CORRECTION TO A RESULT OF JAIN ON A CORRELATED RANDOM WALK

BY
R. B. NAIN AND KANWAR SEN

Abstract

The authors have found that the formula for $U(t)$ the probability generating function (p.g.f) of a return to the starting position, obtained by Jain [1, p. 344] is incorrect and have obtained its correct formulae.

Consider the walk $\left\{S_{n}, n=0,2, \ldots\right\}$ where $S_{0}=0, S_{n}=X_{1}+\cdots+X_{n}$. Let X_{i} be the random variable associated with the i th step, assuming the value $+1,-1$ or zero according as the i th step is to the right, to the left or a stay, with probabilities as per the t.p.m., for $n \geq 1$,
$\left.\begin{array}{c}\text { From/To } \\ \begin{array}{c}\text { right } \\ \text { left } \\ \text { stay }\end{array}\end{array} \begin{array}{ccc}p_{1} \alpha & q_{1} \alpha & 1-\alpha \\ q_{2} \alpha & p_{2} \alpha & 1-\alpha \\ \beta & \gamma & 1-\beta-\gamma\end{array}\right] \quad p_{1}+q_{1}=p_{2}+q_{2}=1$,
for $n=0, P\left(X_{0}=1\right)=\rho_{1}\left(=1-\rho_{2}\right)$ is an arbitrary probability.
For $r=0$ or an integer, let

$$
u_{r}(n)=\left[\begin{array}{ccc}
u_{r}^{+1,+1}(n) & u_{r}^{+1,-1}(n) & u_{r}^{+1,0}(n) \tag{2}\\
u_{r}^{-1,+1}(n) & u_{r}^{-1,-1}(n) & u_{r}^{-1,0}(n) \\
u_{r}^{0,+1}(n) & u_{r}^{0,-1}(n) & u_{r}^{0,0}(n)
\end{array}\right]
$$

where $u_{r}^{i, j}(n)=P\left\{S_{n}=r, X_{n}=j \mid X_{0}=i\right\}$. Also, let

$$
u_{r}^{i}(n)=\sum_{i} u_{r}^{i, j}(n) \quad \text { and } \quad U_{r}^{i}(t)=\sum_{n=0}^{\infty} u_{r}^{i}(n) t^{n}, \quad \text { etc. }
$$

On using the 'one-step' t.p.ms. (as defined in [2]) for walk (1), we can easily write

$$
P(s)=\left[\begin{array}{ccc}
p_{1} \alpha s & q_{1} \alpha s^{-1} & 1-\alpha \tag{3}\\
q_{2} \alpha s & p_{2} \alpha s^{-1} & 1-\alpha \\
\beta s & \gamma s^{-1} & 1-\beta-\gamma
\end{array}\right]
$$

and $U_{r}(t)$ is the coefficient of s^{r} in $\sum_{n=0}^{\infty}[t P(s)]^{n}=[I-t P(s)]^{-1}$.
With $\alpha=\beta+\gamma=1$ and $\beta=\rho_{1}$, the walk (1) reduces to the one considered by

Jain [1] for which we, then, get

$$
U_{0}(t)=\frac{\left(w p_{1} / p_{2}\right)^{1 / 2}}{p_{1} t(1-w)}\left[\begin{array}{ccc}
1-t\left(w p_{1} p_{2}\right)^{1 / 2} & q_{1} t\left(w p_{1} / p_{2}\right)^{1 / 2} & 0 \tag{4}\\
q_{2} t\left(w p_{2} / p_{1}\right)^{1 / 2} & 1-t\left(w p_{1} p_{2}\right)^{1 / 2} & 0 \\
\rho_{1} t\left(w p_{2} / p_{1}\right)^{1 / 2} & \rho_{2} t\left(w p_{1} / p_{2}\right)^{1 / 2} & 1+\delta t^{2} \\
+\left(q_{2}-\rho_{1}\right) t^{2} & +\left(\rho_{1}-p_{1}\right) t^{2} & -2 t\left(w p_{1} p_{2}\right)^{1 / 2}
\end{array}\right]
$$

where

$$
\delta=p_{1}-q_{2}, \quad w=\frac{1+\delta t^{2}-\left\{\left(1+\delta t^{2}\right)^{2}-4 p_{1} p_{2} t^{2}\right\}^{1 / 2}}{1+\delta t^{2}+\left\{\left(1+\delta t^{2}\right)^{2}-4 p_{1} p_{2} t^{2}\right\}^{1 / 2}}
$$

In terms of Jain's notations ($w=A_{1}(t) B_{-1}(t)$), on summing each row in (4), we get the following p.g.fs. of conditional return to origin

$$
\begin{gather*}
U_{0}^{+1}(t)=C\left[1-\delta t A_{1}(t)\right], \quad U_{0}^{-1}(t)=C\left[1-\delta t B_{-1}(t)\right] \tag{5}\\
U_{0}^{0}(t)=C\left[1-t B_{1}(t)\left\{\rho_{1}\left(p_{1}-p_{2}\right)+p_{1}\left(2 p_{2}-1\right)\right\} / p_{2}\right]
\end{gather*}
$$

where $C=A_{1}(t) /\left[1-A_{1}(t) B_{-1}(t)\right] p_{1} t$. The p.g.f. of unconditional return to zero, then, is

$$
\begin{equation*}
U_{0}(t)=\sum_{i=-1}^{1} U_{0}^{i}(t) P\left(X_{0}=i\right)=\rho_{1} U_{0}^{+1}(t)+\left(1-\rho_{1}\right) U_{0}^{-1}(t) \tag{6}
\end{equation*}
$$

For $p_{1}=p_{2}=p$, (6) verifies (13) in Seth [3].
The authors wish to thank the referee for his suggestion.

References

1. G. C. Jain, Some Results in a Correlated Random Walk, Canad. Math. Bull. 14 (1971), 341-347.
2. R. B. Nain and Kanwar Sen: Transition Probability Matrices for Correlated Random Walks, J. Appl. Prob. 17 (1980), 253-258.
3. A. Seth, The Correlated Unrestricted Random Walk, J. Roy. Stat. Soc. Ser. B 25 (1963), 394-400.

DEPARTMENT OF MATHEMATICAL STATISTICS,
UNIVERSITY OF DELHI,
DELHI-110007, INDIA

