Fourth Meeting, February 11th, 1887.

George Thom, Esq., President, in the Chair.

Proof of a Geometrical Theorem.
By W. J. Macdonald, M.A.
The middle points of the diagonals of a complete quadrilateral are collinear.

Let ABCDEF be a complete quadrilateral (see fig. 70), and X, \mathbf{Y}, \mathbf{Z}, the middle points of its diagonals. To prove $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, collinear.

Let $P Q R$ be the diagonal triangle.
Then BPDQ is a harmonic range.

$$
\therefore \quad \mathbf{B X}^{2}=\mathbf{X P X Q}
$$

Similarly,

$$
\frac{A P}{A R}=\frac{\sqrt{Y P}}{\sqrt{Y R}} \text { and } \frac{Q F}{F R}=\frac{\sqrt{Z Q}}{\sqrt{Z R}}
$$

Now $\quad \frac{\mathrm{PB}}{\mathrm{BQ}} \cdot \frac{\mathrm{QF}}{\mathrm{FR}} \cdot \frac{\mathbf{R A}}{\mathrm{AP}}=-1(\because$ triangle PQR is cut by BF$)$
i.s., $\quad \frac{\mathrm{BP}}{\overline{\mathrm{BQ}}} \cdot \frac{\mathrm{FQ}}{\overline{\mathrm{FR}}} \cdot \frac{\mathrm{AR}}{\mathrm{AP}}=1$
i.e., $\quad \sqrt{\frac{X P}{X Q}} \frac{Z Q}{Z R} \cdot \frac{Y R}{\overline{Y P}}=1$
$\therefore \quad \frac{\mathrm{XP}}{\mathrm{XQ}} \cdot \frac{\mathrm{ZQ}}{\mathrm{ZR}} \cdot \mathbf{Y R}=1$
$\therefore \quad \frac{\mathbf{P X}}{\mathrm{XQ}} \cdot \frac{\mathrm{QZ}}{\mathrm{ZR}} \frac{\mathbf{R Y}}{\mathrm{YP}}=-1$
$\therefore X, Y, Z$, are collinear.

