and ϕ^* be defined as in (1) and (2). For all $1 \le i \le r$ and $1 \le j \le p_i^{k_{i-1}}$ define $g_{ij}^* = (h_{i1}, \ldots, h_{ir})$, where $h_{im} = 0$ for $i \ne m$ and $h_{ij} = g_i$.

Then $Z_m[X]^{G(Z_m)} = Z_m[f_{11}, \ldots, f_{1p_1^{k_1^{-1}}}, \ldots, f_{r1}, \ldots, f_{rp_r^{k_r^{-1}}}],$ where $f_{ij} = [(\phi^*)^{-1}(g_{ij}^*)].$

EXAMPLE. M = 12. Let $Z_{12} \cong Z_4 \oplus Z_3$. We have seen that $Z_3[X]^{G(Z_3)} = Z_3[(X^3 - X)^2]$ and that $Z_4[X]^{G(Z_4)} = Z_4[2(X^2 - X), (X^2 - X)^2]$. By Theorem 2 we see that $Z_{12}[X]^{G(Z_{12})} = Z_{12}[6(X^2 - X), 9(X^2 - X)^2, 4(X^3 - X)^2]$.

REFERENCES

1. R. Gilmer, *R*-automorphisms of *R*[X], Proc. London Math. Soc. (3) 18 (1968), 328-336.

2. P. Samuel, Groupes finis d'automorphismes des anneaux de séries formelles, Bull. Sc. Math., 2^e série, 90, 1966, 97-101.

MATHEMATICS DEPARTMENT FLORIDA STATE UNIVERSITY TALLAHASSEE, FL 32306

116