
CHAPTER 1.

Cosmology of Yakov Zeldovich

Historical and Scientific Perspective

https://doi.org/10.1017/S174392131600956X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131600956X


Rashid Sunyaev
recalling memories and anecdotes of his supervisor

Yakov Zeldovich

https://doi.org/10.1017/S174392131600956X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131600956X


The Zeldovich Universe:
Genesis and Growth of the Cosmic Web
Proceedings IAU Symposium No. 308, 2014
R. van deWeygaert, S. Shandarin, E. Saar&J. Einasto, eds.

c© International Astronomical Union 2016
doi:10.1017/S174392131600956X

Zeldovich’s legacy in the Discovery and
Understanding of the Cosmic Web

Sergei F. Shandarin
Department of Physics and Astronomy, University of Kansas,
1251 Wescoe Hall Drive #1082, Lawrence, KS 66045, USA

email: sergei@ku.edu

Abstract. Modeling and understanding the structure of the universe is one the most interesting
problems in modern cosmology. It is also an extremely difficult problem. Despite spectacular
achievements in observations and computational capabilities at present there is no comprehensive
theory of the structure formation. There are successful theoretical models however most of them
rely on assumptions and various fits which are not fully physically justified. The Zeldovich
Approximation is a rare exception. Suggested more than forty years ago it remains one of the
most successful and profound analytic models of structure formation. Some of results stemmed
from the Zeldovich Approximation will be briefly reviewed.
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1. Introduction
Yakov Borisovich Zeldovich – or Ya.B. as his colleagues and friends called him – cele-

brated his 70th birthday in 1974. The Academy of Sciences of the USSR made a present
to him: it published a selection of his works in two volumes. It was translated into English
almost twenty years later (Zeldovich 1993). Ya.B. concluded the second volume by “An
Autobiographical Afterword”. Among other things Ya.B. included a brief assessment of
his contribution to astrophysics and cosmology. Here is his comment on his contribution
to the theory of the large-scale structure in the universe.

“This book presents, with commentaries, my papers on astrophysics. It is not rea-
sonable to argue with these commentaries. Today the most important individual work
seems to me to be the nonlinear theory of formation of the structure of the Universe
or, as it is now called for short the “pancake” theory. The structure of the Universe, its
evolution and the properties of the matter which forms the hidden mass, have to this day
not been fully established. A major role in this work was played by A. G. Doroshkevich,
R. A. Sunyaev, S. F. Shandarin and Ya. E. Einasto. The work continues. However, the
“pancake” theory is “beautiful” in and of itself: if the initial assumptions hold, then the
theory gives a correct and nontrivial answer. The “pancake” theory is a contribution to
synergetics. It was especially pleasant for me to learn that this work in some measure
initiated mathematical investigations by V. I. Arnold and others.” (Zeldovich 1993, vol.
2, p. 642).

In the last 10 - 15 years of his life Ya.B. had very close relations with V.I. Arnold
who described their interactions as follows: “Usually, Yakov Borisovich telephoned me
at seven in the morning. ’Doesn’t it seem to you ...’ he would say, and there would then
follow some sort of paradox” (Zeldovich 2004, Part V, p. 195). V.I. Arnold’s considered
that by formulating the “pancake” theory Ya.B. opened a new topic in mathematics:
“Yakov Borisovich’s ’pancake theory’, in essence, is equivalent to a theory for the simplest
so-called Lagrange singularities in symplectic geometry – singularities of projections of
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Lagrangian manifolds (on which the Poincaré invariant vanishes) from phase space onto
a configurational space.” (Zeldovich 2004, Part V, p. 197).

Both the great physicist and mathematician expressed very high opinions of the pan-
cake theory. It has been substantiated by numerous studies in the following years. I begin
with a brief outline of the mathematical basis of the pancake theory i.e. the Zeldovich
approximation (the ZA). Then I will outline some developments that stemmed from the
ZA and played important role in understanding of the origin, morphology and evolution
of the web. The list of selected topics obviously reflects my personal views and does not
pretend to be complete.

2. The Zeldovich approximation in a nutshell
The ZA was formulated for a collisionless fluid which is a good approximation for

dark matter (DM) (Zeldovich 1970). It is particularly simple in comoving coordinates
�x = �r/a(t), where a(t) is the scale factor and �r are physical coordinates of the fluid
particles. It relates the initial Lagrangian coordinates �q at t → 0 and Eulerian coordinates
�x at time t by an explicit relation

�x(�q, t) = �q + D(t)�s(�q) (2.1)

where D(t) is the linear density growth factor fully specified by the cosmological model
and the vector field �s(�q) is determined by the growing mode of initial density perturba-
tions

∇�s = − 1
D

(
δρ

ρ̄

)
lin,g

, (2.2)

when �x → �q. Therefore, the ZA assumes that the initial displacement field �s(�q) is a
potential vector field,

�si(�q) = −∂Ψ(�q)
∂qi

, (2.3)

where the displacement potential Ψ is directly proportional to the linear perturbation of
the gravitational field δφlin determined by (δρ/ρ̄)lin,g

Ψ(�q) =
2

3Da2H2Ω
δφlin (�q). (2.4)

In the above equation H = H(t) is the Hubble parameter and Ω is the dimentionless
mean total density capable to cluster.

The potential character of the displacement vector is a direct consequence of the po-
tential character of the growing mode of the gravitational instability in an expanding
universe. An additional important aspect of the ZA is anisotropic deformation of the
mass elements. The deformation is specified by the deformation tensor

dij (�q) = −∂si(�q)
∂qj

. (2.5)

From equation (2.1) one may easily infer an explicit expression for the density as a
function of Lagrangian coordinates and time. If we consider the conservation of mass in
differential form (it is worth reminding that ρ̄ does not change with time in comoving
coordinates)

ρ(�x, t)d�x = ρ̄d�q, (2.6)
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the density evolution directly follows from

ρ(�x, t) = ρ̄

∣∣∣∣J
(

∂�x

∂�q

)∣∣∣∣
−1

, (2.7)

where J(∂�x/∂�q) is the Jacobian determinant of the map given by equation 2.1. It is con-
venient to write equation 2.7 in terms of the eigen values λi = (α, β, γ) of the deformation
tensor dij , resulting in an explicit equations for the density as a function of Lagrangian
coordinates and time

ρ(�q, t) =
∣∣∣∣ ρ̄

[1 − D(t)α(�q)] [1 − D(t)β(�q)] [1 − D(t)γ(�q)]

∣∣∣∣ , (2.8)

where commonly used ordering of the eigen values α � β and β � γ is assumed. The
eigen values are nonGaussian random fields Doroshkevich (1970).

Expanding the expression for the Lagrangian density (eqn. 2.8) in a Taylor series,

ρ(�q, t) = ρ̄ + ρ̄D(t) [α(�q) + β(�q) + γ(�q)] + . . . , (2.9)

clarifies the relation between the known linear expression for the density contrast, δlin
and the eigen values of the deformation tensor

δlin =
(ρlin − ρ̄)

ρ̄
= D(t)(α + β + γ). (2.10)

Formally speaking, the ZA is valid only in the linear regime when both |Dα| � 1 and
|Dγ| � 1. However, Zeldovich made a bold prediction: it should be a good qualitative
and arguably quantitative approximation up to the beginning of the nonlinear stage, i.e.
up to the stage at which |Dα| = 1 and even a little beyond. In order to compute the
density field in Eulerian space one has to apply mapping eqn. 2.1.

One can easily deduce two key features of the density field at the beginning of the
nonlinear stage from eqn. 2.8. Firstly the density becomes infinite as soon as D(t)α = 1
or D(t)β = 1 or D(t)γ = 1. And secondly the collapse of a fluid particle must be
anisotropic because the eigenvalues never satisfy the condition α(�q) = β(�q) = γ(�q) for
generic Ψ(�q). In addition, the condition

D(t)λi = 1 (2.11)

determines caustics i.e. a set of surfaces where density is formally infinite.
It is easy to see that Eulerian linear perturbation theory (ELPT) is a limiting case

of the ZA, assuming an additional condition �x ≈ �q. Technically speaking, the ZA is an
extrapolation of Lagrangian linear perturbation theory (LLPT) beyond the range of its
formal applicability. There are two fundamental differences of LLPT from its Eulerian
counterpart ELPT. As may be inferred from equations 2.8 and 2.10, the calculation of the
density LLPT uses the full deformation tensor while ELPT relies only on its trace. The
second difference is due to the necessity in LLPT of mapping from Lagrangian to Eulerian
space in order to evaluate the density field in Eulerian space. Even at small σδ , where
δ = Δρ/ρ̄, the difference between LLPT and ELPT can be quite noticeable if the scale of
the initial i.e. linear velocity field is considerably greater than that of density fluctuations.
In this, we assume that σδ is evaluated in ELPT. The difference between LLPT and ELPT
becomes considerable when both are extrapolated to a larger σδ . A particularly obvious
problem occurring in ELPT is the emergence of negative densities, i.e. ρ < 0, in regions
with a large initial density deficit. For example, if ELPT is extrapolated to σδ = 0.5, the
regions with negative densities occupy approximately 2.3% of the volume. This fraction
increases to almost 15% at σδ = 1. Evidently, for a physical model this is an unacceptable
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circumstance. LLPT is completely free of this problem: at all times it predicts ρ > 0,
regardless of the magnitude of σδ . It is worth mentioning that each of three factors in
the denominator of equation 2.8 could be negative. This is a very useful feature of the
ZA which is briefly discussed bellow.

3. Further developments
3.1. N-body simulations and accuracy of the ZA

Cosmological N-body simulations have played a crucial role in theoretical studies and
understanding of the structure in the universe. Despite of well known shortcomings they
provide the most realistic data to compare with the observations. The first simulations
were carried out in late 1960s. However all N-body simulations conducted in the western
countries before 1983 started from Poisson distributions of particles in the simulation box.
The only advantage of this initial condition consists in the easiness of its generation. But
it has two major shortcomings: the only initial power spectrum of density fluctuations is
flat and the smallest scales are in the nonlinear regime from the very beginning.

Doroshkevich, Ryabenkii & Shandarin (1973) were the first who generated initial
conditions for a three-dimensional N-body simulation via the ZA. The goal of the study
was testing the coherence of the ZA. The simulation involved two groups of particles.
One of them moving according the ZA served as a source of the gravitational field. The
trajectories of the other much smaller group of particles were integrated in this field. The
particles that felt the gravitational field had the siblings in the first group of particles.
The pairs of siblings started from identical initial conditions, this diverged with time
since the ZA is not an exact solution. The accuracy of the ZA at the nonlinear stage was
roughly assessed by comparing the trajectories, velocities and accelerations of each pair
of siblings.

The authors also suggested an analytical estimate of the coherence of the ZA by com-
puting the relative difference of two densities. One of which ρ is given by eq. 2.8 and the
other ρ̃ is determined by the divergence of the acceleration field obtained from the ZA
(eq. 2.1). If the ZA was exact solution then ρ ≡ ρ̃. It was shown that (see also Shandarin
& Zeldovich (1989))

ρ̃ − ρ

ρ
≡ D2(−J2 + 2DJ3), (3.1)

where J2 = αβ + αγ + βγ and J3 = αβγ. It is interesting that even at the time of the
emergence of the pancake at D = 1/α when ρ → ∞ the relative difference between two
densities remain finite (ρ̃ − ρ)/ρ = −β/α − γ/α + βγ/α2 . Equation 3.1 also shows that
the ZA is exact in one-dimensional case until shell crossing since J2 = J3 = 0.

Numerous studies elaborated on the quantitative accuracy and limitations of the ap-
proximation, see e.g. Coles, Melott & Shandarin (1993); Melott, Shandarin & Weinberg
(1994); Yoshisato, Matsubara & Morikawa (1998); Yoshisato, et al. (2006) and references
therein.

The first cosmological N-body simulations with Gaussian initial conditions generated
via the ZA were carried out by Doroshkevich et al. (1980) and (Klypin & Shandarin
1983; Shandarin & Klypin 1984) in two- and three-dimensional cases respectively. This
method of the initiation of cosmological simulations has become universal.

3.2. Relation to Catastrophe Theory
Ya.B published his paper on pancakes almost ten years prior to first observational ev-
idences for existing highly anisotropic superclusters of galaxies Gregory & Thompson
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Figure 1. Left Panel: The first theoretical hint of the web structure (Doroshkevich, Zeldovich
& Sunyaev 1976). The Russian caption in the original publication says: ’ A typical distribution
of mass particles obtained by S.F. Shandarin in two-dimensional simulation (see text). Symbols
show the number of particles in the mesh cells. Initially particles were placed on a regular
grid and slightly perturbed by smooth potential random vector field.’ Right Panel: Modern
simulation of the structure in 2D using the ZA. (Hidding, Shandarin & van de Weygaert 2014).
Gray shades show the density while red and blue lines show the caustics corresponding to two
eigen values.

(1978); Chincarini & Rood (1979); for a review see Oort (1983). However most of the
cosmologists regarded the prediction of anisotropic structures with conspicuous skepti-
cism for almost twenty years after it was published as described by Shandarin & Sunyaev
(2009).

Ya.B. described just one generic type of structure formed by caustics - pancakes which
emerged as the first structures at the shell crossing stage. The collapse of a uniform
isolated ellipsoid was studied by Lin, Mestel & Shu (1965) who showed that the initially
oblate ellipsoid tends toward a disk remaining uniform at all stages. The Zeldovich pan-
cakes formed as a three-stream flow regions bounded by caustic surfaces. The shape of
pancakes formed from generic Gaussian initial conditions is very different from ellipses.
The first simulation of the ZA in two-dimensional case showed that the structure begins
to emerge as a set of isolated pancakes however they weave in essentially single structure
very quickly (see left hand side panel Fig. 1).

The explanation of this phenomenon required a dipper understanding of the geome-
try and topology of the mapping generated by eq. 2.1. Zeldovich turned to Arnold who
enthusiastically began working on this problem. Soon the normal form for all generic
singularities have been found (Arnold 1982) and the results was applied to cosmology
(Arnold, Shandarin & Zeldovich 1982). Arnold, Shandarin & Zeldovich (1982) were
able to crudely outline the richness of the web in 2D. A far more detailed study of the
two-dimensional web was performed by Hidding, Shandarin & van de Weygaert (2014).
Figure 1 (the right hand side panel) illustrates the improvements in both computation
and visualization. The visualization of the web in 3D in its full complexity was a serious
challenge in 1980s and remain a difficult problem even nowadays. The comprehensive
analysis of the ZA in 3D is challenging computationally as well because it requires to
study geometry and topology of highly nonGausssian fields which are λi(�q). Mapping to
Eulerian space further complicates the analysis. In order to understand the dark matter
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Figure 2. Left Panel: The density contour ρ = 2.5ρ̄ obtained in the N-body simulation of the
hot dark matter model (Shandarin & Klypin 1984). Right Panel: Prediction of the structure
in 3D by the ZA. (Hidding, Shandarin & van de Weygaert 2014). The green surfaces are the
α–caustics corresponding to the condition D(t)α = 1 and red surfaces are the β-caustics seen
only in the openings at the boundaries of the box; γ-caustics are completely obscured by the α-
and β-caustics.

structure in the universe we have to understand much simpler structure described by the
ZA (see the right hand panel of Fig. 2). It is very likely that the types of singularities
in gravitating cold collisionless fluid evolved from potential initial condition will be sim-
ilar to that in the ZA since the flow in individual streams remains potential as clearly
demonstrated by Hahn, Angulo & Abel (2014).

3.3. Morphology of the web
Equation (2.1) encapsulates the mapping by the LLPT from Lagrangian space to Eule-
rian space. Its ramifications can be explored analytically before an overwhelming fraction
of mass elements starts to experience shell crossing. The mathematical complications in-
crease rapidly as the number and extent of the multistream flow regions proliferates. In
particular interesting are those mass elements which are separated by finite distances
in Lagrangian space and end up at the same places in Eulerian space. They belong to
different streams and are key manifestations of the dynamically evolving mass distribu-
tion and mark the emerging cosmic web. To understand and assess this aspect of the
Zeldovich approximation, we require numerical modeling, in particular for the cosmolog-
ically relevant situation of random initial conditions. The surfaces separated the regions
with different number of streams in Eulerian space are caustics. Their progenitors in
Lagrangian space isolate the fluid elements that experienced different number of turns
inside out or flip-flops.

Shandarin & Klypin (1984) suggested that the structure emerges in the sequence:
pancakes, filaments and finally haloes. The pancakes begin to emerge in the vicinity
of α(�q) = max due to the collapse along the corresponding eigen vector �nα . Then the
following collapse along the eigen vector �nβ results in the emergence of filaments. Finally
the collapse along the eigen vector �nγ leads to the origin of halos. The model obviously
represents a substantial simplification of the dynamics in the dark matter component
(Hidding, Shandarin & van de Weygaert 2014).

However recently Falck, Neyrinck & Szalay (2012) exploited a very similar idea
for developing the ORIGAMI method of identifying structures in cosmological N-body
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Figure 3. The ZA (left) v.s. Adhesion approximation (right). Courtesy of J. Hidding.

simulations. Their analysis shows a good agreement of the model with cosmological N-
body simulations. Another successful numerical algorithm NEXUS for identifying the
basic elements of the web (halos, filaments, walls aka pancakes, and voids) that incor-
porates some essential concepts of the ZA has been recently suggested by Cautun et al.
(2014).

Klypin and Shandarin (1983, 1984) were puzzled why only the filamentary structure
was observed in the simulation of the universe dominated by hot dark matter (see the
left hand side panel of Fig. 2) but not Zeldovich’s pancakes. They correctly conjectured
that the pancakes have too low density contrast to be seen in their simulations. The
right hand panel of Fig. 2 demonstrates that in order to see pancakes clearly one has to
compute and plot the caustic surfaces or achieve the mass resolution significantly higher
than in common cosmological N-body simulations.

3.4. Topology of the large-scale structure
The both two and three–dimensional N-body simulations (Doroshkevich et al. 1980;
Klypin & Shandarin 1983; Shandarin & Klypin 1984) as well as two– and three–
dimensional models based on the ZA (Fig. 1 and 2) showed that the filamentary structure
spans throughout the entire simulation box. This observation raised the question of the
topology of the large-scale structure. Ya.B. initiated the study of the topology of the
structure resulted in a series of papers based on percolation theory (Zeldovich 1982;
Zeldovich Einasto & Shandarin 1982; Shandarin 1983; Shandarin & Zeldovich 1983,
1984; Klypin 1987; Klypin & Shandarin 1993). Later Gott, Dickinson & Melott (1986)
suggested to use the genus statistics for quantifying the topology of the structure. Sahni,
Sathyaprakash & Shandarin (1997) compared two techniques and concluded that the
percolation method along with ability to distinguish nonGaussian from Gaussian fields
also reveals the structure difference in Gaussian fields with different power spectra. The
latter property allowed to relate the effects of nature (initial field) and nurture (nonlinear
evolution) on the topology of the web (Shandarin, Habib & Heitmann 2010).

At present the term “the large-scale structure” is used less often than “the Cosmic
Web” coined by Bond, Kofman & Pogosyan (1996). The difference in the meaning of
these two terms is substantial. “The large-scale structure” does not invoke any particular
geometry or pattern while “the Cosmic Web” almost inevitably invokes an image of a
network made of filaments like a spider-web. Shandarin & Klypin (1984) discussed this
issue and and came to the following conclusion: “The regions of high density seem to form
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Figure 4. A modern version of the Adhesion approximation. A two-dimensional model shows
two stages of the evolution of the web in coming coordinates. One can see the multi scale nature
of the web and multiple nature of the halo mergers when small voids are squeezed by expanding
large voids. The red circles symbolize the halos which sizes indicate the masses. From Hidding
et al. (2012).

a single three-dimensional web structure. However, it is not clear from our simulations
whether honeycomb structure arises or not.” At present the answer is unambiguous: in
both the ZA (Fig. 2) and N-body simulations (Ramachandra & Shandarin 2014) the
three-stream flow regions form irregular cellular structure made of very thin quasi two-
dimensional regions most of which are interconnected in a single percolating structure.

3.5. The Adhesion model
Not being accurate the ZA remains qualitatively correct until massive shell crossing
happens. The streams continue moving through each other without bounds. This results
in unlimited growth of the thickness of the structure as illustrated by the left hand
side panel in Fig. 3. The numerical simulations showed that the correctly computed
gravitational forces keep the structure very thin. In order to suppress the growth of
the thickness of the pancakes Gurbatov, Saichev & Shandarin (1985, 1989) (see also
Gurbatov, Saichev & Shandarin (2012) for a recent review) suggested to introduce
artificial viscosity into the dynamical equations describing the ZA. Since this modification
cannot yield the correct result the form of the viscosity was chosen in the form that results
in the Burgers equation well known in theory of turbulence. An important advantage
of the Burgers model consists in that it allows an analytic solution. In the limit of
the infinitesimal viscosity the structure becomes a two-dimensional surface of a very
complicated shape in 3D or a one-dimensional line in 2D as shown in the right hand panel
of Fig. 3. The web predicted by the adhesion approximation can be called a skeleton of
the web. The accuracy and limitations of the adhesion approximation have been carefully
studied (Kofman, Pogosyan & Shandarin 1990; Nusser & Dekel 1990; Kofman et al.
1992; Melott, Shandarin & Weinberg 1994). It has also been used for the simulation of
deep redshift surveys (Weinberg & Gunn 1990a,b).

A recent very interesting new development of the Adhesion model revealed a deep
connection of the relation between Eulerian and Lagrangian space with that between
Voronoi and Delaunay tessellations (Hidding et al. 2012). It has been found that the walls
aka pancakes of the web as edge-like objects in Lagrangian space, whereas filaments have
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a flattened signature in Lagrangian space. Halos, being the most massive concentrations
of mass are therefore most extended progenitors in Lagrangian space. The Adhesion
model can be naturally interpreted as a skeleton of the web as illustrated by Fig. 4.

The Adhesion model naturally incorporates the multi scale character of the web,
anisotropic accretion of mass on halos from the filaments and to lesser extent from walls,
extinguishing of small voids when they pushed to the walls by large voids, simultaneous
merger of several halos when a void collapses.

4. Other recent developments
Illustrating the idea of a pancake Ya.B. had a plot (Fig.2 in Zeldovich (1970)) Eulerian

coordinate as a function of Lagrangian coordinate at three times: before, after and exactly
at the time of birth of a pancake. This is one of the Lagrangian sub-manifolds playing
fundamental role in classical mechanics. The distribution of dark matter in (�q, �x)–space,
where �q and �x are initial and actual comoving coordinates of particles in N-body simula-
tion at time t, is highly degenerate. It occupies a very thin sheet around three-dimensional
submanifold due to very low temperature of dark matter.

Recently a very promising technique has emerged based on a triangulation of a three-
dimensional submanifold �x = �x(�q, t) in six-dimensional space (�q, �x) (Shandarin, Habib
& Heitmann 2012; Able, Hahn & Kaehler 2012). Based on the triangulation one can
compute density, velocity, number of streams, and other fields with considerably higher
spatial resolution than other techniques can achieve (Angulo, Hahn & Abel 2013; Hahn,
Angulo & Abel 2014; Ramachandra & Shandarin 2014; Shandarin & Medvedev 2014).
Therefore this technique allows to visualize and study the web with unprecedented ac-
curacy.

Another extremely interesting example of studies stemmed from the ZA. The ZA was
used for computation of the two-point function of the matter and biased tracers (White
2014). The comparison with the N-body simulations and other Lagrangian perturbation
theories showed the ZA provides a good fit the N-body results. The ZA was also used
to compute the ingredients of the Gaussian streaming model of Reid & White (2011).
It was found that this hybrid model, refered to as the Zeldovich streaming model and
which involves only simple integrals of the linear theory power spectrum, provides a good
match to the N-body measurements down to tens of Mpc.

5. Summary
The ZA continues to inspire cosmologists to create new approaches to the study and un-

derstanding of the web: its origin, evolution and morphology. Currently the ZA is ’one of
the most successful and insightful analytic models of structure formation’ (White 2014).
It provides a very sophisticated framework for studies and understanding the complexity
of the large-scale structure in the universe. It incoporates a number of necessary concepts
and therefore provides language for accounting of the highly nontrivial morphology of
the web. It is also a very good approximation for statistical calculations.
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