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Orthogonality and characterizations

of inner product spaces

O.P. Kapoor and Jagadish Prasad

Using the notions of orthogonality in normed linear spaces such
as isosceles, pythagorean, and Birkhoff-James orthogonality, in
this paper we provide some new characterizations of inner product
spaces besides giving simpler proofs of existing similar
characterizations. In addition we prove that in a normed linear
space pythagorean orthogonality is unique and that isosceles
orthogonality is unique if and only if the space is strictly

convex.

1. Introduction
A normed linear space is called an inner product space if there is an

inner product (x, y) defined in it such that Hx”2 = (x, x) . There is a
long list of conditions on the norm, called norm postulates, strong enough
to characterize inner product spaces amongst normed linear spaces. The
best known norm postulate is by Jordan and von Neumann [7],

() x, gy €X, lewl® + lle-yl® = 2(lelP+lx1%) .

The other norm postulates needed here are

(D1) if z, y € X, llzll = llgll = 1, then [lzsyll® + =yl = 4 [17;

(D, ~) if |zl = llyll = 1 , then there exist o and B with
0<a<l, 0<PB<1l, such that
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8(1-8)||0Lr+(1—a)y||2 + OL(1—0:)||Bac-(1-8)y||2 ~ [o+B-20B][aB+(1-a)(1-8)]
(2]3;

(3) it lfletyll = flx-yll » then Jle+kyll = flo-kyl] for every real &k
[53;

(39 ir syl = lel® + Iyl® then farkyl® = Izl + Iiyl® tor
every k [5];

(L1) there is a fixed real a # 0, *1 such that =z, y € X and

letyll = lle-yll imply |letoyll = llz-oy] ([8]-

The main purpose of this paper is to give some new characterizations
of inner product spaces and to provide simpler proofs of existing similar
characterizations. Before proceeding further we give below basic
definitions and notations for convenience of reference. Throughout this
paper, X 1is a real normed linear space. X 1is called strictly convex if
0<k<l, x#y imply [ket(1-k)yll < k||| + (2-K)liyll - If =,y €xX ,
then ¥ is called isosceles orthogonal to y (x li y) if Hx+yH = ”x-y” s

v

)
x is called pythagorean orthogonal to y (x lp y) if ”x+y”2 = ”x”2 + ”y”2

and x is Birkhoff-James orthogonal to y (x lg y] it (lm+kyll = llzll for

all real k . For details of these orthogonalities one can refer to James
[5], [6]. The following results about these orthogonalities will be useful
for us.

THEOREM 1 (James [53, [6]). If z#0, y € X, then there exist
numbers a, b, ¢ , and d , such that =z li ax +y, =z lp b +y,

x lJ ex+y, and dx+y lﬂ x . Further, if |yl < |lx|| , then
la] = lyli/l=l .

An orthogonality 1_ is called left (right) unique if for zx # O ,
y € X , there exist only one a such that z Jax +y (axr +y | #) . For
isosceles and pythagorean orthogonalities, right and left uniqueness are

equivalent. For Birkhoff-James orthogonality, the following was proved.

THEOREM 2 (James [61). Birkhoff-James orthogonality is left (right)

unique if and only if X {s strictly convex (smooth).
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2. Uniqueness of isosceles and pythagorean orthogonality

THEOREM 3. (7) Isosceles orthogonality in X <is unique if and only

if X 1is strictly convex.
(i1) Pythagorean orthogonality is unique.

Proof. (i) Suppose X 1is strictly convex and isosceles
orthogonality is not unique. It can be easily seen that there must exist

x#0, y €X , and a number a > 0 , such that x li y and
x li ar +y . The function q(t) = |ly+tz]l , -2 < t <o | is a strictly

convex function with ¢(1) = q(-1) and gq(a+l) = g{a-1) . In the case
0 <a =2 we see that

qla-1) q{g:g-(—l) + g) < q(1)

2 2

q[% (a~1) + [1 - %—)(aﬂ)) < qlao+1) ,

and that yields a contradiction. 1In the case a > 2 , g will have two

distinet local minima ~ one each in the intervals [-1, 1] and

[a-1, a+1] . But ¢ 1is strictly convex and thus can have only one point
of minimum - a global minimum. Again a contradiction is seen. To prove

the other way we start with the assumption that X is not strictly convex.

So let « # y € X such that |lzll = llyll = Jlz+yll/2 = 1 . Then
lle+yll = llz+y+z-yll = [(x+y)-(z-y)|} ,
or
'l = foc'+y '} = llz'-y'll
where

’

z'=x+y and y' =x-y#O0.
Then we have
lle’+(y ' 72)-(y "' /2)1| = ll='+(y"/2)+(y "' /2)|| = llc'-(y"'/2)~(y"'/2)]
Thus
y'/2 1i ' +y'/2 , and y'/2 11 z' - y'/2,

and therefore the isosceles orthogonality is not unique. That completes

the proof of part (7).
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(i7) Let us assume that pythagorean orthogonality is not unique.
Then we must have elements £ # 0 and y € X , and a number @ > 0 such
that lp y and =« 1p ar +y ; that is

2 2 2 2 2 2
(1) letyll© = flzll© + llyll® and |lzvox+yl|” = |lz|° + lloz+yll© .

Setting g(¢) = Hy+tx“2 we have, by (1),

i

(2) g(1) = Il + g(o) ,

ll? + gla) .

(3) glo+1)
Clearly g 1is a convex function on - < £ < ® ., [Let us first prove that
for 0< ¢ <1 and 8, and §, such that g(sl) # g(se) we have

(k) glts +(1-t)s)) < tg(s)) + (1-t)g(s,) -

g(ts +(1-t)s,) Ht(y+slx)+(l—t)(y+82x)H2

1A

t2”y+sle2 + (l-t)2Hy+s2xH2 + 2t(1-¢) lly+s xlllly+s ]

tlhyrs 2l + (1) lyrs,zl® + (6°-2)

 [hro,21Petyro olP2lyss 2y ve 21

tg(s)) + (1-t)g(s,) - t(1-t)|lly+s,zl-lly+s 2l |

tg(sl) + (l—t)g(sg) ,

1A

where the inequalities will be strict if g(sl) # 9(32) . That proves (L).

Now suppose O < a < 1 ; we get by using (2), (3), and (L),
() g(a) < og(1) + (1-a)g(o0) ,

(6) g(1) < ag(a) + (1-a)g(a+l)
= ag(a) + (1-a)(g(a)+g(1)-g(0)) ,

and that yields
ag(1) + (1-a)g(0) < g(a) ,
contradicting (5).

In the case a > 1 , we use convexity of g , and (2) and (3) to

https://doi.org/10.1017/50004972700008947 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008947

Inner product spaces 407

obtain g(0) # g{a) and g(1) # g(a+l) , and then by (L) we get

(1) g(1) < %2 g(0) + 3 g(a)
and
(8) glo) < €21, &L 540

= ﬂ%%l + gél (g(a)+g(1)-g(0)) ,

contradicting (7). In the case a = 1 we have

g(2) = g(1) + lll® = g(0) + 2=||®

and

g(1) < ¥(g(0)+g(2)) = g(0) + [=® ,

which is false. Thus in all cases we get a contradiction. Hence

pythagorean orthogonality is unique in any normed linear space.

3. Characterizations of inner product spaces

We begin with a theorem that combines two results of Day (11,

Theorems 5.1, 5.2), characterizing inner product spaces.

THEOREM 4. For a normed linear space X the following are

equivalent:

(i} X 1is an irmer product space;
(1) =, y €X, = lp y=x li Yy 3
(ii1) =z, y € X, x li y=z lp Y .

Proof. (%) = (i) is obvious. To show (ZZ) = (7iZ) let us first
prove that if (ZZ) holds then X is strictly convex. If not then there
exist x # y € X such that x| = |yl = ﬂggﬂﬂ =1, =z lp y . By Theorem

1 there exists a number a # O such that = lp ox +y 3 that is

(9) lotazty)|® = Jloayl)® + fll® = 1 + Jlox+y))? .

Therefore
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(10) [(1+a)z+yll = [[{1-c)x+y] .
By Theorem 1, |a] =1 . From equation (9) we get

2
(2+0)2 = (240)? [l(l“;;,rf*i =1+ JozwylPz 1.

That means o, 2 -1 . Thus o =-1 . Then, from (9),

1= 0yl? = fz—yll® + 1,

which contradicts the assumption that 2 # y . Thus X is strictly
convex. Now suppose that (Z71) does not imply (Z7ZZ). There exist points
and y such that « _Ll y but x ]_p y . Choose a # 0 such that

x lp ox + y . But then, by (Zi/, =z ii or +y . Thus « li y and
x li or + y , contradicting the uniqueness of isosceles orthogonality in
strictly convex spaces proved in Theorem 3 above.

To prove (Zii1) implies (i), we employ the reasoning of ([7], Theorem

5.1). Let Jlzll =llyfl =1 . Then x +y li x -y and, therefore,

2 2 2
llz+yll= + llz-yll© = llzsy+e-yll© = b .
The result follows from (D).

THEOREM 5. For a normed linear space X the following are
equivalent:

(i) X 1s an immer product space;
(i1) =z, y €X, =z lP y =z lﬂ Y ;
(ii1) =z, y € X, <« lJ y=>z 1p y .

Proof. (i) = (ii) is straight. To prove (ii) = (i1Z) we first show
that if (ZZ) holds then X is strictly convex. If not, let x # y such
that Jlz|l = llyll = [(z+y)/2] =1, = lp (x+y)/2 . There exists a # 0

such that E%H.lp a E%l + x . Then

(11) ”(a+l) ey xlz =1+ Jla Q’—;ﬂ + xue

and, therefore,
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(12) x; + akﬁggiJ + kx” b4 )E%l =1 for all real k .
With k = -1/0 , equation (12) yields |a| =1 . Again putting &k = - <

o2

in equation (12) and using the fact that every convex combination of =«

and Yy is of norm 1 , gives ) 21 . Thus o = -1, and therefore
2 2 2 2
= e, zyl” L ey ey~ _ !x-t
L "_2&‘”2” 2 "“e =Lt o

Hence % = y which is a contradiction. X must therefore be strictly
convex. Suppose that (1) does not imply (22Z). Let x and y € X such
that jg ¥y but z lp Yy . But then there exists a number o # O such

that oy + & ip y . By (i1), oy +x lJ Yy , but that contradicts the left

uniqueness of Birkhoff-James orthogonality in strictly convex spaces stated

in Theorem 2 above. Hence (22) = (iii).
We now prove (1ii) = (i), Let |zl =1yl =1 . If = lﬂ y and

x4+ Yy lﬂ X -y , then

2
b = leryra-yl? = fesyl® + Je-y)® .
If x lJ Yy , then choose 2 € X such that < lg 2 and z + z iJ x -z .

This choice i$ possible (see Sundaresan ([9], Lemma 1)). Then

”3”2 - (x+2)-(2-2) 2 = |lzt= 2 4+ |l==2 2
2 2 2
R 1R R [P
“ 2 2 2 2
That means |lx|| = ||3]] =1 . Let o and B be such that y = axr + Bz .
Then
2 2 2 2
fIyll= = llox+B2j® = a” + B,
2
lesyll® = [(190)z483|% = (140)% + 87,
2
lz-yl® = 1(1-0)z-82|% = (1-)? + 87
Thus again we see that
2 2 2
lesyll® + lz-yl° = 2(a®+8%) + 2= 4 .
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Day's criterion (D1) gives the result.

Lorch [8] proved the criterion (L;) mentioned in the beginning, which
was a considerably weakened form of the criterion (J). We give below a

similarly weakened form of (J').

COROLLARY 6. A normed linear space X is an inmmer product space if

and only if

(L]) for some fized a #0, 1,

2 2
legll® = flzll® + lyl® = Jevoyl® = el + lowl® .

Proof. The case of o = -1 has been proved by Day ([/], Lemma 5.3).

Without loss of generality we can assume that o > 1 . Suppose x and
y € X are such that ”x+y”2 = Hx”2 + Hy”2 . By repeated application of
(L]) we will have, for all n 21,
n_ne 2 2
ly+a”2ll< = llyll® + llo”]|= .

Then, for all n 2 1 ,

(13) = + ain y[[2-1|x|;2 /(1) = ﬂZ—;ng .

In the 1limit we obtain, from (13),
(14) 2t (=, ) = 0 ,

where N+(x, y¥) is the right-hand Gateaux derivative of the norm
functional at & in the direction of y . Equation (1L) shows that
x lJ y (see James [6]). Thus « l? y =2 x Jg y . Therefore X is an

inner product space by Theorem 5. The necessity of (L;) is easy.
To complete the picture we have the following:

THEOREM 7. For a normed linear space X the following are
equivalent:

(i) X is an inmmer product space;
(i1) =z, y €X, x lJ y Tz li y 3
(1ii) z, y €X, « li y = lJ y .

Proof. (%) = (i) and (Zi7) is straight. Suppose (iZ) holds. Let
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x#0, y €X . Choose o such that x lJ ox + y . But then
x lg k(ox+y) for all k , because Birkhoff-James orthogonality is
homogeneous. By (i), « Ji k(ox+y) for all k . Thus, by Corollary 4.7

of [5], we have (iZ) = (i). To prove the (iii) = (i), we proceed as
follows. Let |zl = [lyi

. Then x + y ii x - y and therefore

z+y lJ £ -y . Thus we have

lloty+k(z-y) | 2 lletyll for all «k .
In particular for all o > 1 we have

2

”x +y + a2-1 (x—y)“ 2 |lz+yll .
o +1
Therefore, for all o > 1 ,
-1 a2+1
lazra™ yll 2 S22 oyl 2 flzyll

Thus (777) implies the following criterion of inner product spaces by Lorch
[§]:
-1
(Ls) Mzt = llgll = lox+a™ yll = lla+yll for all o .
That completes the proof of Theorem T.

REMARK 8. A proof of (Z7%7) appears in [3, p. 155] where it is listed
as criterion (M). In a paper, Holub [4] has announced the equivalence of

() and (iZ7) without proof in the equivalent form, namely: x, y € X ,

lell =yl =z +y Lz-y -

THEOREM 9. Let X be a normed linear space and 0 <a, b <1 .
Then the following are equivalent:

(i) X 1is an imner product space;

.. 2 2
(i) x y €X and fatyl® + laxrbyll® = llax+yl® + llorbyl2
tmplies x 1J y 3

(iii) x, y € X and «x lJ y implies

N2 4 Wt lZ = (vl &l 2

https://doi.org/10.1017/50004972700008947 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700008947

412 0.P. Kapoor and Jagadish Prasad

For proving this we first prove:
LEMMA 10. Let X be a normed linear space and 0 < a, b <1,
0# 2,y € X . Then there exists a nunber o such that
2 2 _ 2 2
Hotl)z+yll© + llaz+blaz+y) |” = llax+ox+yll” + Jlctblox+y)1” .

Proof. Set

lc+tzyl|® + laz+btasbyll® - llazstaryll® - |lw+tbzsbyl|®

Al 3 ol 10

[+ i

g(¢)

2
bx + % (a:c+by)” -”bxﬂz)

I2-{|x||2]—[”bx 1 (:x:+by)“2—“bx”2):' :

Then, for t # 0 ,
be 1 (aa:+by)"2—|)b:c||2) /( 1/t)

lz-nxnz]/um .|

e+ 2 s i) farer - [foe + o -tpel) e

9(—:l = [“x + %— {z+y)

and
aim 2 < 2l Gz, zy) + 2lbal (b, aoidy)

- 2llxl\m (=, ax+by) - 2lbxll, (bx, z+by)

2llxl|?(1+ab-a-b) > O .

Here N+(x, y) and N_(x, y) are respectively the right (left) Gateaux
derivatives of the norm at x in the direction of y . For the properties
of these needed here, see ([6], p. 272). Therefore ¢g(t) > ® as ¢t > +»
and g(t) > -® as t > - . Hence there is a number a such that

g(a) = 0, which was to be proved.
Proof of Theorem 9. (Z) = ({i) is straight.

(iZ) = (ii1) We first show that X is strictly convex. If not,

choose x # y as extreme points of the unit ball of X such that

lall = iyl = [E2 = 1. Tven
Y . 2 alz+y) 2 Ty x4y 2
> y + > + by # |la > *Y + 5 + by R
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for otherwise 4 + (a+b)2 = (a+l)2 + (b+l)2, which requires g =1 or
b =1 . Without loss of generality we assume a = b . By Lemma 10 choose

& # 0 such that

0 [egt e ofeg) oo o oo o )ll
= Ha £%H-+ a E%H_+ y’ + by“
Then (i%) implies E%H-JJ o £%H.+ y ; that is
(16) T+ ko 4 ky” > H%i‘/-” =1 for all real k .
Putting k = —é in (16) yields |a| =1 , and then %k = - ﬁ in (16)

yields |o+2| £ 1 . These two together give « = -1 . But then (15) gives

2 2 2
a-b a+b a-1 at+l 1-p 1+p
1+ 7“Ty“ =UT“—9“ T“—y”
Therefore “ z +92+71 ” =1 . Writing

_ 11l=a l-ajja-1 atl

¥y = [l+a]x+ [l_ l+a)[2a £t 2 ) :

We see that y is a convex combination of two points of the unit sphere
which is false since y was taken to be an extreme point of the unit ball.
Thus X must be strictly convex. Now suppose (77) does not imply (ZZZ).
let x 15 y and

lzyllZ + lpzrayll® # Ibzryll® + larayll?

Choose a # 0 by Lemma 10 such that

g+l + llalog+a)byll® = lalay+z)+yl® + lloy+asbyl®
But then ay + x lﬂ y , which violates the left uniqueness of Birkhoff-James
orthogonality in strictly convex spaces. Hence (iZ) = (ii1).
(1i1) = (i) Let y lﬂ x . By (iii) and the fact ay lJ Bx for all

0 and B we get
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ly+xl|® = Iby+z)|® + lly+ax)® - ||by+az)®

(16 %y 4]l 2+ by +az |- Ib 2y +az]|2)

2 2 2 2 2 2
+ (IIby+az|| “+lly+az||“~Iby+azl ) - |by+azl]

2 2 ,2 2 2
(P4l Polly+a®ell®) - Ib2y+azl® - lby+azl®

+ (Ib%y+amliP by +a2e ) 2~ b2y +a’x|I°)

Ip2y+zll? + lly+azll® - [pPy+a’zl)® .

By induction one gets that

2 n 2 n_ 2 n N 2
y 1y = = ly+ll® = ID7g+]® + lly+a'zll® - b y+a"zl” , n=1.
This in the limit yields
2 2 2
y Ly == lesyll® = llel® + llyll”
which is sufficient for X +to be an inner product space,as seen in Theorem

5.

THEOREM 11. Let X be a normed linear space and 0 < a, b < 1 .
Consider the following statements:

() X <s an imner product space;

(Z2) =z, y € X and

2 2 2 2
llz+yll™ + llaz+by || = llaz+yl™ + llzdyl|” = llesyll = lla-yl| ;

(2i1) =z, y € X and

2
oyl = lle-yll = floryll® + llawsbyl|? = flazeyl)® + Jsby)® .
Then (i) = (it1) = (ii1), and (2ii) = (1) when a =b .
Proof. (<) = (ii) 1is straight. To prove (ii) = (iii) we again first

prove that if (ZZ) holds then X is strictly convex. If not, choose, as

before, x #y such x and y are extreme points with

+
lzll = llyll = -7"_21{_ =1 . Assume q =2 b . Then as in Theorem 8, use Lemma
10 to get a number a # 0 such that equation (15) holds. Then, by (<),
we have
(17) “(a*a) %}L + y“ = ”(a—l) %L + yl .
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Equation (17) together with the last part of Theorem 1 shows that
la] =1 . If 0<a =1, then equation (15) yields
(240)2 + (a+b(a+1))? = (1+a+a)? + (borb+1)2

which is false. If -1 <a < 0 , then, from equation (17), we have

(2+a) = [—é—+-°2i] + [%—92—) =1.

Thus o = -1 is the only possibility. The rest of the argument is the
same as in Theorem 9. Thus X is strictly convex. Now suppose (Z7) does
not imply (ZZZ). Then there exist points x and y such that
le+yll = lle=yll 5 but
2 2 2 2
le+y 1= + llax+byll™ # lax+yl= + llz+byll
Then there exists a number o such that

lle+ (ot 12 + llaz+b (o) 12 = faz+(azy) (|2 + [lz+b(oaty) |2

By (77) we have
lletozy || = [l (ax+y) |
Thus =z li y and x li 0x + y ,which contradicts the uniqueness of
isosceles orthogonality proved in Theorem 3.
Now suppose (ZiZ) holds with g =b . Let || = |lyll =1 . Then

llety+x-yll = || (x+y)-(x-y)]l and therefore

“x+y+x-y“ +a H(x+y (z-y) H2 = Ha(x+y)+(x—y)”2 + Hx+y+a(x—y)“2 s

or
+ —
12a ” l+a At a ” =1+ g2

The result follows from Day's characterization (D, ~) with a =8 = l%g .

and ~ replaced by = .

REMARK 12, We feel that in Theorem 11, (i7Z) should imply (%) even

wvhen a #b . It also remains to be seen whether the condition

2oy €X . x|y~ lawbyl® + lowyl® = lazegll® + fosbyl®
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is sufficient for the norm of X to be an inner product norm.
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