Fourth Meeting, February 11th, 1887.

GEORGE THOM, Esq., President, in the Chair.

Proof of a Geometrical Theorem.

BY W. J. MACDONALD, M.A.

The middle points of the diagonals of a complete quadrilateral are collinear.

Let ABCDEF be a complete quadrilateral (see fig. 70), and X, Y, Z, the middle points of its diagonals. To prove X, Y, Z, collinear.

 $BX^{2} = XPXO$

Let PQR be the diagonal triangle.

Then BPDQ is a harmonic range.

\dots $\mathbf{D}\mathbf{A} = \mathbf{A}\mathbf{I}\mathbf{A}\mathbf{Q}$
$\frac{BP}{BQ} = \frac{BX + XP}{BX + XQ} = \frac{\sqrt{XP.XQ} + XP}{\sqrt{XP.XQ} + XQ} = \frac{\sqrt{XP}(\sqrt{XQ} + \sqrt{XP})}{\sqrt{XQ}(\sqrt{XP} + \sqrt{XQ})} = \frac{\sqrt{XP}}{\sqrt{XQ}}$
$\overline{BQ} \overline{BX + XQ} \overline{\sqrt{XP.XQ} + XQ} \overline{\sqrt{XQ}}(\sqrt{XP} + \sqrt{XQ}) \overline{\sqrt{XQ}}$
Similarly, $\frac{AP}{AR} = \frac{\sqrt{YP}}{\sqrt{YR}} \text{ and } \frac{QF}{FR} = \frac{\sqrt{ZQ}}{\sqrt{ZR}}$
Now $\frac{PB}{BQ}$. $\frac{QF}{FR}$. $\frac{RA}{AP} = -1$ (:: triangle PQR is cut by BF)
i.e., $\frac{BP}{BQ}$. $\frac{FQ}{FR}$. $\frac{AR}{AP} = 1$
<i>i.e.</i> , $\sqrt{\frac{XP}{XQ}} \frac{ZQ}{ZR} \frac{YR}{YP} = 1$
$\therefore \qquad \frac{XP}{XQ} \cdot \frac{ZQ}{ZR} \cdot \frac{YR}{YP} = 1$
$\therefore \qquad \frac{\mathbf{P}\mathbf{X}}{\mathbf{X}\mathbf{Q}} \cdot \frac{\mathbf{Q}\mathbf{Z}}{\mathbf{Z}\mathbf{R}} \cdot \frac{\mathbf{R}\mathbf{Y}}{\mathbf{Y}\mathbf{P}} = -1$

.: X, Y, Z, are collinear.