ON SMALLEST RADICAL AND SEMI-SIMPLE CLASSES

by W. G. LEAVITT and J. F. WATTERS

(Received 18 September, 1969)

Introduction. In a recent paper [5] one of us has given a sufficient condition to be satisfied by a given property of radical classes within a universal class \mathcal{W} in order that, for any subclass \mathcal{M} of \mathcal{W} , there should be a smallest radical class having the given property and containing \mathcal{M} . The sufficient condition is that the class of all radical classes with the given property can be characterised as the class of all radical classes fixed by an admissible function F (see Section 1 below). In this paper a necessary and sufficient condition is derived and the corresponding result for semi-simple classes is also presented. These results are given in Section 2.

In Section 3 we apply the semi-simple construction to show that, given any subclass \mathcal{M} of \mathcal{W} , there is a largest radical \mathcal{P} such that both \mathcal{P} and its semi-simple class $s\mathcal{P}$ are hereditary and $s\mathcal{P} \supseteq \mathcal{M}$. An example is given to show that there is, in general, no largest radical \mathcal{P} such that \mathcal{P} is hereditary and $s\mathcal{P} \supseteq \mathcal{M}$. Finally, in Section 4, an example is given to show that there is, in general, no smallest radical class \mathcal{P} such that $s\mathcal{P}$ is hereditary and $\mathcal{P} \supseteq \mathcal{M}$.

1. Definitions. Let \mathscr{W} be a universal class; that is, \mathscr{W} is hereditary and homomorphically closed. Denote by \mathscr{T} the class of all subclasses of \mathscr{W} , by \mathscr{R} the class of all radical subclasses of \mathscr{W} , and by \mathscr{Y} the class of all semi-simple subclasses of \mathscr{W} .

If $\mathcal{M} \in \mathcal{T}$, then a class $\mathcal{M}' \supseteq \mathcal{M}$ is called an s-completion of \mathcal{M} when \mathcal{M}' has the property:

(a) If $R \in \mathcal{M}'$, then every non-zero ideal of R has a non-zero homomorphic image in \mathcal{M}' .

If \mathcal{M} is an s-completion of itself, then we shall say that \mathcal{M} is s-complete. We recall that every semi-simple class in \mathcal{W} is s-complete and that if \mathcal{M} is s-complete, then there is a smallest semi-simple class in \mathcal{W} , containing \mathcal{M} [1, p. 6]. The corresponding radical class, the upper \mathcal{M} -radical class, is denoted by $\mathcal{U}\mathcal{M}$. In particular, if $\mathcal{M} \in \mathcal{Y}$, $\mathcal{U}\mathcal{M}$ is the radical class determined by \mathcal{M} .

If a function $F: \mathcal{R} \to \mathcal{T}$ is such that

- A.1. for all $\mathcal{P} \in \mathcal{R}$, $\mathcal{P} \subseteq F\mathcal{P}$;
- A.2. if $\mathcal{P}_1, \mathcal{P}_2 \in \mathcal{R}$ and $\mathcal{P}_1 \subseteq \mathcal{P}_2$, then $F\mathcal{P}_1 \subseteq F\mathcal{P}_2$;
- A.3. if $\{\mathscr{P}_{\alpha} : \mathscr{P}_{\alpha} \in \mathscr{R}\}$ is defined for all ordinals α and $\mathscr{P}_{\alpha} \subseteq \mathscr{P}_{\beta}$ for $\alpha \leq \beta$, then $F\mathscr{P} \subseteq \bigcup F\mathscr{P}_{\alpha}$, where $\mathscr{P} = \bigcup \mathscr{P}_{\alpha}$;

then, following [5], F is said to be admissible. If a function $F: \mathcal{R} \to \mathcal{F}$ satisfies A.1 and A.2 above, then we shall say that F is non-inductive admissible, which will be abbreviated to *n-admissible*. Note that in A.3, from all $\mathcal{P}_{\alpha} \in \mathcal{R}$ it follows without difficulty that $\mathcal{P} \in \mathcal{R}$. Also note by A.2 that A.3, in fact, implies that $F\mathcal{P} = \bigcup F\mathcal{P}_{\alpha}$.

Here, in Theorem 1, it is shown that, for each $\mathcal{M} \in \mathcal{T}$, n-admissibility of $F: \mathcal{R} \to \mathcal{T}$ is a necessary and sufficient condition for the existence of a smallest radical class $\mathcal{M} \supseteq \mathcal{M}$ and

such that $f\overline{\mathcal{M}} = \overline{\mathcal{M}}$. This improves Theorem 1 of [5], where it was shown that admissibility of F is sufficient to imply the existence of $\overline{\mathcal{M}}$.

If a function $F: \mathcal{F} \to \mathcal{F}$ is such that

- S.A.1. for $\mathcal{M} \in \mathcal{T}$, $\mathcal{F} \mathcal{M}$ is an s-completion of \mathcal{M} ;
- S.A.2. if \mathcal{M}_1 , $\mathcal{M}_2 \in \mathcal{T}$ and $\mathcal{M}_1 \subseteq \mathcal{M}_2$, then $\mathcal{F} \mathcal{M}_1 \subseteq \mathcal{F} \mathcal{M}_2$;
- S.A.3. if $\{\mathcal{M}_{\alpha} \colon \mathcal{M}_{\alpha} \in \mathcal{Y}\}$ is defined for all ordinals α and $\mathcal{M}_{\alpha} \subseteq \mathcal{M}_{\beta}$ for $\alpha \leq \beta$, then $F\mathcal{M} \subseteq \bigcup_{\alpha} F\mathcal{M}_{\alpha}$, where $\mathcal{M} = \bigcup_{\alpha} \mathcal{M}_{\alpha}$;

then F is said to be s-admissible. An ns-admissible function $F: \mathcal{F} \to \mathcal{F}$ is one which satisfies S.A.1 and S.A.2. Again note that in S.A.3, from all $\mathcal{M}_{\alpha} \in \mathcal{Y}$ it follows without difficulty that $\mathcal{M} \in \mathcal{Y}$.

In [5, Theorem 2] it was shown that if F is an s-admissible function, then for each $\mathcal{M} \in \mathcal{F}$ there is a smallest semi-simple class $\overline{\mathcal{M}} \supseteq \mathcal{M}$ and such that $F\overline{\mathcal{M}} = \overline{\mathcal{M}}$. In fact, as we shall show in Theorem 2, ns-admissibility of F is necessary and sufficient for the existence of $\overline{\mathcal{M}}$.

We conclude this section with some remarks about our notation. If $A \in \mathcal{W}$, then $B \leq A$ will denote that B is an ideal of A; if $B \leq A$ but $B \neq A$, then this will be denoted by B < A. Small capitals are used to denote operators on classes even though we are not usually dealing with closure operators. The lower radical class determined by $\mathcal{M} \in \mathcal{T}$ is written $L\mathcal{M}$. If $\mathcal{P} \in \mathcal{R}$, then $s\mathcal{P}$ is the semi-simple class determined by \mathcal{P} , and P(A) is the \mathcal{P} -radical of A. Finally, when the elements of a class are listed it is understood that what is meant is the class of all isomorphic copies of the rings listed.

2. Main theorems.

THEOREM 1. Let $\mathscr{V} \subseteq \mathscr{R}$ define a property of radical classes in \mathscr{W} . There exists, for each $\mathscr{M} \in \mathscr{T}$, a smallest class $\overrightarrow{\mathscr{M}} \in \mathscr{V}$ with $\mathscr{M} \subseteq \mathscr{\overline{M}}$ if and only if there is an n-admissible function F such that $\mathscr{V} = \{\mathscr{P} \in \mathscr{R} : F\mathscr{P} = \mathscr{P}\}$.

Proof. Suppose that F is an n-admissible function, $\mathscr{V} = \{\mathscr{P} \in \mathscr{R} : F\mathscr{P} = \mathscr{P}\}$ and $\mathscr{M} \in \mathscr{T}$. Since the class $\mathscr{W} \in \mathscr{V}$ and $\mathscr{W} \supseteq \mathscr{M}$, there is a non-empty class $\overline{\mathscr{M}}$ which is the intersection of all the classes $\mathscr{N} \in \mathscr{V}$ such that $\mathscr{N} \supseteq \mathscr{M}$. The proof in [2] that the intersection of a set of radical classes is a radical class applies also for a class of radical classes. Hence $\overline{\mathscr{M}}$ is a radical class. By A.2, $\overline{\mathscr{M}} \subseteq \mathscr{N}$ implies that $F\overline{\mathscr{M}} \subseteq F\mathscr{N} = \mathscr{N}$ and so $F\overline{\mathscr{M}} \subseteq \overline{\mathscr{M}}$. Therefore, from A.1, $F\overline{\mathscr{M}} = \overline{\mathscr{M}}$ so $\overline{\mathscr{M}} \in \mathscr{V}$. Finally, if $\mathscr{K} \supseteq \mathscr{M}$ and $\mathscr{K} \in \mathscr{V}$, then $\mathscr{K} \supseteq \overline{\mathscr{M}}$ and so $\overline{\mathscr{M}}$ is the smallest class in \mathscr{V} which contains \mathscr{M} .

Conversely, if, given $\mathscr{P} \in \mathscr{R}$, $\overline{\mathscr{P}}$ is the smallest class in \mathscr{V} with $\mathscr{P} \subseteq \overline{\mathscr{P}}$, define a function $F: \mathscr{R} \to \mathscr{F}$ by setting $F\mathscr{P} = \overline{\mathscr{P}}$. Then F is an n-admissible function and $\mathscr{V} = \{\mathscr{P} \in \mathscr{R} : F\mathscr{P} = \mathscr{P}\}$.

REMARK 1. If F is an *n*-admissible function, then, setting $\mathcal{M}_1 = L\mathcal{M}$, where $\mathcal{M} \in \mathcal{F}$, and defining

$$\mathcal{M}_{\beta} = \begin{cases} \mathsf{L}(\bigcup_{\alpha < \beta} \mathcal{M}_{\beta}) & \text{if } \beta \text{ is a limit ordinal,} \\ \mathsf{LF}\mathcal{M}_{\alpha} & \text{if } \beta = \alpha + 1, \end{cases}$$

we obtain an ascending chain of radical classes whose union \mathcal{M}^* is a radical class. An easy induction argument shows that $\mathcal{M}^* \subseteq \overline{\mathcal{M}}$ and if F is admissible, then $\mathcal{M}^* = \overline{\mathcal{M}}$ [5, Theorem 1]. For *n*-admissible F we need not have $\mathcal{M}^* = \overline{\mathcal{M}}$ as the following example shows.

Let Φ_{α} be the quotient field of the polynomial ring $\Phi[A_{\alpha}]$, where A_{α} is a set of commuting indeterminates of cardinality \aleph_{α} , Φ is a finite field and α is any ordinal. The fields Φ_{α} , Φ_{β} have different cardinalities for $\alpha \neq \beta$, and so are non-isomorphic.

Let $\mathcal{W} = \{0, \Phi, \Phi_{\alpha} : \alpha \text{ any ordinal}\}$. Every ring in \mathcal{W} is simple so $\mathcal{R} = \mathcal{F} = \mathcal{Y}$. Define

$$\mathbf{f}\{\mathscr{W}-\{\Phi\}\}=\mathbf{f}\mathscr{W}=\mathscr{W}$$

and otherwise

$$\mathcal{F}\mathcal{M} = \mathcal{M} \cup \Phi_{\gamma}$$

where γ is the least ordinal such that $\Phi_{\gamma} \notin \mathcal{M}$. Then F is an n-admissible function which is not admissible. If $\mathcal{M} = \{0, \Phi_0\}$, then $\mathcal{M}^* = \{0, \Phi_\alpha : \alpha \text{ any ordinal}\}$ but $\overline{\mathcal{M}} = \mathcal{W}$, so $\overline{\mathcal{M}} \neq \mathcal{M}^*$.

THEOREM 2. Let $\mathscr{X} \subseteq \mathscr{Y}$ define a property of semi-simple classes. There exists, for each $\mathscr{M} \in \mathscr{T}$, a smallest class $\overline{\mathscr{M}} \in \mathscr{X}$ with $\overline{\mathscr{M}} \supseteq \mathscr{M}$ if and only if there is an ns-admissible function F such that $\mathscr{X} = \{\mathscr{Q} \in \mathscr{Y} : F\mathscr{Q} = \mathscr{Q}\}.$

Proof. Suppose that F is an *ns*-admissible function $\mathscr{X} = \{ \mathscr{Q} \in \mathscr{Y} : F\mathscr{Q} = \mathscr{Q} \}$ and $\mathscr{M} \in \mathscr{T}$. Since $\mathscr{W} \in \mathscr{X}$ and $\mathscr{M} \subseteq \mathscr{W}$, there is a non-empty class $\overline{\mathscr{M}}$ which is the intersection of all the classes $\mathscr{N} \in \mathscr{X}$ such that $\mathscr{M} \subseteq \mathscr{N}$.

By S.A.2, $\overline{\mathcal{M}} \subseteq \mathcal{N}$ implies that $F\overline{\mathcal{M}} \subseteq F\mathcal{N}$ and so $F\overline{\mathcal{M}} \subseteq \overline{\mathcal{M}}$. Hence, from S.A.1, $F\overline{\mathcal{M}} = \overline{\mathcal{M}}$ and $\overline{\mathcal{M}}$ is s-complete. Therefore $\overline{\mathcal{M}}$ satisfies condition (a) of Section 1. Furthermore, if $A \in \mathcal{W} \setminus \overline{\mathcal{M}}$, there is a class $\mathcal{N} \in \mathcal{X}$ such that $\mathcal{N} \supseteq \overline{\mathcal{M}}$ but $A \notin \mathcal{N}$. By the semi-simplicity of the class \mathcal{N} , there is $(0) \neq B \subseteq A$ such that no non-zero homomorphic image of B belongs to \mathcal{N} and so no non-zero homomorphic image of B belongs to $\overline{\mathcal{M}}$. Thus $\overline{\mathcal{M}}$ satisfies the condition:

(b) If every (0) $\neq B \leq A \in \mathcal{W}$ can be mapped homomorphically onto a non-zero ring in $\overline{\mathcal{M}}$, then $A \in \overline{\mathcal{M}}$.

Now any class which satisfies both (a) and (b) is semi-simple [1, Theorem 2], so $\overline{\mathcal{M}} \in \mathcal{X}$ and $\overline{\mathcal{M}} \supseteq \mathcal{M}$. Finally, if $2 \in \mathcal{X}$ and $2 \supseteq \mathcal{M}$, then $2 \supseteq \overline{\mathcal{M}}$ and so $\overline{\mathcal{M}}$ is the smallest class in \mathcal{X} which contains \mathcal{M} .

For the converse, define a function $F: \mathcal{T} \to \mathcal{T}$ by setting $F\mathcal{M} = \overline{\mathcal{M}}$. Then F is *ns*-admissible and $\{2 \in \mathcal{Y}: F2 = 2\} = \mathcal{X}$.

REMARK 2. If F is an *ns*-admissible function, then setting $\mathcal{M}_1 = \text{SUF}\mathcal{M}$, where $\mathcal{M} \in \mathcal{T}$, and defining

$$\mathcal{M}_{\beta} = \begin{cases} \bigcup_{\alpha < \beta} \mathcal{M}_{\alpha} & \text{if } \beta \text{ is a limit ordinal,} \\ \text{SUF} \mathcal{M}_{\alpha} & \text{if } \beta = \alpha + 1, \end{cases}$$

we obtain an ascending chain of semi-simple classes whose union \mathcal{M}^* is a semi-simple class. An easy induction argument shows that $\mathcal{M}^* \subseteq \overline{\mathcal{M}}$ and, if F is s-admissible, $\mathcal{M}^* = \overline{\mathcal{M}}$ [5, Theorem 2]. For an ns-admissible function F we need not have $\mathcal{M}^* = \overline{\mathcal{M}}$, as the example of Remark 1 shows.

From these improved forms of Theorems 1 and 2 of [5] it is clear that Theorems 5 and 6 of [5] can also be improved by replacing the conditions of admissibility and s-admissibility by n-admissibility and ns-admissibility respectively.

3. Applications of the semi-simple construction. Given $\mathcal{M} \in \mathcal{F}$, the hereditary closure of \mathcal{M} is defined to be the class of all rings in \mathcal{W} isomorphic to accessible subrings of \mathcal{M} -rings. The hereditary closure of \mathcal{M} is denoted by \mathcal{M} and is the smallest hereditary class containing \mathcal{M} . Since every hereditary class is s-complete, the class \mathcal{M} is s-complete. A class \mathcal{M} is hereditary if and only if $\mathcal{M} = \mathcal{M}$. It is easily seen that I is an admissible function defined on \mathcal{F} and we have from Theorem 2 that, given $\mathcal{M} \in \mathcal{F}$, there is a smallest hereditary semi-simple class $\mathcal{I} \supseteq \mathcal{M}$, [4, Theorem 2].

To show that there is a smallest semi-simple class $\mathcal{J} \supseteq \mathcal{M}$ such that the radical determined by \mathcal{J} is strongly hereditary, that is both \mathcal{J} and its radical class are hereditary, we use a procedure which is essentially that used by Rjabuhin in [6] to construct, within the universal class of all associative rings, a largest hereditary radical whose semi-simple class contains a given class of rings.

Given $\mathcal{M} \in \mathcal{F}$, we define $\mathcal{I}\mathcal{M}$ to be the class consisting of the ring 0 and all isomorphic copies of rings R/J obtained as follows:

- (a) $B \leq A \leq R \in \mathcal{W}$,
- (β) $(0) \neq A/B \in \mathcal{M}$,
- (γ) $J \leq R$ maximal with respect to the property $J \cap A \subseteq B$.

Then $JM \supseteq M$ and if $M_1 \subseteq M_2$, then $JM_1 \subseteq JM_2$. In the following lemmas we establish some properties of the function J.

LEMMA 1. If M is s-complete, then JM is s-complete.

Proof. Suppose that $(0) \neq I/J \leq R/J \in JM$. In the M-ring A/B, where A and B are as in the definition of the class JM, there is the non-zero ideal

$$\frac{(I\cap A)+B}{B}\cong\frac{I\cap A}{I\cap B}.$$

Therefore, since \mathcal{M} is s-complete, there is $K < I \cap A$ such that $I \cap B \subseteq K$ and $(I \cap A)/K \in \mathcal{M}$. Also

$$J \cap (I \cap A) = I \cap (J \cap A) \subseteq I \cap B \subseteq K$$

so there is an ideal J^* of I such that $J^* \supseteq J$ and J^* is maximal with respect to the property $J^* \cap (I \cap A) \subseteq K$. Since $K \neq I \cap A$, the ideal $J^* \neq I$.

Hence, from the definition of the class JM, the ring I/J^* , which is a non-zero homomorphic image of I/J, is an element of JM. Thus the class JM is s-complete.

LEMMA 2. Let $\mathcal{P} \in \mathcal{R}$ and $S\mathcal{P} = \mathcal{M}$. If \mathcal{P} is strongly hereditary, then $J\mathcal{M} = \mathcal{M}$.

Proof. Let P/J be the \mathscr{P} -radical of the ring $R/J \in J\mathcal{M}$, where $B \leq A \leq R \in \mathcal{W}$, $(0) \neq A/B \in \mathcal{M}$, and J is as in (γ) above.

Since \mathcal{M} is hereditary, the ideal $((P \cap A) + B)/B$ of A/B belongs to \mathcal{M} and so $(P \cap A)/(P \cap B) \in \mathcal{M}$. But, because \mathcal{P} is hereditary, the ideal $((P \cap A) + J)/J$ of P/J belongs to \mathcal{P} and so $(P \cap A)/(J \cap A) \in \mathcal{P}$. Now $J \cap A \subseteq P \cap B$, so $(P \cap A)/(P \cap B)$ is a homomorphic image of the \mathcal{P} -ring $(P \cap A)/(J \cap A)$. Therefore

$$\frac{P \cap A}{P \cap B} \in \mathscr{P} \cap \mathscr{S}$$

and $P \cap A = P \cap B \subseteq B$. Finally, by the maximality of J, P = J and $R/J \in \mathcal{M}$, which completes the proof.

LEMMA 3. Let \mathcal{M} be a hereditary class such that $J\mathcal{M} = \mathcal{M}$. Then $\mathcal{P} = U\mathcal{M}$ is hereditary. Proof. Let $(0) \neq A \leq R \in \mathcal{P}$ and suppose that $A \notin \mathcal{P}$. Then there is $B \leq A$ such that $(0) \neq A/B \in \mathcal{M}$. If $J \leq R$ and is maximal with respect to the property $J \cap A \subseteq B$, then $R/J \in J\mathcal{M} = \mathcal{M} \subseteq S\mathcal{P}$. But $R/J \in \mathcal{P}$, so R = J, which implies that A = B. This is a contradiction, so $A \in \mathcal{P}$ and \mathcal{P} is hereditary.

With the aid of these lemmas and Theorem 2, we are now able to prove the main result of this section.

THEOREM 3. Given $\mathcal{M} \in \mathcal{F}$, there is a smallest semi-simple class $\mathcal{J} \supseteq \mathcal{M}$ such that the radical determined by \mathcal{J} is strongly hereditary.

Proof. Let \mathscr{X} be the class of all semi-simple classes whose corresponding radicals are strongly hereditary. Given $\mathscr{M} \in \mathscr{T}$, we define $F\mathscr{M} = J(I\mathscr{M})$. It is immediate from Lemma 1 that F is an *ns*-admissible function. Put

$$\mathscr{X}' = \{ \mathscr{Q} \in \mathscr{Y} : F\mathscr{Q} = \mathscr{Q} \}.$$

From Lemma 2, $\mathscr{X}' \supseteq \mathscr{X}$. On the other hand, if $\mathscr{Q} \in \mathscr{X}'$ and \mathscr{P} is its corresponding radical class, then both $1\mathscr{Q} = \mathscr{Q}$ and $1\mathscr{Q} = \mathscr{Q}$. Hence \mathscr{Q} is a hereditary class such that $1\mathscr{Q} = \mathscr{Q}$ and then, from Lemma 3, $1 \mathscr{Q} = \mathscr{P}$ is also hereditary. Thus \mathscr{P} is a strongly hereditary radical and $1 \mathscr{Q} \in \mathscr{X}$. Therefore $1 \mathscr{X}' = 1 \mathscr{X}$ and the result follows from Theorem 2.

It might be conjectured that, given $\mathcal{M} \in \mathcal{F}$, there is a smallest semi-simple class $2 \supseteq \mathcal{M}$ and such that the radical determined by 2 is hereditary. This is false as the following example shows.

EXAMPLE 1. Let K be the algebra over GF(p) with generators e, x, y, z and multiplication determined by the table:

	е	x	у	z
e	e	e	e	x
x	e	0	0	e
y	e	0	у	z
z	x	e	0	y

Let E be the subring generated by e and X the subring generated by x and e. Then $E \le X \le K$ and X is the only ideal in K other than (0) and K itself. The rings X/E, K/X and E are non-isomorphic and simple.

Let $\mathcal{W} = \{K, X, E, K/X, X/E, 0\}$, $\mathcal{M} = \{0, K\}$, $\mathcal{Q}_1 = \{0, K, X, E\}$ and $\mathcal{Q}_2 = \{0, K, X/E\}$. Then \mathcal{Q}_1 and \mathcal{Q}_2 are minimal s-completions of \mathcal{M} so, in general, there is not a smallest s-completion of a class \mathcal{M} . This confirms a conjecture made in [4]. Furthermore \mathcal{Q}_1 and \mathcal{Q}_2 are the semi-simple classes determined respectively by the radical classes $\{0, K/X, X/E\}$ and $\{0, E, K/X\}$, each of these being hereditary.

4. Smallest radicals. It is known [3, Corollary] that, given $\mathcal{M} \in \mathcal{T}$, there is a smallest hereditary radical class $\mathcal{D} \supseteq \mathcal{M}$ and a smallest strongly hereditary radical class $\mathcal{D} \supseteq \mathcal{M}$. The existence of these radicals can be established from Theorem 1 using the *n*-admissible functions 1 and 1G, where G, as in [5], is given by

$$G\mathcal{P} = \{K \in \mathcal{W} : J \leq I \leq A \in \mathcal{W} \text{ with } J \in \mathcal{P} \text{ and } K \text{ the ideal of } A \text{ generated by } J\}$$

and $\mathscr{P} \in \mathscr{R}$. The function G is itself *n*-admissible, and it is not difficult to see that $G\mathscr{P} = \mathscr{P}$ if and only if, given $I \leq A \in \mathscr{W}$, we have $P(I) \leq A$. We shall denote the smallest such radical class containing $\mathscr{M} \in \mathscr{T}$ by \mathscr{G} . It is clear that $\mathscr{H} \subseteq \mathscr{D}$ and, from [1, Lemmas 68 and 69], $\mathscr{G} \subseteq \mathscr{D}$. All three radicals are, in general, distinct as the next example shows.

EXAMPLE 2. By a construction of Rjabuhin [7] there are rings A_1 , A_2 , A_3 , A_4 such that the only proper ideal of A_{i+1} is A_i for i = 1, 2, 3. Also A_1 and $B_{i+1} = A_{i+1}/A_i$ are non-isomorphic simple rings.

Let $\mathcal{W} = \{0, A_1, A_2, A_3, A_4, B_2, B_3, B_4\}$, $\mathcal{M} = \{0, A_2, B_2\}$, $G = \{0, A_2, A_3, B_2, B_3\}$ and $\mathcal{H} = \{0, A_1, A_2, B_2\}$. Then \mathcal{W} is a universal class, \mathcal{M} is a radical class in \mathcal{W} , \mathcal{H} is the smallest hereditary radical class containing \mathcal{M} , \mathcal{G} is the smallest radical class containing \mathcal{M} and such that, given $I \leq A \in \mathcal{W}$, we have $G(I) \leq A$, and $\mathcal{H} \cup \mathcal{G} = \mathcal{D}$ is the smallest strongly hereditary radical containing \mathcal{M} . Each of these assertions is easily checked so we omit the proofs.

The semi-simple classes corresponding to the radical classes $\mathscr G$ and $\mathscr D$ are always hereditary and again one might conjecture that, given $\mathscr M \in \mathscr T$, there is a smallest radical class $\mathscr P \supseteq \mathscr M$ with hereditary semi-simple class. Using Example 1, we can show that this is, in general, false. Let $\mathscr W$ be as in Example 1, $\mathscr M = \{0, E\}$, $\mathscr P_1 = \{0, X, E, X/E\}$ and $\mathscr P_2 = \{0, E, K, K/X\}$. Then $\mathscr M$ is a radical class in $\mathscr W$ and both $\mathscr P_1$ and $\mathscr P_2$ are minimal radical classes containing $\mathscr M$ and having hereditary semi-simple class. Since $\mathscr P_1$ and $\mathscr P_2$ are incomparable, there is no smallest radical containing $\mathscr M$ and having hereditary semi-simple class. Again each of these assertions is easily checked and the proofs are omitted.

REFERENCES

- 1. N. Divinsky, Rings and Radicals (London, 1965).
- 2. W. G. Leavitt, Sets of radical classes, Publ. Math. Debrecen 14 (1967), 321-324.
- 3. W. G. Leavitt, Strongly hereditary radicals, Proc. Amer. Math. Soc. 21 (1969), 703-705.
- 4. W. G. Leavitt, Hereditary semi-simple classes, Glasgow Math. J. 11 (1970), 7-8.

W. G. LEAVITT AND J. F. WATTERS

- 5. W. G. Leavitt, Radical and semi-simple classes with specified properties, *Proc. Amer. Math. Soc.* 24 (1970), 680-687.
 - 6. Ju. M. Rjabuhin, On the imbedding of radicals, Isv. Akad. Nauk. Mold. SS 11 (1963), 34-40.
 - 7. Ju. M. Rjabuhin, Lower radicals of rings, Mat. Zametki 2 (1967), 239-244.

UNIVERSITY OF NEBRASKA LINCOLN, NEBRASKA U.S.A.

104

THE UNIVERSITY, LEICESTER