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Category O for truncated current Lie
algebras
Matthew Chaffe and Lewis Topley
Abstract. In this paper, we study an analogue of the Bernstein–Gelfand–Gelfand category O for
truncated current Lie algebras gn attached to a complex semisimple Lie algebra. This category
admits Verma modules and simple modules, each parametrized by the dual space of the truncated
currents on a choice of Cartan subalgebra in g. Our main result describes an inductive procedure
for computing composition multiplicities of simples inside Vermas for gn , in terms of similar
composition multiplicities for ln−1 where l is a Levi subalgebra. As a consequence, these numbers
are expressed as integral linear combinations of Kazhdan–Lusztig polynomials evaluated at 1. This
generalizes recent work of the first author, where the case n = 1 was treated.

1 Introduction

Truncated current Lie algebras have appeared in numerous parts of the literature in
recent years, and a large part of their interest stems from the fact that they interpolate
between the finite-dimensional simple Lie algebras and the vacuum parabolic of
the corresponding untwisted affine Lie algebra. If g = Lie(G) is the Lie algebra of a
complex reductive algebraic group, then the group G[t] of polynomial currents in
G is the (infinite-dimensional) algebraic group of regular maps A1

C
→ G. The current

Lie algebra g[t] ∶= Lie G[t] = g⊗C[t] is isomorphic to the derived subalgebra of a
maximal parabolic of the Kac–Moody affinization of g, and the nth truncated current
Lie algebra is the quotient gn ∶= g⊗C[t]/(tn+1). Equivalently, gn can be described as
the Lie algebra of the nth jet scheme JnG of G.

The first truncated currents Lie algebra g1 appeared in the work of Takiff, and so
they are often referred to as Takiff Lie algebras. He showed that the symmetric invariant
algebra S(g1)g1 is a polynomial algebra on 2 rank(g) variables [Ta71], generalizing
the classical theorem of Chevalley which describes S(g0)g0 . Later, Raïs and Tauvel
extended Takiff ’s theorem for arbitrary n [RT92]. Since the latter work is a crucial
ingredient in our paper, we will briefly describe their main results in Section 2.2. More
recently, Macedo and Savage extended their work further to the case of truncated
multicurrents [MS19], and Panyushev and Yakimova showed that for complex Lie
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2 M. Chaffe and L. Topley

algebras, the operation g↦ g1 preserves the property of having polynomial symmetric
invariants, under mild assumptions [PY20].

These works on invariant theory have important applications in the theory of vertex
algebras. Notably, the first approximation to describing the center of the critical-level
universal affine vertex algebra associated with g (a.k.a. the Feigin–Frenkel center) is
the description of the semi-classical limit, which is equal to S(g[t−1]t−1)g[t]. This
in turn can be described as the direct limit of the algebras S(gn)gn discussed in the
previous paragraph (see, for example, [Fr07, Section 3.4] or [Mo18, Section 6]). This
connection with the Feigin–Frenkel center was recently used by Arakawa and Premet
to provide a positive solution to Vinberg’s problem for centralizers, using affine W-
algebras [AP17]. We also mention the work of Kamgarpour [Ka16] for a discussion
of the relationship with the geometric Langlands program. Another connection with
the theory of W-algebras is given by the work of Brundan and Kleshchev [BK06,
Section 12], which states that the finite W-algebra for glN associated with a nilpotent
element with all Jordan blocks of size n is isomorphic to a truncated Yangian, which
admits U(gn) as a filtered degeneration.

This paper focuses on the representation theory of truncated current algebras.
The most famous category of modules for a complex reductive Lie algebra g is
the Bernstein–Gelfand–Gelfand (BGG) category O, which is an abelian category
containing all highest weight modules (see [Hu08] for a survey). Wilson extended the
notion of highest weight modules to all truncated currents [Wi11], and subsequently
Mazorchuck and Sörderberg introduced a version of categoryO for Takiff sl2 [MSo19].
The most recent development in this field is the work of the first author [Ch23], which
made a thorough study of category O for all Takiff Lie algebras, eventually showing
that the composition multiplicities of simple modules inside Verma modules can be
determined by certain formulas involving Kazhdan–Lusztig polynomials. The results
of the present paper generalize all of the main results of loc. cit. to the case of truncated
current Lie algebras gn .

For the rest of the introduction, we fix g = Lie(G), where G is a complex reductive
algebraic group, and fix n > 0. We also fix a triangular decomposition g = n− ⊕ h⊕ n+

and write b = h⊕ n+. This gives rise to a triangular decomposition gn = n−n ⊕ hn ⊕ n+n ,
and we say that a module is highest weight if it is generated (as a gn-module) by a one-
dimensional bn-module. These one-dimensional modules are parametrized byh∗n , and
the one-dimensional module afforded by λ ∈ h∗n is denotedCλ . We define the universal
highest weight module or Verma module of weight λ by

Mλ ∶= U(gn) ⊗U(bn) Cλ .(1.1)

Since this is semisimple over h = h⊗ 1 ⊆ hn , with one-dimensional λ∣h-weight space, it
follows that it has a unique maximal submodule and a unique simple quotient, which
we denote Lλ .

We study the category O(gn) of finitely generated gn-modules on which n+n acts
locally nilpotently, h acts semisimply, and h≥1

n ∶= h⊗ tC[t]/(tn+1) ⊆ hn acts locally
finitely (see Definition 3.1). This category is closed under quotients and submodules,
and the simple modules are precisely {Lλ ∣ λ ∈ h∗n}.

One especially nice feature of the BGG category O for g it that it is Artinian;
however, this fails forO(gn). Therefore, we define composition multiplicities [M ∶ Lμ]
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Category O for truncated current Lie algebras 3

using formal characters: every module M ∈ O(gn) has finite-dimensional h-weight
spaces and the formal character ch M can be expressed uniquely as a nonnegative
integral linear combinations of characters of simple modules. We call the coefficients
appearing in these sums the composition multiplicities of M ∈ O(gn). We explain this
in more detail in Section 6, and give a description (see Lemma 6.2) of the [M ∶ Lλ] in
the spirit of composition multiplicities for affine Lie algebras [Kac90, Proposition 9.7].

We now state the main result of this paper, which follows directly from
Corollary 6.8.

Theorem 1.1 Let n > 0, let G be a connected reductive group, and let λ, μ ∈ h∗n . The
composition multiplicity [Mλ ∶ Lμ] can be expressed via a precise formula (6.1) in terms
of composition multiplicities of simple modules inside Verma modules for a truncated
current algebra ln−1 where l = Lie(L) for some Levi subgroup L ⊆ G.

Theorem 1.1 suggests an inductive procedure for calculating the composition
multiplicities [Mλ ∶ Lμ] for the nth truncated current algebra in terms of the analogous
composition multiplicities for g0. By the proof of the Kazhdan–Lusztig conjecture
by Beilinson–Bernstein and Brylinski–Kashiwara (see [HTT08]), we know that for
n = 0, the composition multiplicities [Mλ ∶ Lμ] are given by the evaluation at 1 of
certain Kazhdan–Lusztig polynomials. Hence, for n > 0, the values [Mλ ∶ Lμ] can be
described by formulas involving nonnegative integral linear combinations of these
Kazhdan–Lusztig polynomials at 1. It is interesting to wonder whether our formulas
have a natural geometric interpretation on the flag variety.

We remark that the methods of this paper generalize those of [Ch23]. In the rest of
the introduction, we highlight some of our other key results, and describe the structure
of the paper.

In Section 2, we introduce the basic notation, which will be used throughout the
paper. We then recall the work of Raïs and Tauvel [RT92] on S(gn)gn and use it to
describe the generators of the center of the enveloping algebra U(gn).

In Section 3, we describe all of the elementary properties of our category O(gn).
We also explain that the category can be decomposed into a direct sum of abelian
subcategories which are parameterized by the generalized eigenspaces of h⊗ t i

for i = 1, ..., n. The generalized eigenvalues are parametrized by (h≥1
n )∗, and for

μ ∈ (h≥1
n )∗, we call the subcategory O(μ)(gn) a Jordan block of O(gn).

In Section 4, we introduce one of our main tools for simplifying the study of
Jordan blocks of O(gn). Let μ ∈ (h≥1

n )∗, and let μn ∶= μ∣h⊗tn , which we identify with
an element of h∗ in the obvious fashion. The centralizer l ∶= gμn is a Levi subalgebra
containing h, and we suppose that it is the Levi factor of a standard parabolic p ⊆ g
such that r = Rad(p) ⊆ n+. In this case, we can parabolically induce modules from
O(μ)(ln) to O(μ)(gn). Similarly, we have a functor of rn-invariants in the opposite
direction.

A precise statement of the following result is given in Theorem 4.1.

Theorem 1.2 If l = gμn is a standard Levi subalgebra, parabolic induction and
rn-invariants are quasi-inverse equivalences between O(μ)(ln) and O(μ)(gn).
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4 M. Chaffe and L. Topley

In the case where gμn is a standard Levi subalgebra, the theorem allows us to reduce
the study of O(μ)(gn) to the case where μn is supported on the center of g. Another
simple reduction (Lemma 3.7) impels us to focus on the case μn = 0.

Theorem 1.2 was inspired by a result of Friedlander and Parshall in modular
representation theory of Lie algebras [FP88, Theorem 3.2]. Using the fact that modules
in O(gn) admit finite filtrations with highest weight sections (Lemma 3.3), the
proof quickly reduces to showing that (●)rn is exact. This is the hardest part of the
proof, and requires a careful study of central characters of highest weight modules
(Theorem 4.2), which ultimately depends on our description of the center of U(gn)
given in Section 2.2. In particular, in comparison to the Takiff case treated in [Ch23,
Section 4], the description of the central elements given by [RT92] is more difficult to
work with.

In Section 5, we remove the requirement in Theorem 1.2 that l is a standard
Levi subalgebra; this is achieved with the use of twisting functors. These were first
introduced by Arkhipov [Ar01] and were applied to category O for g by Andersen
and Stroppel [AS03]. They were used in the context of Takiff Lie algebras by the first
author in [Ch23] while proving a similar reduction to that of the present paper. The
main result of Section 5 is Theorem 5.9, which implies, together with Proposition 6.7,
the following.

Theorem 1.3 Every Jordan block of O(gn) is equivalent to a Jordan block O(μ)(gn)
such that gμn is a standard Levi subalgebra.

Together with Theorem 1.2, this allows us to reduce the study of Jordan blocks
O(μ)(gn) to the case where μn = 0. The proof of Theorem 1.3 is similar to [Ch23,
Theorem 5.7]; however, several of the proofs, especially the proofs of Lemmas 5.15
and 5.16, are significantly more complicated. As such, we provide detailed arguments
for all of the proofs which are different, and refer the reader to the appropriate part of
op. cit. otherwise.

In Section 6, we address the problem of defining composition multiplicities and
computing multiplicities of simples in Vermas. We begin by explaining how these
numbers are defined and interpreting them in terms of composition series, which
is all very similar to [Ch23, Section 6.1], except that the structure of the filtrations
considered in Lemma 6.2 is more complicated than the analogous filtrations in the
Takiff case. Finally, we focus on the blocks O(μ)(gn) with μn = 0. The main result of
the section is Corollary 6.8, which is a precise version of Theorem 1.1.

2 Preliminaries

In this paper, all vector spaces, algebras, and algebraic varieties will be defined over C.
Unadorned tensor products are taken over C.

2.1 Reductive Lie algebras and truncated currents

From henceforth, we fix a reductive algebraic group G of rank r, with Lie algebra g, and
a choice of maximal torus h ⊆ g. The Weyl group NG(h)/CG(h) will be denoted W.
Let Φ ⊆ h∗ be the root system of g, and let Δ be a choice of simple roots for Φ, which
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give a set of positive roots Φ+ = Φ ∩∑α∈Δ Z≥0α. For each root α ∈ Φ, we have a one-
dimensional root space gα , and for positive roots α, we fix a choice of triple (eα , hα , fα)
such that eα ∈ gα , fα ∈ g−α , and hα ∶= [eα , fα], satisfying α(hα) = 2.

These data give us a triangular decomposition

g = n− ⊕ h⊕ n
+,(2.1)

where n± ∶= ⊕α∈Φ+ g±α . We also write b = h⊕ n+ for the corresponding Borel subal-
gebra of g.

For n ≥ 1, we consider the truncated current algebra gn ∶= g⊗C[t]/(tn+1). For any
subalgebra s ⊆ g, we have a natural embedding sn ⊆ gn of truncated currents. We make
the notation si

n ∶= s⊗ t i ⊆ gn . This gives a grading sn = ⊕n
i=0 s

i
n . We write s≥m

n for the
sum of the graded pieces of degree m, m + 1, ..., n.

For x ∈ g and α ∈ Φ+, then we make the notation

x i ∶= x ⊗ t i ,
eα , i ∶= eα ⊗ t i ,
fα , i ∶= fα ⊗ t i ,

hα , i ∶= hα ⊗ t i .

(2.2)

We will often need to consider linear functions of gn and hn . If λ ∈ h∗n , then we write

λ i ∶= λ∣hi
n
,

λ≥i ∶= λ∣h≥i
n

,(2.3)

for i = 0, ..., n, and we often view λ i as an element of h∗ via the obvious identification
h = hi

n . If λ ∈ h∗n , then we can also view it as an element of g∗n by setting λ(n±n) = 0.

2.2 The symmetric invariants and the center of the enveloping algebra

We write S(gn) and U(gn) for the symmetric algebra and the universal enveloping
algebra of gn , respectively. The algebra U(gn) is equipped with the PBW filtration,
and the associated graded algebra is gr U(gn) = S(gn), the symmetric algebra on gn .
In the present section, we describe the center Z(gn) of the enveloping algebra and its
semi-classical limit.

The adjoint representation of gn extends uniquely to an action of gn on both S(gn)
and U(gn) by derivations [Di77, Proposition 2.4.9]. The center Z(gn) is equal to
U(gn)gn , and the identification gr U(gn) = S(gn) is gn-equivariant. The invariant
algebra S(gn)gn was first described by Raïs and Tauvel [RT92], as we now recall.

We define a series of (vector space) endomorphisms ∂(0) , ..., ∂(n) of S(gn) by
putting ∂(0) equal to the identity map, and then inductively defining

∂(k)(x j) = {
( j

k)x j−k , if j ≥ k,
0, otherwise,(2.4)

∂(k)( f g) = ∑
i+ j=k

∂(i)( f )∂( j)(g),(2.5)
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6 M. Chaffe and L. Topley

for x ∈ g and f , g ∈ S(gn). These endomorphisms will be used to construct the basic
invariant generators introduced in op. cit. We remark that the family of operators
(∂(0) , ..., ∂(n)) which we define here are an instance of higher order derivation [SH],
but we shall not use this formalism.

Recall Chevalley’s restriction theorem, which states that S(g)G = S(g)g ≅ S(h)W .
Furthermore, the Chevalley–Sheppard–Todd theorem implies that S(g)g is a graded
polynomial algebra generated by rank(g) homogeneous elements. Write p1 , ..., pr for
a choice of such elements.

The adjoint representation of gn stabilizes gn
n , and the action factors through the

map gn ↠ gn/g≥1
n = g0 = g. Therefore, we have a natural inclusion S(g)g ↪ S(gn

n)gn .
Abusing notation, we view p1 , ..., pr as elements of S(gn)gn .

Theorem 2.1 [RT92, Section 3] The invariant algebra S(gn)gn is a polynomial ring
generated by (n + 1)r elements

{∂(k)p j ∣ j = 1, ..., r, k = 0, ..., n}.(2.6)

Let d(k) ∶ S(gn
n) → S(gn) be the partial derivative ∑x xn−k

d
dxn

, where the sum is
taken over a basis for g. Then it follows straight from the definitions (2.4) and (2.5)
that there exist elements q(k)j ∈ S(g≥n−k+1

n ) such that

∂(k)p j = d(k)p j + q(k)j for j = 1, ..., r, k = 0, ..., n.(2.7)

We refer the reader to [RT92, Lemma 3.2(ii)] for the proof of (2.7). The next observa-
tion follows directly from the definitions, and we record it as a lemma for later use.

Lemma 2.2 The map d(k) sends ad(h)-invariants to ad(h)-invariants.

Finally, we give a description of the center Z(gn) of the enveloping algebra. There
is an isomorphism of gn-modules ω ∶ S(gn) → U(gn) called the symmetrization map
[Di77, Section 2.4]. It is defined by the rule

ω ∶ x 1 ⋅ ⋅ ⋅ xm ↦ 1
m! ∑σ∈Sm

xσ 1 ⋅ ⋅ ⋅ xσ m ,(2.8)

where x 1 , ..., xm ∈ gn are any elements, so that x 1 ⋅ ⋅ ⋅ xm ∈ S(gn) is a monomial of
degree m, and Sm denotes the symmetric group on m letters. If gr ∶ U(gn) → S(gn)
is the (nonlinear) map defined by taking the top degree component with respect to
the PBW filtration, then

gr ○ ω is equal to the identity mapping on each graded piece of S(gn).(2.9)

Since the isomorphism ω ∶ S(gn)gn
∼�→ U(gn)gn = Z(gn) respects filtrations, we

can describe the Z(gn).
Corollary 2.3 Z(gn) is a polynomial algebra generated by (n + 1)r elements

{ω(∂(k)p j) ∣ j = 1, ..., r, k = 0, ..., n}.(2.10)

Proof Let Z ⊆ Z(gn) be the subalgebra generated by the elements (2.10). Since the
inclusion gr Z ⊆ gr Z(gn) is an equality, it follows that the inclusion Z ⊆ Z(gn) is
also an equality. If these elements admit a nontrivial algebraic relation, then taking
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gr and using (2.9), we see that the elements (2.6) would admit a nontrivial relation. By
Theorem 2.1, we see that (2.10) are algebraically independent. ∎

3 Category O for truncated current Lie algebras

3.1 Definition and first properties of O

We begin by stating the definition of category O for gn .

Definition 3.1 The categoryO(gn) is the full subcategory of U(gn)-Mod with objects
M satisfying the following:

(O1)M is finitely generated.
(O2) h0

n acts semisimply on M.
(O3) h≥1

n ⊕ n+n acts locally finitely on M.

Note that O(g0) is nothing but the BGG category O for g0 = g.

We refer the reader to [Hu08] for a fairly comprehensive introduction to the
algebraic study of O, and to [HTT08] for a discussion of the relationship between
O and D-modules on the flag variety.

It is not hard to see that O(gn) is closed under submodules, quotients, and finite
direct sums. Furthermore, by (O1), every M ∈ O(gn) is Noetherian, since U(gn) is
Noetherian.

Let M ∈ O(gn) and λ ∈ h∗. Define the weight space of weight λ by

Mλ = {v ∈ M ∣ h ⋅ v = λ(h)v for all h ∈ h}.(3.1)

By (O2), we have M = ⊕λ∈h∗ Mλ , and this is a module grading of M, if we equip U(gn)
with its natural grading by the root lattice. The elements of Mλ are called weight vectors
of weight λ ∈ h∗. If m ∈ Mλ is a weight vector satisfying n+n ⋅m = 0, then we say that m
is a maximal vector of weight λ.

Now, let λ ∈ h∗n and recall that λ i ∶= λ∣hi
n
. We say that m ∈ Mλ0 is a highest weight

vector of weight λ if m is maximal of weight λ and

h ⋅m = λ(h)m for all h ∈ hn .(3.2)

The following basic properties of weight spaces of M ∈ O(gn) can be proven using
the same argument as in BGG category O (see [Hu08, Section 1.1]):

dim(Mλ) < ∞ for all λ ∈ h∗ ,
{λ ∈ h∗ ∶ Mλ ≠ 0} ⊆ ⋃λ∈I(λ −Z≥0Φ+) for some finite subset I ⊆ h∗ .(3.3)

If m ∈ M ∈ O(gn) is a maximal vector, then we can find a highest weight vector in
U(hn)v thanks to (O3). This proves the following result.

Lemma 3.2 [Ch23, Corollary 3.3] Suppose that M ∈ O admits a nonzero maximal
vector of weight λ ∈ h∗ in M. Then M admits a nonzero highest weight vector of weight
μ for some μ ∈ h∗n satisfying μ0 = λ.

https://doi.org/10.4153/S0008414X23000664 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000664


8 M. Chaffe and L. Topley

3.2 Highest weight modules

We say M is a highest weight module of weight λ ∈ h∗n if M is generated by a highest
weight vector of weight λ. The following result on highest weight filtrations is anal-
ogous to the situation for BGG category O (see [Hu08, Corollary 1.2]). The proof is
essentially the same as [Ch23, Lemma 3.4].

Lemma 3.3 Let M ∈ O(gn). Then M has a finite filtration 0 = M0 ⊆ M1 ⊆ ⋅ ⋅ ⋅ ⊆ Mk =
M such that each M i+1/M i is a highest weight module. We call such a filtration a highest
weight filtration.

For λ ∈ h∗n , we define the Verma module of weight λ via

Mλ ∶= U(gn) ⊗U(bn) Cλ ,(3.4)

where Cλ is the one dimensional U(bn)-module upon which hn acts via λ, and nn
acts by 0. The Verma modules are the universal highest weight modules, in the sense
that every highest weight module is a quotient of a Verma module.

They enjoy the following nice properties, generalizing the classical case n = 0 (see
[Hu08, Section 1]):

(1) dim Mλ0
λ = 1, and hence dim Mλ0 = 1 for every highest weight module of weight

λ ∈ h∗n .
(2) Every highest weight module M admits a central character: for every λ ∈ h∗n , there

is a homomorphism χλ ∶ Z(gn) → C such that z ⋅m = χλ(z)m for all z ∈ Z(gn)
and all m ∈ M where M is a highest weight module, of weight λ.

(3) Mλ admits a unique maximal submodule and a unique simple quotient, which
we denote Lλ .

(4) Every simple object in O(gn) is isomorphic to precisely one of these simple
modules (by Lemma 3.3). Thus, the modules

{Lλ ∣ λ ∈ h∗n}

give a complete set of representatives for the isomorphism classes of simple
modules in O(gn).

3.3 Jordan decomposition for O(gn)

The standard approach to studying modules in BGG categoryO is to consider modules
with a fixed central character for U(g). This refinement is also useful in our more
general setting (see Theorem 4.2); however, as a first approximation, we decompose
O(gn) in terms of generalized eigenvalues for h≥1

n .
Fix M ∈ O(gn) and μ ∈ (h≥1

n )∗. We define the generalized eigenspace of eigenvalue
μ via

M(μ) = {m ∈ M ∣ (h − μ(h))k m = 0 for all k ≫ 0, h ∈ h≥1
n }.

The following result is a slight generalization of [Ch23, Lemma 3.7], and we supply
a sketch of the proof for the reader’s convenience.
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Category O for truncated current Lie algebras 9

Lemma 3.4 Every M ∈ O(gn) admits a direct sum decomposition of gn-modules

M = ⊕
μ∈(h(≥1)

n )∗

M(μ) .(3.5)

Proof Since hn preserves the weight spaces of M, which are finite-dimensional, it
follows that each Mλ decomposes into generalized eigenspaces for h≥1

n . Therefore,
M admits a decomposition (3.5), and it suffices to show that each summand is a
gn-module. This follows by a direct calculation, using the fact that g admits an
eigenbasis for h (root space decomposition) and h≥1

n acts nilpotently on gn . ∎

Now, we define the Jordan block of O(gn) of weight μ ∈ (h≥1
n )∗ to be the full

subcategory O(gn) whose objects are the modules M such that M = M(μ). We then
have the following Jordan decomposition:

O(gn) = ⊕
μ∈(h≥1

n )∗
O(μ)(gn).(3.6)

Remark 3.5 It is not hard to see that if λ ∈ h∗n and μ = λ∣h≥1
n

, then both Mλ and Lλ

lie in O(μ)(gn) (see also [Ch23, Lemma 3.9]). Combining (3.6) with the fact that
Verma modules have unique maximal submodules, and are therefore indecomposable,
it follows that Lλ cannot occur as a subquotient of Mν unless λ≥1 = ν≥1.

Let gn → gn−1 be the natural quotient map with kernel gn
n , and consider the

pullback functor

p ∶ O(gn−1) �→ O(gn).(3.7)

Lemma 3.6 Let λ ∈ h∗n−1 and define ν ∈ h∗n by ν(h i) = λ(h i) for i = 0, ..., n − 1 and
ν(hn) = 0 for all h ∈ h. Then p(Lλ) ≅ Lν as gn-modules.

Proof Certainly, p(Lλ) is a simple highest weight module of highest weight ν, and
the proof follows. ∎

Now, we state and prove some easy equivalences between Jordan blocks of O(gn)
which arise by tensoring with one-dimensional gn-modules. We write g′ = [g, g] for
the derived subalgebra. We note that (gn)′ = (g′)n , and so we may use the notation
g′n unambiguously.

For λ ∈ h∗n , we recall the notation λ≥1 ∶= λ∣h≥1
n

. Any such λ can be extended to
an element of g∗n via λ(n±n) = 0, and we may abuse notation by identifying h∗n with
a subspace of g∗n . For λ ∈ Anng∗n

(g′n), let Cλ be the one-dimensional gn-module
afforded by λ.

Lemma 3.7 Suppose that λ, ν ∈ h∗n such that λ∣g′n = ν∣g′n . Then (●) ⊗U(gn) Cλ−ν and
(●) ⊗U(gn) Cν−λ are quasi-inverse equivalences between O(λ≥1)(gn) and O(ν≥1)(gn).

Proof Since ±(λ − ν) vanishes on g′n , it defines a one-dimensional representation
of gn , and the named functors are quasi-inverse autoequivalences of gn -mod. To
complete the proof, it suffices to observe that (●) ⊗U(gn) Cλ−ν sends O(λ≥1)(gn) to
O(ν≥1)(gn), which follows directly from the definitions. ∎
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4 Parabolic induction

In this section, we prove Theorem 1.2, which allows us to relate the category O(μ)(gn)
with a Jordan block of O(ln) for a Levi subalgebra l. Recall that if ν ∈ h∗, then we
extend ν to an element of g∗ via ν(n±) = 0, and write gν for the coadjoint centralizer.

Theorem 4.1 Let λ ∈ h∗n . Suppose that the centralizer l = gλn is in standard Levi form
and let p ∶= l + n+ = l⊕ r be a parabolic subalgebra with Levi factor l and nilradical r.
Write μ = λ≥1 (notation (2.3)). The categories O(μ)(ln) and O(μ)(gn) are equiva-
lent. The quasi-inverse functors inducing the equivalence are parabolic induction and
rn-invariants:

Ind ∶ O(μ)(ln) �→ O(μ)(gn)
M  → U(gn) ⊗U(pn) M ,

(●)rn ∶ O(μ)(gn) �→ O(μ)(ln)
M  → Mrn .

Theorem 4.1 is inspired by a category equivalence in modular representation theory
due to Friedlander and Parshall [FP88, Theorem 2.1]. The case n = 1 is due to the first
author [Ch23], and our method here is a generalization of loc. cit.

We observe that Ind is left adjoint to (●)rn since we have inverse isomorphisms

Homln(M , Nrn)
θ

����→←����
η

Homgn(Ind M , N)

given by θ( f )(u ⊗m) = u ⋅ f (m) and η(g)(m) = g(1⊗m) for u ∈ U(gn) and
m ∈ M.

Let 1C denote the identity endofunctor of a category C. In order to show that the
adjoint functors Ind and (●)rn are equivalences, we consider the unit and counit of the
adjunction. The unit is the natural transformation ψ ∶ 1O(gn) → (●)rn ○ Ind, which is
obtained by applying η to the identity mapping Nrn → Nrn , while the counit is the
natural transformation φ ∶ Ind ○(●)rn → 1O(ln) obtained by applying θ to the identity
mapping Ind M → Ind M. In particular, we have

ψM ∶ M �→ (Ind M)rn

m  → 1⊗m,
φN ∶ Ind(Nrn) �→ N

u ⊗m  → u ⋅m.

(4.1)

In order to complete the proof of Theorem 4.1, it suffices to show that ψ and φ are both
natural equivalences. The proof, which is given is Section 4.2, depends heavily on the
exactness of (●)rn , which will occupy the majority of Sections 4.1 and 4.2.

4.1 Central characters

If two gn-modules admit different infinitesimal central characters, then there can
be no extensions between them. The main step in proving exactness of (●)rn is the
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following result, which leads to a vanishing criterion for extensions. For ν ∈ h∗, we
make the notation

Φν ∶= {α ∈ Φ ∶ ν(hα) = 0}.

For λ ∈ h∗n , recall the notation χλ for central characters, introduced in Section 3.2(2).

Theorem 4.2 Let λ, λ′ ∈ h∗n such that λ≥1 = λ′≥1 and gλn is in standard Levi form. Then
χλ = χλ′ if and only if λ0 − λ′0 ∈ CΦλn .

Corollary 4.3 If M ∈ O(μ)(gn) is indecomposable and gμn is in standard Levi form,
then there is a unique coset ΞM ∈ h∗/CΦμn such that if N is a highest weight subquotient
of M of weight λ ∈ h∗n , then λ≥1 = μ and λ0 +CΦμn = ΞM .

Before we proceed, we explain how to deduce the corollary from Theorem 4.2.
Using the Jordan decomposition from Lemma 3.4 along with Remark 3.5, we see that
all subquotients of an indecomposable module lie in the same Jordan block O(μ)(gn),
which confirms that λ≥1 = μ. Since M has finite-dimensional weight spaces (3.3) and
is indecomposable, it admits a generalized central character, i.e., there is a unique
maximal idealm of Z(gn) such thatmk M = 0 for k ≫ 0. Thus, all of the highest weight
subquotients have the same central character (Section 3.2(2)). Now, Corollary 4.3
follows from Theorem 4.2.

Remark 4.4 Later, we shall see that Theorem 4.2 and Corollary 4.3 hold without
the standard Levi-type hypothesis. This follows from Theorem 1.3. However, since
the latter theorem relies on Theorem 4.2, we retain this hypothesis to keep these
dependences clear.

We now proceed to prove Theorem 4.2. Recall from Section 2.2 that the symmetric
invariants S(g)g are generated by algebraically independent homogeneous elements
p1 , ..., pr . Furthermore, there is an embedding S(g)g ↪ S(gn)gn such that S(gn)gn is
generated by r(n + 1) elements ∂(k)p j , j = 1, ..., r, k = 0, ..., n. There is a linear map
ω ∶ S(gn)gn → Z(gn), and we will be especially interested in the central elements

z( j)
i ∶= ω(∂( j)p i) for i = 1, ..., r.

Now, let U(gn)h be the invariant subalgebra under the adjoint action of h. Also, let
U(gn)n+n be the left ideal generated by n+n . The intersection U(gn)n+n ∩U(gn)h is
actually an ideal of U(gn)h, and it is not hard to see that the quotient by this ideal
is isomorphic to U(hn). Following the observations of [Hu08, Section 1.7] verbatim,
we see that χλ coincides with the composition

U(gn)h → U(hn) = C[h∗n]
evλ�→ C,(4.2)

where evλ denotes evaluation at λ. This allows us to consider χλ(p) for any
p ∈ U(gn)h, not just p ∈ Z(gn).

Now, for μ ∈ (h≥1
n )∗, we define two maps h∗ → C

r . For ν ∈ h∗, we use the notation
(ν, μ) to denote the element of h∗n which restricts as ν on h0

n and to μ on h≥1
n . The first

map is

ξμ(ν) ∶= (χ(ν ,μ) ○ ω ○ d(n)p1 , ..., χ(ν ,μ) ○ ω ○ d(n)pr) ∈ Cr ,
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while the second is

ημ(ν) ∶= (θ(ν ,μ)(p1), ..., θ(ν ,μ)(pr)) ∈ Cr ,

where θ(ν ,μ) denotes the composition

S(g) = C[g∗] → C[h∗] → C[h∗n] → C

andC[g∗] → C[h∗] is restriction across the triangular decomposition of g∗, while the
second map is the restriction of d(n) to C[h∗] and the third map is evaluation ev(ν ,μ).
Lemma 4.5 ξμ(ν) − ημ(ν) depends only on μ.
Proof Note that we have a Lie algebra embedding g1 ↪ gn given by x0 ↦ x0 and
x1 ↦ xn for all x ∈ g. We have ξμ(ν) − ημ(ν) ∈ S(g1) ⊆ S(gn), and this reduces the
claim to the case n = 1. This was proven in [Ch23, Lemma 4.6(b)]. ∎
Lemma 4.6 For λ, λ′ ∈ h∗n satisfying λ≥1 = λ′≥1, we have χλ = χλ′ if and only if
χλ(z(n)i ) = χλ′(z(n)i ) for i = 1, ..., r.

Proof Since the center Z(gn) is generated by the elements ω(∂(k)p j), it follows that
χλ = χλ′ if and only if the characters coincide on these elements. Thus, if we can show
that χλ(z( j)

i ) = χλ′(z( j)
i ) for all j = 0, ..., n − 1, then the proof will be complete.

We have p i ∈ S(gn
n), and it follows from (2.4) and (2.5) that ∂( j)p i ∈ S(g≥n− j

n ). By
the definition of ω (2.8), we have z( j)

i ∈ U(g≥n− j
n ). Therefore, χλ(z( j)

i ) only depends
on λ≥n− j . Since χλ is precisely the composition (4.2), we have reached the desired
conclusion. This completes the proof. ∎
Proof of Theorem 4.2 Let λ, λ′ satisfy the assumptions of the theorem. Thanks to
Lemma 4.6, we must show that χλ(z(n)i ) = χλ′(z(n)i ) for all i is equivalent to the
condition on λ0 , λ′0.

Thanks to (2.7), we have z(n)i = ω(d(n)p j) + ω(qn
i ). Since qn

i ∈ S(g≥1
n ), it fol-

lows from (2.8) that χλ(z(n)i ) = χλ′(z(n)i ) if and only if χλ ○ ω ○ d(n)(p j) = χλ′ ○ ω ○
d(n)(p j) for all i = 1, ..., r. We note that this second equality is well-defined because
d(n) sends h-invariants to h-invariants (Lemma 2.2), and ω is hn-equivariant, and χλ
coincides with the composition (4.2).

Since μ ∶= λ≥1 = λ′≥1, we can apply Lemma 4.5 to see that the central characters
coincide if and only if ημ(λ0) = ημ(λ′0). Let π ∶ h∗ → h∗/W ≅ Cr be the quotient map.
It follows from the Chevalley restriction theorem [CGi10, Theorem 3.1.38] that we can
write this in coordinates as π(ν) = (p1∣h∗(ν), ..., pr ∣h∗(ν)). Now, it is easy to see by
a direct comparison of the two definitions that ημ(λ0) coincides with the differential
dλn π(λ0) of the quotient map π.

By [Ch23, Lemma 4.6(e)], we see that ker ημ = ker dλn π = CΦλn . This implies that
ημ(λ0) = ημ(λ′0) if and only if λ0 − λ′0 ∈ CΦμn (this is where we use the fact that the
centralizer in a standard Levi subalgebra). This completes the proof. ∎

4.2 Exactness of the invariants functor

In this section, we fix a standard parabolic subalgebra p of g, so that our fixed choice of
positive root spaces are contained in p. Pick a Levi decomposition p = l⊕ r. The main
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result of this section is that (●)rn is exact on O(μ)(gn) provided gμn = l. First, we need
the following lemma.

Proposition 4.7 Let M ∈ O(μ)(gn) be an indecomposable module, and let ΞM ∈
h∗/CΦμn be the coset determined by M in Corollary 4.3. If l = gμn is a standard Levi
subalgebra, then

Mrn = ⊕
ν∈ΞM

Mν .

Proof Since M is indecomposable and admits a highest weight subquotient of
weight λ, we have λn = μn . Since gμn is the Levi factor of a standard parabolic, we
have r = span{eα ∶ α ∈ Φ+/Φλn}. By Lemma 3.3, we have a finite filtration 0 ⊆ M1 ⊆
⋅ ⋅ ⋅ ⊆ Mk = M such that M i/M i−1 has highest weight λ(i) ∈ h∗n . By (3.3), the weights
of M lie in the set⋃k

i=1{λ(i)0 −∑β∈Φ+ kβ β ∣ kβ ∈ Z≥0}. Furthermore, by Corollary 4.3,
there is an element ΞM ∈ h∗/CΦμn such that λ(i)0 +CΦμn = ΞM for all i. It follows that
the weights of M actually lie in the set λ(i) +CΦμn −∑β∈Φ+ Z≥0β, for any choice of i.

In particular if ν ∈ h∗ satisfies ν ∈ λ0 +Φλn , then ν + α does not lie in λ(i)0 −
∑β∈Φ+ Z≥0β for any α ∈ Φ+/Φλn and for any i. Therefore, rn ⋅Mν = 0.

Conversely, suppose v ∈ Mrn is of weight ν ∈ h∗. Since hn acts locally finitely
and preserves weight spaces, we can find a common eigenvector for hn of weight
ν in U(hn) ⋅ v. Suppose the eigenvalue is λ′ ∈ h∗n (by assumption λ′0 = ν). Then a
quotient of Mλ′ occurs as a submodule of M. All highest weight modules are inde-
composable (they admit unique maximal submodules), and this forces the generalized
central character of M to be χλ′ . Now, Theorem 4.2 implies that ν ∈ λ′0 +CΦμn . By
Corollary 4.3, we see that λ′0 and λ0 lie in the same coset of h∗ modulo CΦμn , and so
ν ∈ λ0 +CΦμn . ∎

Corollary 4.8 Suppose that μ ∈ (h≥1
n )∗ such that gμn = l is a standard Levi subalgebra.

Then the functor (●)rn ∶ O(μ)(gn) → O(μ)(gμn
n ) is exact.

Proof It suffices to take a surjective morphism M → N in O(μ)(gn), and show that
the restriction Mrn → Nrn is surjective. Without loss of generality, we can assume that
M , N are indecomposable. The existence of a nonzero map M → N forces ΞM = ΞN .
Since objects of O(gn) are h-semisimple, it follows that M → N is surjective on
h-weight spaces, and now the result follows immediately from Proposition 4.7. ∎

Proof of Theorem 4.1 We let φM and ψN be the adjunction morphisms from (4.1).
Note that Ind is an exact functor because U(gn) is free over U(pn), thanks to the

PBW theorem. Furthermore, (●)rn is exact by Corollary 4.8. If we can check that φM
and ψN are isomorphisms on highest weight modules, then a standard argument using
the length of a highest weight filtration (Lemma 3.3) can be used to conclude that φM
and ψN are isomorphisms for all M ∈ O(μ)(gn) and all N ∈ O(μ)(gμn

n )
The map ψM is an isomorphism for highest weight modules M, thanks to

Proposition 4.7.
Now, suppose that N ∈ O(μ)(gn) is a highest weight module with highest weight

generator v. Since rn ⋅ v = 0, it follows that 1⊗ v lies in the image of φN and so φN is
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surjective. To prove injectivity, let K = ker(φN) and consider the short exact sequence
K → Ind(Nrn) → N . By Corollary 4.8, we have another short exact sequence Krn →
Ind(Nrn)rn → Nrn .

Now, set M = Nrn , which is a highest weight g
μn
n -module generated by v. The

map Ind(M)rn → M is U(gn)-equivariant map uniquely determined by 1⊗m ↦ m.
Therefore, it is the left inverse of ψM , which we have already shown to be bijective. It
follows that Krn = 0, but since every nonzero object inO(gn) admits a nonzero highest
weight vector, it follows that K = 0 and so φN is an isomorphism for highest weight N.

This concludes the proof. ∎

5 Twisting functors

5.1 Definition of twisting functors

Now, we proceed to proving Theorem 1.3, extending the results of the first author
[Ch23, Section 5]. Throughout this section, we fix a simple root α ∈ Δ and make the
notation U ∶= U(gn) for the sake of brevity.

Recall that a right Ore set S in a non-commutative ring R is a multiplicatively closed
set of elements such that for all r ∈ R and s ∈ S, there exist r′ ∈ R and s′ ∈ S such that
rs′ = sr′. A left Ore set is defined dually. In order for R to admit a right ring of quotients
with respect to S, it is necessary that S is a right Ore set. When R has no zero divisors,
the condition is also sufficient, and when S is both a right and left Ore set, the left and
right fraction fields are isomorphic (see [MR01, Section 2.1] for a survey of these facts).

Also recall the notation eα , i , hα , i , hα , i from (2.2). Let Fα be the multiplicative set
generated by { fα ,0 , ..., fα ,n}, and note that these elements commute among them-
selves. The proof of the following result is almost identical to [Ch23, Lemma 5.1].

Lemma 5.1 Fα is both a left and right Ore set in U.

We now wish to explicitly construct the localization U with respect to Fα . It
certainly exists, by our previous remarks. Consider the U-algebra Uα ∶= U[F−1

α ],
which is freely generated by symbols { f −1

α , i ∣ i = 0, 1, ..., n}, subject to the relations
fα , i f −1

α , i = 1.
We introduce some notation to describe a basis for Uα . If

k ∶ Φ+ × {0, 1, ..., n} → Z≥0 ,
l ∶ Δ × {0, 1, ..., n} → Z≥0 ,
m ∶ Φ+/{α} × {0, 1, ..., n} → Z≥0

(5.1)

are arbitrary maps of sets, then we let

v(k, l , m) = (
n
∏
i=0
∏

β∈Φ+
ekβ , i

β , i )(
n
∏
i=0
∏
β∈Δ

h lβ , i
β , i )(

n
∏
i=0

∏
β∈Φ+/{α}

f mβ , i
β , i ) ∈ U ,(5.2)

where the product is taken with respect to some fixed choice of ordering on the basis
of g. More succinctly, these elements are precisely the PBW monomials in U which
have no factor in Fα .
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Lemma 5.2 (1) Uα is the (left and right) localization of U at the Ore set Fα .
(2) A basis for Uα is given by the elements f i0

α ,0 ⋅ ⋅ ⋅ f in
α ,nv(k, l , m) where i j ∈ Z and

k, l , m are as in (5.1).
(3) A basis for Uα is given by the elements v(k, l , m) f i0

α ,0 ⋅ ⋅ ⋅ f in
α ,n where i j ∈ Z and

k, l , m are as in (5.1).

Proof Uα satisfies the universal property of the localization by construction, and so
it is isomorphic to both the left and right localization, thanks to [MR01, Corollary
2.1.4]. This proves (1), and also implies that U embeds inside Uα , and Uα is an integral
domain.

Note that Uα is spanned by unordered monomials in gn and F−1
α . Using the left

Ore condition, we can rewrite any such monomial as a span of monomials of the
form described in (2). Furthermore, if there is a linear dependence between the latter
monomials, we can left multiply by appropriate elements of Fα to obtain a linear
dependence between PBW monomials in U, which must be zero. This proves (2), and
(3) follows by a symmetrical argument. ∎

We will need more precise relations between generators of Uα .

Lemma 5.3 For any i , j ∈ Z, the following relations hold in Uα , for any h ∈ h and any
β ∈ Φ+/{α}:

[eα , i , f −1
α , j] = − f −2

α , j hα , i+ j − 2 f −3
α , j fα , i+2 j .(5.3)

[h i , f −1
α , j] = α(h) f −2

α , j fα , i+ j .(5.4)

[eβ , i , f −1
α , j] = a f −2

α , j eβ−α , i+ j + b f −3
α , j eβ−2α , i+2 j + c f −4

α , j eβ−3α , i+3 j(5.5)

for some a, b, c ∈ C. We adopt the convention eγ , i = 0 if γ ∉ Φ or if i > n.

Proof These can be verified by multiplying by powers of fα , j to obtain an expression
which holds in U. We show the calculation for (5.3); the other relations are proved
similarly. Using the relations in U, we have

f 3
α , j eα , i = f 2

α , j eα , i fα , j − fα , j hα , i+ j fα , j − 2 fα , i+2 j fα , j .

We then multiply on the left by f −3
α , j and on the right by f −1

α , j to obtain (5.3). ∎

Let Vα ⊆ Uα be the span of the monomials appearing in Lemma 5.2(2) such that
i j ≥ 0 for some j = 0, ..., n. Using an argument identical to the one used in the second
half of the proof of [Ch23, Lemma 5.3], we see that Vα can be defined symmetrically as
the span of the monomials appearing in Lemma 5.2(3), subject to the condition i j ≥ 0
for some j. Using an argument identical to loc. cit., once again we obtain the following.

Lemma 5.4 Vα is a U–U-sub-bimodule of Uα .

We now consider the U–U-bimodule

Sα ∶= Uα/Vα .(5.6)
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By Lemma 5.2, we see that Sα has a basis given by

{ f i0
α ,0 . . . f in

α ,nv(k, l , m) ∣ for v , k, l , m as per (5.1), (5.2) and i j < 0 for all j}(5.7)

and another basis given by

{v(k, l , m) f i0
α ,0 . . . f in

α ,n ∣ for v , k, l , m as per (5.1), (5.2) and i j < 0 for all j}.(5.8)

As a slight abuse of notation, we denote an element of Uα and its coset in Sα by the
same symbol.

Now, we pick a special automorphism of g. The simple root α which we have
fixed throughout this section gives rise to a reflection sα ∈W = NG(h)/h. We lift sα
arbitrarily to an element of NG(h), which defines an automorphism of g via the adjoint
representation. We denote this automorphism by ϕα .

Note that ϕα acts on the root spaces as sα , i.e., it sends gβ to gsα(β) and preserves h.
Furthermore, after rescaling eα and fα if necessary, we may assume that

ϕα(eα) = fα ,
ϕα( fα) = eα .

We extend ϕα to an automorphism of gn by the rule ϕα(x i) = ϕα(x)i for all x ∈ g.
If M is a left U-module, we denote by ϕα(M) the module obtained by twisting the

left action on M by ϕα and write ⋅α for this action. More precisely, if m ∈ M and u ∈ U ,
then u ⋅α m ∶= ϕα(u) ⋅m. Similarly, we can similarly twist the action by ϕ−1

α , and use
notation ⋅α−1 in this case.

Let C be the full subcategory of U-mod whose objects are the h-semisimple
modules. The proof of the next result is the same as [Ch23, Lemma 5.9].

Lemma 5.5 O(gn) is a Serre subcategory of the category of C.

We define a functor H from U-mod to C by letting H(M) be the sum of the
h-weight spaces in M.

Now, we define two endofunctors of C by setting

Tα M ∶= ϕα(Sα ⊗U M),(5.9)

Gα M ∶=H(HomU(Sα , ϕ−1
α (M))).(5.10)

Note that the action of U on Gα M is given by

(u ⋅ f )(s) = f (s ⋅ u) for u ∈ U , f ∈ Gα M , s ∈ Sα .

Also, note that if M , N ∈ C and χ ∈ HomC(M , N), then Tα(χ) ∶ Tα M → Tα N and
Gα(χ) ∶ Gα M → Gα N are given by

Tα(χ)(s ⊗m) = s ⊗ χ(m) for s ∈ Sα , m ∈ M ,
Gα(χ)(ρ) = χ ○ ρ for ρ ∈ HomU(Sα , ϕ−1

α (M))).

In order to see these functors are well defined, the only nontrivial check is that
Tα M ∈ C for any M ∈ C. For M ∈ C, we see that Tα M is spanned by { f −i0

α ,0 . . . f −in
α ,n ⊗w ∶

i j > 0, w ∈H(M)}. For w ∈ Mλ and h ∈ h, we have
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h ⋅α ( f −i0
α ,0 . . . f −in

α ,n ⊗w) = (sα(h) f −i0
α ,0 . . . f −in

α ,n ) ⊗w
= f −i0

α ,0 . . . f −in
α ,n (sα(h) − (i0 + ⋅ ⋅ ⋅ + in)α(h)) ⊗w

= f −i0
α ,0 . . . f −in

α ,n ⊗ (sα(h) − (i0 + ⋅ ⋅ ⋅ + in)α(h))w
= f −i0

α ,0 . . . f −in
α ,n ⊗ (sα(λ) − (i0 + ⋅ ⋅ ⋅ + in)α)(h)w

= (sα(λ) − (i0 + ⋅ ⋅ ⋅ + in)α)(h)( f −i0
α ,0 . . . f −in

α ,n ⊗w).
To summarize, for any w ∈ M of weight λ, we have

f −i0
α ,0 . . . f −in

α ,n ⊗w ∈ (Tα M)sα(λ)−(i0+⋅⋅⋅+in)α .(5.11)

In particular, Tα M is spanned by weight vectors, and so is h-semisimple. The following
result can be proven by a calculation almost identical to [Ch23, Lemma 5.4].

Lemma 5.6 Let g ∈ HomU(Sα , ϕ−1
α (M)). Then g has weight λ ∈ h∗ if and only if

g( f −i0
α ,0 . . . f −in

α ,n ) has weight λ + (i0 + ⋅ ⋅ ⋅ + in)α in ϕ−1
α (M) for all i0 , ..., in ∈ Z≥0, which

occurs if and only if this vector has weight sα(λ) − (i0 + ⋅ ⋅ ⋅ + in)α in M.

We immediately obtain the following consequence.

Corollary 5.7 Let g ∈ HomU(Sα , ϕ−1
α (M)), then g is a weight vector if and only if

g( f −i0
α ,0 . . . f −in

α ,n ) is a weight vector for all i , j ≥ 0. In particular, Gα(M) is the direct sum
of such vectors g.

Lemma 5.8 Tα is right exact, and Gα is left exact.

Proof For any module M ∈ U -mod,

ϕα(Sα ⊗U M) ≅ ϕα(Sα) ⊗U M ,

and (●) ⊗U M is right exact; hence, Tα is right exact.
Similarly, Gα is a composition of two left exact functors, HomU(Sα , ϕ−1

α (●)) and
H; hence, it is also left exact. ∎

5.2 Twisting functors between blocks of category O

Note that the Weyl group action on h∗ extends naturally to an action on (h≥1
n )∗

acting diagonally through the identification (h≥1
n )∗ = (h∗)⊕n , and this vector space

parameterizes the Jordan blocks of O(gn). Retaining the notation of the previous
section, we can now precisely state Theorem 1.3.

Theorem 5.9 Let μ ∈ (h≥1
n )∗ be such that μ(hα ,n) ≠ 0. The functors Tα and Gα from

(5.9) restrict to functors

Tα ∶ O(μ)(gn) �→ O(sα(μ))(gn),
Gα ∶ O(sα(μ))(gn) �→ O(μ)(gn).

These form a quasi-inverse pair of equivalences.

The proof of Theorem 5.9 will be broken down into a series of lemmas, which we
record and prove over the course of this section. To be more precise, the theorem will
follow directly from Lemmas 5.10, 5.13, and 5.16–5.18.
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For the rest of the section, we keep α fixed and let μ ∈ (h≥1
n )∗ be such that

μ(hα ,n) ≠ 0.
The next result is the first step in the proof of Theorem 5.9, and is a generalization

of [Ch23, Lemma 5.3]. The proof given here is an alternative, shorter argument.

Lemma 5.10 Tα restricts to a functor O(μ)(gn) → O(sα(μ))(gn).

Proof For M ∈ O(μ)(gn), we let l(M) denote the minimal length of a filtration
0 = M0 ⊆ M1 ⊆ ⋅ ⋅ ⋅ ⊆ Mk−1 ⊆ Mk = M such that the sections are highest weight
modules (cf. Lemma 3.3). We have an exact sequence

0→ M1 → M → M/M1 → 0,

and since Tα is right exact, we have an exact sequence

Tα M1 → Tα M → Tα(M/M1) → 0.

Using Lemma 5.5 and the fact that Tα M1 is a highest weight module, we can reduce the
claim that Tα(M) ∈ O(μ)(gn) to the case where l(M) = 1, i.e., M is a highest weight
module.

For the rest of the proof, we fix M highest weight of weight λ ∈ h∗n , and let v ∈ M be
a highest weight generator of M. We will show that f −1

α ,0 . . . f −1
α ,n ⊗ v is highest weight

and generates Tα M, which will complete the proof of the lemma.
To see that the vector is maximal, use (5.11) to see that eα , i f −1

α ,0 . . . f −1
α ,n ⊗ v ∈ Tα M

lies in an h-eigenspace whose weight is not a weight of Tα M (for any i ≥ 0 and α ∈ Φ+).
To see that it is a genuine highest weight vector, one can use (5.4) to show that h i acts
via sα i (h i).

To see that f −1
α ,0 . . . f −1

α ,n ⊗ v generates Tα M, we use the fact that Uv = M and that
Sα has two bases, (5.7) and (5.8), to check that every element of Tα M lies in the
submodule generated by the set { f −i0

α ,0 . . . f −in
α ,n ⊗ v ∣ ik > 0}. Let L denote the span

of this set. Note that it is an (sl2)n-module, where (sl2)n is the truncated current
algebra on sl2 = ⟨eα , hα , fα⟩. To complete the current proof we show that L is a simple
(sl2)n-module.

Let tn ⊆ (sl2)n denote the span on hα ,0 , ..., hα ,n , and let γ = λ∣tn ∈ t∗n give the action
on f −1

α ,0 . . . f −1
α ,n ⊗ v. If Mγ denotes the Verma module of highest weight γ, then there is

a nonzero homomorphism Mγ → L and the dimensions of the weight spaces are the
same. Therefore, it remains to show that the Verma module Mγ is simple. By (5.4),
we see that γ(hα ,n) = (sα λ)(hα ,n) ≠ 0 and so we can apply Theorem 4.1 to see that
O(γ≥1)((sl2)n) is equivalent to O(γ≥1)(tn). In the latter category, all highest weight
modules are simple, and it follows that Mγ is simple, as required. This completes the
proof. ∎

Consider the abelian Lie algebra a = ⟨ fα ,0 , . . . , fα ,n⟩ contained in gn , and let
A ∶= span{ f −i0

α ,0 . . . f −in
α ,n ∶ i0 , . . . , in > 0} ⊆ Sα , which is a U(a)–U(a)-subbimodule of

Sα . Thanks to the description of the two bases (5.7) and (5.8) of Sα , we have an
isomorphism of U–U(a)-bimodules

Sα ≅ U ⊗U(a) A,
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and an isomorphism of U(a)–U-bimodules

Sα ≅ A⊗U(a) U .

In particular, for any left U-module M, we have an isomorphism of left U(a)-modules

Sα ⊗U M ≅ (A⊗U(a) U) ⊗U M ≅ A⊗U(a) M .

Recall that μ ∈ h∗n satisfies μ(hα ,n) ≠ 0.

Lemma 5.11 [Ch23, Lemma 5.13] Let M ∈ O(μ). Let m ∈ Mλ/{0} for some λ ∈ h∗.
Then the following are equivalent:
(a) In Tα M, we have f −i0

α ,0 . . . f −in
α ,n ⊗m = 0.

(b) For any vector space V and U(a)-balanced map φ ∶ A×M → V, we have
φ( f −i0

α ,0 . . . f −in
α ,n , m) = 0.

(c) There exist m0 , . . . , mn ∈ M such that m = f i0
α ,0 ⋅m0 + ⋅ ⋅ ⋅ + f in

α ,n ⋅mn .

The following fact only depends on the existence of inverses for fα , i in Sα . We omit
the proof.

Lemma 5.12 [Ch23, Lemma 5.15] Let M ∈ U-mod. Then any element of Sα ⊗M can
be written in the form f −i0

α ,0 . . . f −in
α ,n ⊗m, for some i0 , . . . , in > 0 and m ∈ M.

Lemma 5.13 [Ch23, Lemma 5.7(b)] For any M ∈ O(μ)(gn), the map ψM ∶ M →
Gα Tα M given by ψM(m)(s) = s ⊗m is an isomorphism.

Lemma 5.14 [Ch23, Lemma 5.16] Let M be a U-module, and let A ⊆ Sα and a ⊆ g be
as in Lemma 5.11. Let φ ∶ A→ M be a U(a)-homomorphism. Then φ extends uniquely
to a U-homomorphism φ ∶ Sα → M.

This next result is a generalization of [Ch23, Lemma 5.17], but we provide the proof,
which is more complicated in the present setting.

Lemma 5.15 Let M ∈ O(μ)(gn), and let I be a subset of Zn+1 satisfying:
(1) (i0 , . . . , in) ∈ I whenever any ik ≤ 0,
(2) If (i0 , . . . , in) ∈ I, then (i0 , . . . , ik − 1, . . . , in) ∈ I for any 0 ≤ k ≤ n,
and let {m i0 , . . . , in ∈ M ∶ (i0 , . . . , in) ∈ I} be a collection of elements of M satisfying:
(i) m i0 , . . . , in = 0 whenever any ik ≤ 0,

(ii) eα ,k ⋅m i0 , . . . , in = m i0 , . . . , ik−1,. . . , in whenever (i0 , . . . , in) ∈ I.
Then there exists a U(a)-homomorphism φ ∶ A→ ϕ−1

α (M) such that φ( f −i0
α ,0 . . . f −in

α ,n ) =
m i0 , . . . , in , which, by Lemma 5.14, extends to a U-homomorphism φ ∶ Sα → ϕ−1

α (M).
Moreover, if there exists λ ∈ h∗ such that the weight of m i0 , . . . , in is λ − (i0 + ⋅ ⋅ ⋅ + in)α
for all (i0 , . . . , in) ∈ I, then we can choose φ to also be weight and hence in Gα M.

Proof We construct elements m i0 , . . . , in for (i0 , . . . , in) ∈ Zn+1/I inductively such that
the m i0 , . . . , in satisfy conditions (i) and (ii) above for any (i0 , . . . , in) ∈ Zn+1. Then
observe that (i) and (ii) ensure that setting φ( f −i0

α ,0 . . . f −in
α ,n ) = m i0 , . . . , in defines a U(a)-

homomorphism φ ∶ A→ ϕ−1
α (M), since it is enough to check that m i0 , . . . , ik−1,. . . in =

fα ,k ⋅α−1 φ( f −i0
α ,0 . . . f −in

α ,n ) = fα ,k ⋅α−1 m i0 , . . . , in = eα ,k ⋅m i0 , . . . , in for any 0 ≤ k ≤ n and
(i0 , . . . , in) ∈ Zn+1.
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To construct such m i0 , . . . , in , let (i0 , . . . , in) ∈ Zn+1/I be such that i0 + ⋅ ⋅ ⋅ + in is
minimal among elements of Zn+1/I. Then, in particular, (i0 , . . . , ik − 1, . . . , in) ∈ I
for each 0 ≤ k ≤ n. Let (sl2)n be the truncated current algebra on the copy of sl2
spanned by eα , hα , fα , and let N be the (sl2)n-module generated by {m i0 , . . . , ik−1,. . . , in ∶
0 ≤ k ≤ n}, so N ∈ O(μ)((sl2)n). Here, we make a slight abuse of notation, identifying
μ with the restriction to hn ∩ (sl2)n . Then we use the following claim to construct
m i0 , . . . , in ∈ N ⊆ M such that eα ,k ⋅m i0 , . . . , in = m i0 , . . . , ik−1,. . . , in .

Claim (*) Consider the maps

N θ 1�→ N n+1 θ2�→ N
1
2 n(n+1)

given by θ1(x) = (eα ,0 ⋅ x , . . . , eα ,n ⋅ x) and θ2(y0 , . . . , yn) = (eα ,k ⋅ y l − eα , l ⋅
yk)0≤k<l≤n . Then ker(θ2) = im(θ1). Furthermore, if (y0 , . . . , yn) ∈ ker(θ2)
and yk ∈ N ∩Mλ for all 0 ≤ k ≤ n, then there exists x ∈ Mλ−α such that
θ1(x) = (y0 , . . . , yn). ∎

We now prove the claim, which will take several steps.
First, observe that θ2 ○ θ1 = 0, so certainly ker(θ2) ⊇ im(θ1). Hence, we only need

to show that im(θ1) ⊇ ker(θ2). Throughout the proof of the claim, we write ek for
eα ,k .

We first deal with the case where n = 1 and N = Mγ is a Verma module. In this case,
we consider the restriction of these maps to certain weight spaces in the following way
(for any λ ∈ h∗):

N λ θ 1�→ (N λ+α)2 θ2�→ N λ+2α .

Now, either dim(N λ+α) = 0, in which case im(θ1) = ker(θ2) automatically, or
the dimensions of these weight spaces satisfy dim(N λ) = n + 1, dim(N λ+α) = n,
and dim(N λ+2α) = n − 1. Hence, by considering dimensions and the fact that
ker(θ2) ⊇ im(θ1), it is enough to show that θ1 is injective and θ2 is surjective. We
can compute that e1 acts on the basis vectors f i

1 f j
0 ⊗ 1 by

e1 ⋅ ( f i
1 f j

0 ⊗ 1) = μ j f i
1 f j−1

0 ⊗ 1 − j( j − 1) f i+1
1 f j−2

0 ⊗ 1,(5.12)

so by considering θ2(x , 0), we see θ2 is surjective using (5.12) and an inductive
argument. We also see that e1 ⋅ v = 0 if and only if v = f i

1 ⊗ 1. Since μ ≠ 0, we can show
that e0 ⋅ f i

1 ⊗ 1 ≠ 0, so θ1 is injective as required.
We now deal with the case where n ≥ 1 and N = Mλ is a Verma in the μ-Jordan

block, so λ∣≥1 = μ. We use the following facts, which can be verified by computing the
action of en on the basis elements f i0

0 . . . f in
n ⊗ 1 of Mλ and recalling that μ(hα) ≠ 0:

(a) en ⋅ N = N , which uses an inductive argument with (5.12).
(b) en ⋅m = 0 if and only if m ∈ span{ f i1

1 . . . f in
n ⊗ 1 ∶ i1 , . . . , in ≥ 0}. The latter is

isomorphic as a U(⟨e0 , . . . , en−1⟩)-module to the Verma module Mγ over
span{eα , i , hα , i , fα , i ∣ i = 0, ..., n − 1} ≅ ((sl2)α)n−1 where γ(hα , i) ∶= μ(hα , i+1).

(c) Applying (b) repeatedly, we see that for any k ≥ 1, we have that e l ⋅m = 0 for all
k ≤ l ≤ n if and only if m ∈ span{ f in−k+1

n−k+1 . . . f in
n ⊗ 1 ∶ in−k+1 , . . . , in ≥ 0}.
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To ease notation slightly, we will write a(i) = ⟨e0 , ..., e i⟩, and write (sl2)(i) for the
Lie algebra ((sl2)α)i and γ(i) for the character of span{hα ,0 , ..., hα , i} given by
γ(i)(hα , j) ∶= μ(hα ,n−i).

Now, let (y0 , . . . , yn) ∈ ker(θ2), i.e., ek ⋅ y l − e l ⋅ yk = 0 for all 0 ≤ k, l ≤ n. By fact
(a), there certainly exists an xn such that en ⋅ xn = yn . We then inductively construct xk
for 2 ≤ k ≤ n such that e l ⋅ xk = y l for all k ≤ l ≤ n. Note that the cases k = 0, 1 will be
dealt with by an additional argument immediately afterward, and we will then obtain
x0 , ..., xn such that θ(x0 , ..., xn) = (y0 , ..., yn).

Suppose we have constructed xk+1 such that e l ⋅ xk+1 = y l for all k + 1 ≤ l ≤ n.
For any k + 1 ≤ l ≤ n, consider e l ⋅ (ek ⋅ xk+1 − yk) = ek ⋅ (e l ⋅ xk+1) − e l ⋅ yk = ek ⋅
y l − e l ⋅ yk = 0. Hence, by fact (c), we have ek ⋅ xk+1 − yk ∈ span{ f in−k

n−k . . . f in
n ⊗ 1 ∶

in−k , . . . , in ≥ 0}. But as a U(a(k))-module, this is isomorphic to Mγ(k) , so by fact
(a), there exists x′k ∈ span{ f in−k

n−k . . . f in
n ⊗ 1 ∶ in−k , . . . , in ≥ 0} such that ek ⋅ x′k = ek ⋅

xk+1 − yk , and by fact (c) e l ⋅ x′k = 0 for all k + 1 ≤ l ≤ n. Setting xk = xk+1 − x′k , we
see that ek ⋅ xk = ek ⋅ xk+1 − ek ⋅ x′k = ek ⋅ xk+1 − (ek ⋅ xk+1 − yk) = yk , and for k + 1 ≤
l ≤ n, we have e l ⋅ xk = e l ⋅ xk+1 − e l ⋅ x′k = y l − 0. Hence, we have constructed xk with
the desired properties.

Now, consider y′1 = e1 ⋅ x2 − y1 and y′0 = e0 ⋅ x2 − y0. For 2 ≤ l ≤ n, we have
e l ⋅ y′1 = e l ⋅ (e1 ⋅ x2 − y1) = e1 ⋅ y1 − e l ⋅ y1 = 0, and similarly e l ⋅ y′0 = 0, so y′0 , y′1 ∈
span{ f in−1

n−1 f in
n ⊗ 1 ∶ in−1 , in ≥ 0}, which is isomorphic to Mγ(1) (Verma module over

((sl2)(1)) as a U(⟨e0 , e1⟩)-module. In addition, since (y0 , ..., yn) ∈ ker θ, we have
e0 ⋅ y′1 − e1 ⋅ y′0 = 0, so we can apply the case where N is a Verma module and n = 1,
proved earlier, to find x′ such that e0 ⋅ x′ = y′0, e1 ⋅ x′ = y′1, and e l ⋅ x′ = 0 for 2 ≤ l ≤ n.
Then setting x = x2 − x′, we have that θ1(x) = (y0 , . . . , yn).

If N is not a Verma module, let 0 = N0 ⊆ N1 ⊆ ⋅ ⋅ ⋅ ⊆ Nk−1 ⊆ Nk = N be a filtration of
N such that each quotient is a highest weight module. Since μ(hα) ≠ 0, all these high-
est weight modules must in fact be Verma modules by [Wi11, Theorem 7.1]. Then, given
(y0 , . . . , yn) ∈ ker(θ2), in the quotient N/Nk−1, we have that there exists x ∈ N such
that e l ⋅ x + Nk−1 = y l + Nk−1 for all 0≤ l ≤ n. Hence, e l ⋅ x − y l ∈Nk−1 for all 0 ≤ l ≤ n.
But e l ′ ⋅ (e l ⋅ x − y l) = e l ⋅ (e l ′ ⋅ x − y l ′) for all 0 ≤ l , l ′ , ≤ n, so by induction on k,
there exists x′ ∈ Nk−1 such that e l ⋅ x′ = e l ⋅ x − y l for all 0 ≤ l ≤ n. Note that in
this final argument, we have used the fact that y′l ∶= e l ⋅ x − y l gives a collec-
tion of elements lying in the kernel of θ, which allows us to apply the induc-
tive hypothesis. Hence, e l ⋅ (x − x′) = y l for all 0 ≤ l ≤ n, so im(θ1) ⊇ ker(θ2) as
required.

Finally, if y0 , . . . , yn ∈ Mλ ∩ N , then given x ∈ N ⊆ M such that θ1(x) =
(y0 , . . . , yn), by considering weight spaces, we may replace x with its component
x λ−α in the λ − α weight space and θ1(x) = θ1(x λ−α), proving the final part of
Claim (∗).

Since eα ,k ⋅m i0 , . . . , i l−1,. . . , in = m i0 , . . . , ik−1, . . . , i l−1,. . . in = eα , l ⋅m i0 , . . . , ik−1,. . . in for all 0 ≤
k < l ≤ n, this claim then allows us to pick m i0 , . . . , in such that eα ,k ⋅m i0 , . . . , in =
m i0 , . . . , ik−1,. . . in for all 0 ≤ k ≤ n, and if m i0 , . . . , ik−1, . . . , in has weight λ for all 0 ≤ k ≤ n,
then we can choose m i0 , . . . , in to have weight λ − α. Hence, applying this inductively, we
can construct for all (i0 , . . . , in) ∈ Zn+1 elements m i0 , . . . , in ∈ M satisfying conditions (i)
and (ii).
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Suppose there exists λ ∈ h∗ such that wt(m i0 , . . . , in) = λ − (i0 + ⋅ ⋅ ⋅ + in)α for all
(i0 , . . . , in) ∈ I. Then, by construction, m i0 , . . . , in is weight for all (i0 , . . . , in) ∈ Zn+1,
so by Corollary 5.7, the homomorphism we have constructed is a weight vector.

We are now ready to establish one of the main ingredients toward the proof of
Theorem 5.9.

Lemma 5.16 For any N ∈O(sα(μ))(gn), the map εN ∶TαGα N → N given by εN(s ⊗ g)
= g(s) is an isomorphism.

Proof First, we show εN is a homomorphism. Let u ∈ U , let s ∈ Sα , and let g ∈ Gα N .
Then

u ⋅ εN(s ⊗ g) = u ⋅ g(s) = ϕ−1
α ϕα(u) ⋅ g(s) = g(ϕα(u) ⋅ s) = εN((ϕα(u) ⋅ s) ⊗ g)

= εN(u ⋅ (s ⊗ g)),
so εN is certainly a U-homomorphism.

Now, let m ∈ N be a weight vector, and choose a0 , . . . , an such that eak
α ,k ⋅m = 0 for

each k. Let

I = {(i0 , . . . , in) ∶ ik ≤ 0 for some k or ik ≤ ak for all k} ⊆ Zn+1

m i0 , . . . , in = ea0−i0
α ,0 . . . ean−in

α ,n ⋅m if ik ≤ ak for all k
m i0 , . . . , in = 0 otherwise.

Then we can use Lemma 5.15 to construct φ ∈ HomU(Sα , ϕ−1
α (M)), which is

a weight vector and therefore in Gα N such that φ( f −a0
α ,0 . . . f −an

α ,n ) = m. Hence,
εN( f −a0

α ,0 . . . f −an
α ,n ⊗ φ) = m, so εN is surjective.

We now show εN is injective. By Lemma 5.12, any element of TαGα N may
be written as f −i0

α ,0 . . . f −in
α ,n ⊗ g for some g ∈ Gα N . Suppose εN( f −i0

α ,0 . . . f −in
α ,n ⊗ g) =

g( f −i0
α ,0 . . . f −in

α ,n ) = 0. We may assume g is weight (i.e., an h-eigenvector). If not, we
may write g as a sum of gλ ∈ (Gα N)λ , which, by considering weight spaces, must all
satisfy gλ( f −i0

α ,0 . . . f −in
α ,n ) = 0, and then apply the following argument to each gλ .

Observe that

g( f − j0
α ,0 . . . f − jn

α ,n ) = 0 if either jk ≤ 0 for some 0 ≤ k ≤ n or all jk ≤ ik .(5.13)

Now, choose

I = {( j0 , . . . , jn) ∈ Zn+1 ∶ jk ≤ ik for all 0 ≤ k ≤ n − 1 or jn ≤ in
or jk ≤ 0 for some 0 ≤ k ≤ n } ⊆ Zn+1

m j0 , . . . , jn = g( f − j0
α ,0 . . . f − jn

α ,n ) if jk ≤ ik for all 0 ≤ k ≤ n − 1
m j0 , . . . , jn = 0 if jn ≤ in or jk ≤ 0 for some 0 ≤ k ≤ n.

Then, applying Lemma 5.15 to this, we construct gn ∈ HomU(Sα , ϕ−1
α (M)), which is a

weight vector (and hence in Gα N) such that:
(a) gn( f − j0

α ,0 . . . f − jn
α ,n ) = 0 if jn ≤ in ,

(b) gn( f − j0
α ,0 . . . f − jn

α ,n ) = g( f − j0
α ,0 . . . f − jn

α ,n ) if jk ≤ ik for all 0 ≤ k ≤ n − 1.
Note that these two conditions are not mutually exclusive, but they are consistent by
(5.13).
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By (a), we can define g′n ∈ Gα N by setting g′n( f − j0
α ,0 . . . f − jn−1

α ,n−1 f − jn+in
α ,n ) =

gn( f − j0
α ,0 . . . f − jn

α ,n ) and so gn = f in
α ,n ⋅ g′n . By (b), we have (g − gn)( f − j0

α ,0 . . . f − jn
α ,n ) = 0 if

either some jk ≤ 0 or if jk ≤ ik for all 0 ≤ k ≤ n − 1.
We now construct gs ∈ Gα N inductively by setting

I = {( j0 , . . . , jn) ∈ Zn+1 ∶ jk ≤ ik for all 0 ≤ k ≤ s − 1 or js ≤ is or jk ≤ 0
for some 0 ≤ k ≤ n} ⊆ Zn+1

m j0 , . . . , jn = (g − gn − ⋅ ⋅ ⋅ − gs+1)( f − j0
α ,0 . . . f − jn

α ,n ) if jk ≤ ik for all 0 ≤ k ≤ s − 1
m j0 , . . . , jn = 0 if js ≤ is or jk ≤ 0 for some 0 ≤ k ≤ n.

The element g − gn − ⋅ ⋅ ⋅ − gs+1 satisfies a condition analogous to (5.13), which means
that the definition of m j0 , . . . , jn is consistent.

This gs satisfies:

(a) gs( f − j0
α ,0 . . . f − jn

α ,n ) = 0 if js ≤ is ,
(b) gs( f − j0

α ,0 . . . f − jn
α ,n ) = (g − gn − ⋅ ⋅ ⋅ − gs+1)( f − j0

α ,0 . . . f − jn
α ,n ) if jk ≤ ik for all 0 ≤ k ≤

s − 1.
By (a), we can write this gs in the form gs = f is

α ,s ⋅ g′s for some g′s ∈ Gα N . By (b), we
have that (g − gn − ⋅ ⋅ ⋅ − gs)( f − j0

α ,0 . . . f − jn
α ,n ) = 0 if jk ≤ ik for all 0 ≤ k ≤ s − 1. Hence, we

see that g = f −i0
α ,0 ⋅ g′0 + ⋅ ⋅ ⋅ + f −in

α ,n ⋅ g′n for some g′0 , . . . , g′n ∈ Gα N , so f −i0
α ,0 . . . f −in

α ,n ⊗ g =
∑( f −i0

α ,0 . . . f −in
α ,n ) ⊗ f ik

α ,k g′k = 0. Hence, εN is injective. ∎

The proof of this next lemma is almost identical to [Ch23, Lemma 5.8], and so we
skip it for the sake of brevity.

Lemma 5.17 Gα restricts to a functor O(sα(μ))(gn) → O(μ)(gn).

This next result can be checked by following the argument for [Ch23, Lemma
5.8(e)] verbatim.

Lemma 5.18 The transformations

ψ ∶ idO(μ)(gn) → Gα Tα

and

ε ∶ TαGα → idO(sα(μ))(gn)

are natural.

Finally, Theorem 5.9 follows by combining Lemmas 5.10, 5.13, and 5.16–5.18.

6 Composition multiplicities

6.1 Definition of composition multiplicity

Let M ∈ O(gn). We define the character of M to be the function ch(M) ∶ h∗ → Z≥0
which sends λ to dim(Mλ), and the support of M, denoted supp(M), to be the set
supp(M) = {λ ∈ h∗ ∶ Mλ ≠ 0}.

https://doi.org/10.4153/S0008414X23000664 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X23000664


24 M. Chaffe and L. Topley

We define the composition multiplicities kλ(M) of M for λ ∈ h∗ using the following
result, whose statement and proof are very similar to [Ch23, Lemma 6.1] or [MSo19,
Proposition 8].

Lemma 6.1 Let μ ∈ (h≥1
n )∗. For any M ∈ O(μ)(gn), there are unique {kλ(M) ∈ Z≥0 ∶

λ ∈ h∗n , λ≥1 = μ}, which we refer to as composition multiplicities, such that

ch(M) = ∑ kλ(M) ch(Lλ).

We give another interpretation of these, which is closer to the notion of composi-
tion multiplicities in Artinian categories. The following result is a natural generaliza-
tion of [Ch23, Lemma 6.2].

Lemma 6.2 Let μ ∈ (h≥1
n )∗ and M ∈ O(μ)(gn). Then there exist I ⊆ (Z≥0)n and a

descending filtration of M indexed by I with the lexicographic ordering such that:
(a) If (i1 , . . . , ik−1 , ik , . . . , in) ∈ I with ik > 0, then (i1 , . . . , ik−1 , ik − 1, 0, . . . , 0) ∈ I.
(b) Each quotient M(i1 , . . . , in−1)/M(i1 , . . . , in) is simple.
(c) The intersection of all the M(i1 , . . . , in) is 0.
Furthermore, for any such filtration, Lλ appears as a quotient M(i1 , . . . , in−1)/M(i1 , . . . , in)

precisely kλ(M) times.

Proof First, observe that by Theorems 4.1 and 5.9, we may reduce to the case
μ(hn

n) = 0.
Recall the notation gn

n = g⊗ tn ⊆ gn .
First, suppose n = 1. In this case, M has a filtration M ⊇ g1

1M ⊇ (g1
1)2M ⊇ ⋅ ⋅ ⋅ . Each

quotient (g1
1)i M/(g1

1)i+1M lies in BGG category O for g and hence has finite length,
so this may be refined to a filtration satisfying (a) and (b).

For n > 1, consider the filtration M ⊇ gn
n M ⊇ (gn

n)2M ⊇ ⋅ ⋅ ⋅ . Each quotient
(gn

n)i M/(gn
n)i+1M lies in the category O(μ)(gn−1), where we identify μ with an

element of (h≥1
n−1)∗ in the obvious manner, so we may set M(i ,0,. . . ,0) = (gn

n)i M and
argue by induction that this may be refined to a filtration satisfying (a) and (b).

To show this filtration satisfies (c), it is enough to show that whenever μ(hn
n) = 0,

every M ∈ O(μ)(gn) has the property that ⋂i≥0(gn
n)i M = 0. By considering weight

spaces, this property is preserved by taking quotients and extensions, so it is enough
to verify this in the case where M = Mλ is a Verma module. Since λn = μn = 0, this
Verma module is graded: we place a grading on U(gn) by setting, for x ∈ g,

deg x i = {
0, if i = 0, ..., n − 1,
1, if i = n.

We transfer the induced grading on U(n−n) to Mλ via the isomorphism of n−n-
modules U(n−n) ≅ Mλ . Now, Mλ is a positively graded gn-module and ⋂i≥0(gn

n)i Mλ
is contained in the intersection of all graded components, which is zero.

Finally, we observe that ch(M) = ∑(i0 , . . . , in)∈I, in>0 ch(M i0 , . . . , in−1/M i0 , . . . , in), so by
uniqueness in Lemma 6.1, the final part of the lemma holds. ∎

This result justifies the use of the terminology composition multiplicities, for
kλ(M). From now on, we use the notation [M ∶ Lλ] ∶= kλ(M).
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Corollary 6.3 The parabolic induction and restriction functors and the twisting
functors Tα , Gα preserve composition multiplicities.

Proof The proof is the same as [Ch23, Corollary 6.3]. ∎

6.2 Computation of composition multiplicities for Verma modules

We now wish to compute the composition multiplicities [Mλ ∶ Lν]. Thanks to Lemmas
3.4 and 6.2, we know that [Mλ ∶ Lν] = 0 unless λn = νn and so, using a combination
of twisting functors and parabolic induction functors, we can reduce to the case
λn = νn = 0, and this is our strategy.

Let p ∶ Z≥0Φ+ → Z≥0 be Kostant’s partition function. For α ∈ ZΦ, we write
α0 ∈ h∗n−1 to be the element satisfying α0(h i) = 0 for i > 0 and α0(h0) = α(h), where
h ∈ h. Also, for any λ ∈ h∗n , we identify λ≤n−1 with an element of h∗n−1 in the obvious
manner.

Lemma 6.4 If Mλ≤n−1−α0(gn−1) is the Verma module over gn−1, then

ch Mλ = ∑
α∈Z≥0 Φ+

p(α) ch(Mλ≤n−1−α0(gn−1)).

Proof Note that characters can be defined for any semisimple h-module with finite-
dimensional weight spaces. Let Cλ0 be the h-module of weight λ0.

Since Mλ ≅ U(n−n) ⊗Cλ0 as h-modules, the lemma follows from the facts:
(i) The character of U(n−n) is equal to the character of S(n−n).

(ii) S(n−n) is a free module over S(n−n−1) and, for α ∈ Z≥0Φ+, there are p(α) basis
vectors of weight −α.

∎
Corollary 6.5 If λ, ν ∈ h∗n satisfy λn = νn = 0, λ≥1 = ν≥1, and Lν≤n−1(gn−1) denotes the
simple gn−1-module of highest weight ν≤n−1 ∈ h∗n , then

[Mλ ∶ Lν] = ∑
α∈Z≥0 Φ+

p(α)[Mλ≤n−1−α0(gn−1) ∶ Lν≤n−1(gn−1)].

Proof By Lemma 3.6, we have ch Lν = ch Lν≤n−1 for all ν ∈ h∗n satisfying νn = 0, and
so the claim follows from Lemma 6.4. ∎

For μn ∈ h∗, we write gμn
n−1 ∶= (gμn)n−1 = (gn−1)μn .

Corollary 6.6 Let μ ∈ (h≥1
n )∗ such that gμn is the Levi factor of a standard parabolic.

Then, for any λ, ν ∈ h∗n such that λ≥1 = ν≥1 = μ, we have

[Mλ ∶ Lν] = ∑
α∈Z≥0 Φ+

p(α)[Mλ≤n−1−α0(g
μn
n−1) ∶ Lν≤n−1(g

μn
n−1)].

Proof This follows from Lemma 3.7, Theorem 4.1, and Corollaries 6.2 and 6.5. In
order to apply these results, one should check that the functors appearing in the
first two cited results send highest weight modules to highest weight modules of the
corresponding weight, and we leave this verification to the reader. ∎

To complete the computation of composition multiplicities for all Verma modules,
we must show that to any Jordan block, we can apply twisting functors to obtain
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a Jordan block O(μ) such that gμ is the Levi factor of a standard parabolic. This is
possible thanks to the following result (see [Ch23, Lemma 2.1] for a proof).

Proposition 6.7 Let μ ∈ h∗. Then there exist w ∈W and a Levi factor l of a standard
parabolic p such that gw(μ) = l. Furthermore, if w is chosen to be of minimal length
subject to this condition and w = sαn sαn−1 . . . sα1 is a reduced expression for w, then for
each 1 ≤ i ≤ n, we have ((sα i−1 . . . sα1)μ)(hα i ) ≠ 0.

We now define an action ●n of W on h∗ by w ●n λ ∶= w(λ + nρ) − nρ where ρ is
half the sum of the positive roots. Note that this generalizes the dot action of W on
h∗, which corresponds to the case n = 1, and which controls the central characters
of g0 [Hu08, Section 1.9]. We remark that this n-dot action appeared in the work of
Geoffriau on the center of the enveloping algebra of gn [Ge95].

If α is any simple root, then since sα(α) = −α and sα permutes the other positive
roots, we have sα(ρ) = ρ − α. We then have

sα ●n λ = sα(λ + nρ) − nρ
= sα(λ) + nρ − nα − nρ
= sα(λ) − nα.

We extend this to a W-action on h∗n by setting

(sα ●n λ)(h i) = {
(sα ●n λ i)(h i), for i = 0,
(sα λ i)(h i), for i ≠ 0.

By our calculations in the proof of Lemma 5.10, the twisting functors Tα take
highest weight modules of weight λ ∈ h∗n to highest weight modules of weight sα ●n λ,
and hence take Mλ to Msα●n λ and similar for Lλ . Applying Corollary 6.3 again, we
obtain the following.

Corollary 6.8 Let λ, ν ∈ h∗n such that λ≥1 = ν≥1. Let w ∈W have a reduced expression
w = sαk sαk−1 ⋅ ⋅ ⋅ sα1 for simple reflections sα i such that:
(a) gw(μn) is the Levi factor of a standard parabolic.
(b) For each 1 ≤ i ≤ n, we have ((sα i−1 ⋅ ⋅ ⋅ sα1)μ)(hα i ) ≠ 0.
Then we have

[Mλ ∶ Lν] = [Mw●n λ ∶ Lw●n ν]
= ∑

α∈Z≥0 Φ+
p(α)[M(w●n λ)≤n−1−α0(g

w(λn)
n−1 ) ∶ L(w●n ν)≤n−1(g

w(μn)
n−1 )].(6.1)
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