
ON SMALLEST RADICAL AND SEMI-SIMPLE CLASSES
by W. G. LEAVITT and J. F. WAITERS

(Received 18 September, 1969)

Introduction. In a recent paper [5] one of us has given a sufficient condition to be satisfied
by a given property of radical classes within a universal class if in order that, for any subclass
Jt of if, there should be a smallest radical class having the given property and containing
Jt. The sufficient condition is that the class of all radical classes with the given property
can be characterised as the class of all radical classes fixed by an admissible function F (see
Section 1 below). In this paper a necessary and sufficient condition is derived and the
corresponding result for semi-simple classes is also presented. These results are given in
Section 2.

In Section 3 we apply the semi-simple construction to show that, given any subclass Jt
of if, there is a largest radical 0> such that both 0' and its semi-simple class s0> are hereditary
and %SP 2 Jt. An example is given to show that there is, in general, no largest radical 0> such
that &> is hereditary and s ^ 2 M. Finally, in Section 4, an example is given to show that
there is, in general, no smallest radical class 0> such that s& is hereditary and 0>'2.Jt.

1. Definitions. Let if be a universal class; that is, if is hereditary and homomorphically
closed. Denote by 3" the class of all subclasses of if, by Si the class of all radical subclasses
of if, and by <2J the class of all semi-simple subclasses of if.

If Jt e 2T, then a class Jt' 2 Jt is called an s-completion of Jt when Jt' has the property:

(a) If ReJt', then every non-zero ideal of R has a non-zero homomorphic image in Jt'.

If Jt is an s-completion of itself, then we shall say that Jt is s-complete. We recall that
every semi-simple class in if is s-complete and that if Jt is .s-complete, then there is a smallest
semi-simple class in if, containing Jt [1, p. 6]. The corresponding radical class, the upper
^-radical class, is denoted by vJt. In particular, if Jt e <&, vJt is the radical class determined
by^T.

If a function F: 0t -»3~ is such that

A.I. for all 0>e3t, ̂ c F ^ ;

A.2. if 0>
1, 0>2 e 01 and 0>

l c g>^ then v0'l <=, ?0>2;

A.3. if {&a\@aeM} is defined for all ordinals a and ^ £ &t for a ^ jS, then Y& £ UF^a,
where & = \J0>a;

a

then, following [5], F is said to be admissible. If a function F: 01 -> 3" satisfies A.I and A.2
above, then we shall say that F is non-inductive admissible, which will be abbreviated to
n-admissible. Note that in A.3, from all SPa&0t it follows without difficulty that 0>e0i.
Also note by A.2 that A.3, in fact, implies that v0>=

a

Here, in Theorem 1, it is shown that, for each Jts3~, n-admissibility of F : ^ ? - > ^ " is a
necessary and sufficient condition for the existence of a smallest radical class Ji ^ Jt and
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such that vJl = Jl. This improves Theorem 1 of [5], where it was shown that admissibility
of F is sufficient to imply the existence of Jl.

If a function F: ST -* 2T is such that

S.A.I, for J(G2T, YJI is an j-completion of Jl;

S.A.2. if Mu Jt2e!T and Jlx £ Jl2, then vJt^ <=, ?Jl2;

S.A.3. if {M!l:Jla.£<&} is defined for all ordinals a and Jla^Jle for a ^ P, then
F f̂ E \J?Jia,

 where .// = \JJta;
a a

then F is said to be s-admissible. An ns-admissible function v.ST -* !?~ is one which satisfies
S.A.I and S.A.2. Again note that in S.A.3, from all Jl^sW it follows without difficulty

In [5, Theorem 2] it was shown that if F is an j-admissible function, then for each JleST
there is a smallest semi-simple class Jl'^ Jl and such that vJl = Jl. In fact, as we shall
show in Theorem 2, ns-admissibility of F is necessary and sufficient for the existence of Jl.

We conclude this section with some remarks about our notation. If A eW, then B £ A
will denote that B is an ideal of A; if B g A but B # A, then this will be denoted by B < A.
Small capitals are used to denote operators on classes even though we are not usually dealing
with closure operators. The lower radical class determined by Jle$~ is written LJI. If
0>e^, then S& is the semi-simple class determined by 0>, and P(A) is the ^-radical of A.
Finally, when the elements of a class are listed it is understood that what is meant is the class
of all isomorphic copies of the rings listed.

2. Main theorems.

THEOREM 1. Let -V £ 52 define a property of radical classes in W. There exists, for each
Jle&~, a smallest class Jt&"V" with Jl <=^M if and only if there is an n-admissible function F
such that "V = {0>e@:F&> = 0>}.

Proof. Suppose that F is an n-admissible function, "V = {&£&:?& = 9} and
Since the class iVe-V and iV 3 J(, there is a non-empty class Jl which is the intersection
of all the classes JffV such that Jf^Jl. The proof in [2] that the intersection of a set of
radical classes is a radical class applies also for a class of radical classes. Hence Jl is a
radical class. By A.2, i s / implies that YJIS ?Jf = JV and so F J ? £ M. Therefore,
from A.I, vJl = Jl so Jle'T. Finally, if Jf 2 Jl and Jf err, then X 2 Jl and so Jl is
the smallest class in •f which contains Jl.

Conversely, if, given &e0t, IP is the smallest class in "T with 0> £ ^ , define a function
F:Si -> ST by setting F0» = # . Then F is an n-admissible function and "T =

REMARK 1. If F is an n-admissible function, then, setting Jly = LJI, where JtsST, and
defining

(L( (J Jlp) if P is a limit ordinal,

L?Jla if
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we obtain an ascending chain of radical classes whose union Jl* is a radical class. An easy
induction argument shows that Jl* £ M and if F is admissible, then Jl* = Jl [5, Theorem 1].
For w-admissible F we need not have M* = Ji as the following example shows.

Let Oa be the quotient field of the polynomial ring <I>[/iJ, where Aa is a set of commuting
indeterminates of cardinality Ka, 0 is a finite field and a is any ordinal. The fields <Da, <&p
have different cardinalities for a # ft, and so are non-isomorphic.

Let if — {0, <D, Oa: a any ordinal}. Every ring in W is simple so Si = 3~ = <&. Define

and otherwise

where y is the least ordinal such that <by$Jl. Then F is an w-admissible function which is not
admissible. If Jl = {0, <D0}> then Jl* = {0, <£a: a any ordinal} buU? = 1T, so ^ # ^T*.

THEOREM 2. £e/ 9C <=:<% define a property of semi-simple classes. There exists, for each
JitST, a smallest class Jl' eS£ with Jl "3. Jl if and only if there is an ns-admissible function F
such that 9C = {2.e<&:?2. = £}.

Proof. Suppose that F is an HS-admissible function SC = {£e<3/:v£ = 2] and MeV.
Since "WeSE and Jl £ 'W, there is a non-empty class Jl which is the intersection of all the
classes JftVC such that Jl £ Jf.

By S.A.2, Ji^Jf implies that F J S F / and so FJ7^J7. Hence, from S.A.I,
FJI = J7 and „# is s-complete. Therefore Jl satisfies condition (a) of Section 1. Further-
more, if A e iV\Jl, there is a class Jf€?E such that J/" 2 JlbutA^J/'. By the semi-simplicity
of the class Jf, there is (0) # B ^ /4 such that no non-zero homomorphic image of B belongs
to Jf and so no non-zero homomorphic image of B belongs to M. Thus Jl satisfies the
condition:

(b) If every (0) =£ B ^ Aeif can be mapped homomorphically onto a non-zero ring in Jl,
then AeJ7.

Now any class which satisfies both (a) and (b) is semi-simple [1, Theorem 2], so JleSC
and Ji 2 Jl. Finally, if 2, eSC and SL^Jl, then 2, 2 ^ and so ^7 is the smallest class in 3C
which contains Jl.

For the converse, define a function F : 2T -* ST by setting vJ( = J7. Then F is «j-admissible

REMARK 2. If F is an ns-admissible function, then setting Jl\ = suv Jl, where MeST,
and denning

Jla if J? is a limit ordinal,

if /? = a + l,

we obtain an ascending chain of semi-simple classes whose union Jl* is a semi-simple class.
An easy induction argument shows that Jl* £ Jl and, if F is s-admissible, Jl* = Jl [5,
Theorem 2]. For an /w-admissible function F we need not have Jl* = J7, as the example of
Remark 1 shows.
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From these improved forms of Theorems 1 and 2 of [5] it is clear that Theorems 5 and 6
of [5] can also be improved by replacing the conditions of admissibility and s-admissibility
by H-admissibility and n^-admissibility respectively.

3. Applications of the semi-simple construction. Given Jle$~, the hereditary closure of
M is defined to be the class of all rings in W isomorphic to accessible subrings of brings.
The hereditary closure of Jl is denoted by \Jl and is the smallest hereditary class containing
Jl. Since every hereditary class is .s-complete, the class \Jl is j-complete. A class .// is
hereditary if and only if iJl = Jl. It is easily seen that i is an admissible function defined on
ST and we have from Theorem 2 that, given JleST, there is a smallest hereditary semi-simple
class J ^Jt, [4, Theorem 2].

To show that there is a smallest semi-simple class $'2 Jl such that the radical determined
by , / is strongly hereditary, that is both $ and its radical class are hereditary, we use a pro-
cedure which is essentially that used by Rjabuhin in [6] to construct, within the universal class
of all associative rings, a largest hereditary radical whose semi-simple class contains a given
class of rings.

Given JlefT, we define jJl to be the class consisting of the ring 0 and all isomorphic
copies of rings R/J obtained as follows:

(a) B^A^

(y) J £ R maximal with respect to the property Jc\A £ B.

Then iM 2 M and if Jlt £ Jl2, then ]Jlt £ jJf2- In the following lemmas we establish
some properties of the function J.

LEMMA 1. If Jl is s-complete, then iJl is s-complete.

Proof. Suppose that (0) # IIJ ^ R/JeiJl. In the Jl-ring AjB, where A and B are as in
the definition of the class jJl, there is the non-zero ideal

(InA)+B
B S InB'

Therefore, since Jl is j-complete, there is K<Ir\A such that 7 n 5 s K and (InA)/KeJl.
Also

Jn(InA) = In{JnA) s InB £ K,

so there is an ideal / * of / such that 7 * 2 / and / * is maximal with respect to the property
J*n(InA) £ K. Since K# InA, the ideal J*^I.

Hence, from the definition of the class iJl, the ring ///*, which is a non-zero homo-
morphic image of ///, is an element of jJl. Thus the class jJl is j-complete.

LEMMA 2. Let &S01 and s@ = JL If 0> is strongly hereditary, then jJl = Jl.

Proof. Let P\J be the ^-radical of the ring RfJeUl, where B^A^
(0) £ A/BeJl, and J is as in (y) above.
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Since Jl is hereditary, the ideal ((PnA)+B)/B of AjB belongs to Jl and so
(PnA)l(PnB) e Jl. But, because 0> is hereditary, the ideal ((PnA)+J)/J of P\J belongs to &
and so (PnA)l(JnA)e0>. Now Jr\A £ PnB, so (PnA)l(PnB) is a homomorphic image of the
0>-ring (PnA)j(JnA). Therefore

PnA

and PnA = PnB £ B. Finally, by the maximality of /, P = J and RjJs Jl, which completes
the proof.

LEMMA 3. Let Jl be a hereditary class such that iJl = Jl. Then 3P = vJl is hereditary.
Proof. Let (0) =£ A ^ Re& and suppose that A$3>. Then there is B g A such that

(0)=£AIBeJl. If J^R and is maximal with respect to the property JnA^B, then
R/JejJl = Jl £ s5». But RIJe&, so R = J, which implies that 4̂ = J5. This is a contra-
diction, so ^ e& and 0" is hereditary.

With the aid of these lemmas and Theorem 2, we are now able to prove the main result
of this section.

THEOREM 3. Given JleST, there is a smallest semi-simple class $ =LJI such that the
radical determined by / is strongly hereditary.

Proof. Let SC be the class of all semi-simple classes whose corresponding radicals are
strongly hereditary. Given JtsST, we define vJl = J(IJl). It is immediate from Lemma 1
that F is an /^-admissible function. Put

From Lemma 2, $£' 2 SC. On the other hand, if 2LG9C' and 2P is its corresponding radical
class, then both 12. = 2. and 12. = St. Hence SL is a hereditary class such that i2. = 2. and then,
from Lemma 3, v2 = 3? is also hereditary. Thus & is a strongly hereditary radical and 2 eSC.
Therefore X' = X and the result follows from Theorem 2.

It might be conjectured that, given JleST, there is a smallest semi-simple class 2~2.Ji
and such that the radical determined by 2 is hereditary. This is false as the following example
shows.

EXAMPLE 1. Let AT be the algebra over GF(p) with generators e, x, y, z and multiplication
determined by the table:

e

X

y

z

e

e

e

e

X

X

e

0

0

e

y

e

0

y

0

z

X

e

z

y
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Let E be the subring generated by e and X the subring generated by x and e. Then
E ^ X ^ K and X is the only ideal in K other than (0) and K itself. The rings JT/.E, KjX and £
are non-isomorphic and simple.

Let if = {K, X, E, KjX, XjE, 0}, Jt = {0, K), £y = {0, K, X, E) and £l2 = {0, K, XjE}.
Then 5 t and 2.2 are minimal s-completions of Jt so, in general, there is not a smallest
^-completion of a class ^ . This confirms a conjecture made in [4]. Furthermore 2.^ and ,22

are the semi-simple classes determined respectively by the radical classes {0, K/X, XjE} and
{0, E, KjX}, each of these being hereditary.

4. Smallest radicals. It is known [3, Corollary] that, given JteST, there is a smallest
hereditary radical class J? ~2.M and a smallest strongly hereditary radical class Si 2 Jt. The
existence of these radicals can be established from Theorem 1 using the n-admissible functions
I and IG, where G, as in [5], is given by

G0> = {Ke iir: J ^ / <; A e nr with Je & and K the ideal of A generated by J }

and &G01. The function G is itself n-admissible, and it is not difficult to see that GSP = 2P if
and only if, given / ^ AeiV, we have P(I) ^ A. We shall denote the smallest such radical
class containing Jte3T by 0. It is clear that / s S and, from [1, Lemmas 68 and 69],
^ S 3). All three radicals are, in general, distinct as the next example shows.

EXAMPLE 2. By a construction of Rjabuhin [7] there are rings Au A2, A3, A4 such
that the only proper ideal of Ai+l is At for i = 1, 2, 3. Also At and Bi+l = Ai+lIA, are
non-isomorphic simple rings.

Let iT={0,Au A2, A3, AA, B2, B3, B4}, Jt = {0, A2, B2},G= {0, A2, A3, B2, B3} and
tf = {0, Au A2, B2). Then iV is a universal class, Jt is a radical class in W, J? is the
smallest hereditary radical class containing Jt, t§ is the smallest radical class containing Jt
and such that, given / ^ Aeif, we have G(I) ^ A, and tfv'S = 2) is the smallest strongly
hereditary radical containing Jt. Each of these assertions is easily checked so we omit the
proofs.

The semi-simple classes corresponding to the radical classes ̂  and @) are always hereditary
and again one might conjecture that, given Jte^, there is a smallest radical class 0> ^.Jt
with hereditary semi-simple class. Using Example 1, we can show that this is, in general,
false. Let iV be as in Example 1, Jt = {0, E } , &>l = {0, X, E, XjE } and 0>2 = {0, E, K, KjX}.
Then Jt is a radical class in if and both SP^ and ^ 2 are minimal radical classes containing Jt
and having hereditary semi-simple class. Since 0>v and 2P2 are incomparable, there is no
smallest radical containing Jt and having hereditary semi-simple class. Again each of these
assertions is easily checked and the proofs are omitted.
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