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Abstract

Teaching functional programming as a second programming paradigm is often difficult as students
can have strong preconceptions about programming. When most of these preconceived ideas fail to
be confirmed, functional programming may be seen as an unnecessarily difficult topic. A typical topic
that causes such difficulties is the language of types employed by many modern functional languages.
In this paper, we focus on addressing this difficulty through the use of step-by-step calculations of
type expressions. The outcome of the study is an elaboration of a worked example format and a
methodical approach for teaching types to beginner functional programmers.

1 Introduction

Student difficulties with type systems are often reported in the literature (see, for example,
Joosten et al., 1993; Clack et al., 1995) and these include aspects ranging from difficult syn-
tax to misunderstandings with higher order functions. Similar difficulties have prompted
us to reconsider the way types are taught in our courses. In the present paper, we study
how types can be presented to students using a calculational approach, and can document
results of an experiment that studies the viability of our approach.

Our approach to dealing with the pedagogical difficulties on the topic of type systems
is complementary to the more technical studies on how to best present type errors for the
programmer. For example, to help a novice programmer, error messages could provide the
programmer with reasoning as to why the program fails to compile (Chitil, 2001), or even
to describe how the program could be modified so that the compiler accepts it (Lerner et al.,
2007). A large effort for improving type error messages is undertaken by Heeren (2005).
We find that better error reporting is necessary, and also efficient ways for demonstrating
the semantics of types are needed.

On the theoretical level, our work has been inspired by the Cognitive Load Theory
(CLT), which is based on the model of human cognitive architechture. Drawing on the
limitations of the human working memory, CLT has given rise to documented guidelines
that intend to assist the presentation of information in educational contexts (Sweller et al.,
1998). The primary of these guidelines is the worked-example effect, which states that
replacing conventional exercises by study of equivalent examples has a positive impact
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on learning (Zhu & Simon, 1987; Jelsma & van Merriënboer, 1990). Our specific inter-
est in CLT is to apply the worked-example effect to the design of instructional material
concerning type systems. We find that CLT has been previously applied to the field of
programming (see, for example, van Merriënboer et al., 1990a, 1990b).

On the practical level, our work can be associated with formative evaluation (Scriven,
1967), where we employ tests and experiments to guide the development of our course.
In the empirical part of the present work, we employ a single case research design. Single
case research experiments, also known as n-of-1 experiments, have been employed in psy-
chology and behavioural sciences (Nock et al., 2007), and are applicable to situations such
as ours, where it is both hard to obtain many experimental subjects and control external
factors. In these studies, each subject acts as both experimental control and experimental
subject. Such n-of 1 experiments are interpreted within subject by drawing comparisons
between measures of a single subject in different situations. This experimental setting has
been promoted for empirical computer science studies by Harrison (2000).

The context of the present study is a functional programming (FP) course sequence
consisting of two master’s level courses. The first of these is an introductory course that
covers the basics of the Haskell language, while the latter is an advanced course with
more varying topics. During three iterations with the first course, we identified several
learning difficulties and concluded that students’ learning could be facilitated by careful
design of exercises and other study materials (Tirronen & Isomöttönen, 2012; Isomöttönen
& Tirronen, 2013). The present study is a continuation of this previous work.

2 Challenges in learning functional programming

The role of FP in the computer science curriculum varies from being the main instrument
for teaching programming (Joosten et al., 1993; Keravnou, 1995; Thompson & Hill, 1995;
Blanco et al., 2009) to being taught as an elective and second programming language
(Chakravarty & Keller, 2004). The use of FP as a primary programming paradigm has
been seen as beneficial for both student and curriculum as a whole (Joosten et al., 1993;
Thompson & Hill, 1995). These benefits are said to include allowing students to better
focus on the essential parts of algorithms as well as giving students a more comprehensive
view of programming languages in general.

Along with the relatively wide adoption of functional languages as a primary teaching
instrument,1 many reports on teaching experiences gained thereby have been published.
These reports present a clear picture of the kinds of difficulties that a novice functional
programmer can be expected to encounter. For example, Joosten et al. (1993) conclude,
after several iterations of the first year FP course, that the syntax of the Miranda language
causes difficulties, especially when the two levels of FP, the level of types and the level of
values, are mixed. Further, the authors emphasize initial difficulties with the type system
and learning higher order functions. Here the issue of learning higher order functions
is also linked to the ability to properly define their types. Similarly, Clack et al. (1995)
documented several difficulties in teaching modern type systems and imparting a proper

1 The FP language scheme was the fifth most used CS1 language in US colleges in 2012 according to a list by
Siegfried et al. (2012).
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understanding of functions as values. For example, a student might identify the type of a
function with the type of its return value. This is a reasonably logical model, since, for
example, a function that returns a number is often used in expressions in which numbers
are manipulated. This model will nevertheless become non-viable as soon as either par-
tial application or higher order functions are discussed. Further problems with teaching
types are examined by Ruehr (2008), who constructs a new graphical language devoted to
teaching this topic.

Recursion, which is an even more fundamental concept for FP than for many mainstream
languages, can also cause difficulties. For example, Segal (1994) found misconceptions
related to identifying the base cases with termination conditions, whereas Bhuiyan et al.
(1994) argue that the concept of suspend computation and lack of teaching recursion as a
problem-solving tool aggravate the difficulties. After identifying and empirically verifying
the existence of such misconceptions, Segal (1994) proposes measures to counteract them
during teaching, while Bhuiyan et al. (1994) develop an entire computer-aided learning
environment for teaching the topic.

As reported by Segal (1994), some difficulties seem to be linked with prior exposure to
other programming paradigms. Many of the studies reviewed identify specific difficulties
that arise during transition from one programming paradigm, nowadays usually that of
object-oriented programming, to the paradigm of FP (Joosten et al., 1993; Clack & Myers,
1995). Students with prior experience in imperative or object-oriented programming seem
to have more difficulties and exhibit greater resistance in learning FP and the formal tools
that are associated with it. The study by Keravnou (1995) confirms these observations and
posits that these arise from the confusion between two different computational models.

Part of the difficulties can also be rooted in student perceptions and issues of motivation.
Wallingford (2002) proposes that due to lack of proficient teachers and sufficient emphasis
on the topic, students only learn the surface features of FP, with the result that the reasons
behind various FP abstractions are not understood. In other words, students understand
neither why the topic is taught nor why they should learn it. This resonates with Chakravarty
et al. (2004), who observed that students’ preconceptions against FP, for example the
observed lack of practical use of the language being taught, can cause significant resistance
to making an effort to learn it.

From the above difficulties, the present paper is concerned with the beginner difficulties
with modern type systems, which are unique to modern functional languages. As can be
observed in literature, these difficulties are significant, but unlike topics such as recursion,
studies that offer to solve problems with learning types seem scarce. In this paper, we focus
on applying deductive reasoning for remedying the difficulty of learning the language of
the Haskell type system. We approach this problem by adapting the commonly used step-
by-step evaluation of expressions to demonstrate type deduction.

3 On Dijkstra’s style notation for worked examples

We, like many other FP teachers, promote the use of step-by-step calculations of program
fragments as a primary way to present the behaviour of short programs. For presentation
of these calculations, we use the notation originating from the notes of Dijkstra (2000).
The original purpose of this notation was to communicate a specific train of thought to
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Fig. 1. Worked example on evaluation of a (recursive) function.

the reader when presenting mathematical proofs, but we find that the presentational issues
with communicating proofs and reasoning with programs are similar, and that a similar
notation is helpful for both. The Dijkstra’s style notation appears in various forms in many
educational works, such as Bird (1998) and Broda et al. (1994), to name a few.

The widespread use of step-by-step calculations in educational literature makes it evi-
dent that it is well suited for manipulating FP constructs. Moreover, using the Dijkstra’s
style notation makes it natural to progress from simple step-by-step calculations to proof
constructions, which are often introduced in FP courses that emphasize formal method
concepts. By means of a similar notation, the students can free themselves to concentrate
on learning the proof techniques instead of learning how such proofs should be presented.

An example of the Dijkstra’s style notation is presented in Figure 1. With this nota-
tion each intermediate step is written on a separate line and these intermediate steps are
connected with a suitable relation symbol, as well as textual hint, that informs the reader
why the step was taken. Such calculations can be used to demonstrate the behaviour of a
program or a language construct (see Figures 1 and 2), or can even be used to give rational
derivation of a small program (Bird, 1998).

Inspired by CLT, we conjecture that step-by-step calculations offer several benefits in
teaching. Firstly, we find that these calculations are good examples of the worked-example
effect, which is highly recommended in the CLT literature. Further, many of the step-
by-step calculations can be made self-contained by providing appropriate hints between
transformations. Self-contained examples are also promoted by CLT, which posits that
they lessen the mental load of students in comparison to cases where students have to refer
to external resources (see the ‘split-attention effect’ in Sweller et al., 1998). Similarly,
each step in these calculations contains the entire program state and the entire program
trace is visible at once. Secondly, we find that step-by-step calculations have been used
outside presentation of examples. For example, we have instructed the students to use them
as a tool for exploring the behaviour of Haskell expressions. Such an approach has been
demonstrated to be beneficial for the students by Fung et al. (1996), and, drawing from the
CLT principles, we conjecture that it allows students to study difficult program fragments
while still leaving cognitive resources for the construction of useful mental models.

Regardless of potential benefits, all program comprehension tools (for an overview, see
Sorva 2012) are likely to present some extraneous cognitive load for the student. In the
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Fig. 2. Worked examples on the behaviour of let and case expressions.

case of step-by-step calculation, effort must be spent in learning to read the notation,
while in the case of program visualization tools, some effort is likely to be spent for
understanding the connection between visualization and textual code. The potential differ-
ence between these tools is the set of problems for which they offer benefits surpassing the
extra cognitive load. For example, when demonstrating behaviour of a simple, declarative
program fragment, such as a type expression, we find that a visualization tool cannot tell
much more than a simple derivation, but still tasks the student to connect visualization
and program code. We speculate that the situation is reversed in cases where a complex
data structure, such as a binary tree or a graph, is being manipulated. Here the behaviour
of the program contains unnecessary information, which can be effectively removed with
visualization tools, but can add extraneous cognitive load when step-by-step calculations
are used. In other words, we argue that step-by-step calculations can be a complementary
tool to promote programming learning.

3.1 Notation for demonstrating type deduction

We have observed that lack of good syntax for manipulating types makes it difficult for
beginners to approach types. For example, the current Haskell syntax offers no clear way
to illustrate intermediate steps of type deduction, which leads to difficulties in teaching:
Without a way to present the intermediate steps, it is hard to describe why certain ex-
pressions have the types that they do. The general assumption that the lack of a proper
notation for manipulating types is in part responsible for the difficulties in learning them is
also reinforced by our observation that students who are fluent with the types have usually
devised some ad hoc notation for manipulating them. The need for a notation with which
to demonstrate types is also observed by Ruehr (2008), whose solution is to construct an
entire graphical language for this task.

In contrast to Ruehr’s (2008) graphical notation for types, we attempt to lessen the
difficulty of teaching types in our courses with the use of step-by-step calculations. This
approach allows us to demonstrate functioning of types in the same way as working with
values is commonly demonstrated. That is, we hope to be able to apply the worked-
example effect and to divide type-related problems into small steps that allow our students
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Table 1. Semi-formal rules for type deduction

Example expressions Reduction

λa → b «(:t a) → (:t b)»

Type of function is the type of input → type of
output

«a → b» «a» «b»

«Int → (Int → Bool)» «Int» «Int → Bool»

Type of application is the return type of the
function if the parameter type matches the
argument type

«a» «b»
«(a → b) → [a] → [b]» «(Int → b) → [Int] → [b]»

Type variable can be replaced by any other
type if all instances of the variable are
replaced

42 «Num a ⇒ a»
map f «[a]» «(a’→b) → [a’] → [b]» «a»

Symbols can be replaced by their type in «»-
brackets if this does not introduce conflicting
type variables

:t «a → b» «Eq a ⇒ a» :t Eq a ⇒ «a → b» «a»
Constraints must be moved to the left of the
equation

to explore complex types without overbearing cognitive load. The explicit learning objec-
tive considered here is learning to decide types for basic Haskell expressions.

Demonstrating type deductions with step-by-step calculations requires an extension to
the Haskell syntax. Our proposed syntactical extension consists of two new notations. The
first of these is the operator ‘:t x’, which is read as ‘the type of x’. The operator :t is
named according to the commands for obtaining the type of an equation in the Haskell
interpreter used in our course. The second notational extension is ‘«x»’, which is used to
denote an arbitrary value of type ‘x’.2 These syntactic extensions allow us to manipulate
type expressions much the same way as we do with value-level expressions.

The rules by which we instructed our students to manipulate the types are given in
Table 1. These rules are given in the form of natural language statements and examples as
our students are not yet adept in working with formal systems. The rules are intentionally
simplified and while these allow deducing the types of many basic expressions, these do

2 Even though it would be possible to make use of the existing Haskell syntax by writing ‘«x»’ as ‘undefined ::
x’, we find this to be too verbose in practice.
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not form a complete set. The focus of these rules is function application and they do not
cover pairs, lists and type constructors. These topics can be covered after the basics have
been learnt.

Next, we give an example of how these rules can be used to express the calculation of a
type. As an example, we use the expression ‘fmap fmap’. Since equations such as these are
often complex, we use underline to indicate the modified part of the equation for the reader
and hint what after the ≡-sign refers to. The process begins by writing the expression we
want to compute:

:t fmap fmap
≡ {- type of fmap -}

:t «Functor f ⇒ (a → b) → (f a → f b)» fmap
≡ {- type of fmap, notice the renamed variables -}

:t «Functor f ⇒ (a → b) → (f a → f b)»
«Functor g ⇒ (u → v) → (g u → g v)»

≡ {- Float constraints outside of the expressions -}
(Functor f, Functor g) ⇒
:t «(a → b) → (f a → f b)»

« (u → v) → (g u → g v)»

As the first step, we replaced ‘fmaps’ with the elements that describe respective types.
Since this introduces constraints to the expression, the rules mandate that they are floated
out of the expression. To continue with the calculation, we must next unify the types of the
parameters with the type of the arguments for the application rule to be applicable. This
can be done by substituting a type variable:

(Functor f, Functor g) ⇒
:t «(a → b) → (f a → f b)»

«(u → v) → (g u → g v)»
≡ {- unify a with (u → v) -}

(Functor f, Functor g) ⇒
:t «((u → v) → b) → (f (u → v) → f b)»

«(u → v) → (g u → g v)»
≡ {- unify b with (g u → g v) -}

(Functor f, Functor g) ⇒
:t «((u → v) → (g u → g v)) → (f (u → v) → f (g u → g v))»

«(u → v) → (g u → g v)»
≡ {- function application eliminates the parameter and the argument -}

Functor f, Functor g ⇒
:t «f (u → v) → f (g u → g v)»

≡ {- :t eliminates the brackets -}
Functor f, Functor g ⇒
f (u → v) → f (g u → g v)

which completes the example.
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Table 2. Survey results for question ‘Did you, during the start of the course identify type
signatures such as myFunc :: Int → Bool with Java/C# style function prototypes such as bool
myFunc(int:x)’

Yes No Yes + explanation

7 9 2

4 The experiment

To study the effect of teaching students to decide types in the proposed step-by-step man-
ner, we performed an experiment during an early phase of the introductory FP course.
By this experiment we attempted to study whether worked examples using the proposed
notation, combined with the active student use of the deductive system, would have an
effect on student performance in connecting value-level expressions to their types. We are
also interested in studying student acceptance of the proposed approach.

4.1 Problem background

In our teaching endeavour, we found many student difficulties that were related to types.
In our earlier courses, where we had not placed a special emphasis on teaching types, we
saw that a large fraction of the student cohort failed to form a usable mental model of the
type system in a reasonable time and relied on incorrect models for the whole course. We
experienced both syntactic problems, such as not being able to identify the type signatures
from value-level expressions, and semantic difficulties, such as difficulties in understanding
type variables.

As a particular example of a misconception occurring with types, we found that many
students explored the concept of function types through the prototype notation used in
the C# and Java languages. Apparently, these students identified Haskell types such as
f:: String → Int with the Java prototypes such as int f(x:string). Unfortunately,
such identification is not a viable learning strategy. Consider, for example, learning about
partial application by studying the type signatures f :: Int → Int → Bool and f ::
Int → (Int → Bool). While the first can be identified with bool f(x:int,y:int),
the latter has no corresponding notation in Java. In a post facto survey conducted on this
question (see Table 2), we saw that half of the students had indeed used this pattern, while
some commented that they had found it inaccurate later on.

Observations of this kind led us to conclude that we could not communicate the proper
mental model of the type system to the students without a more reasoned approach of
teaching it. The approach utilizing step-by-step calculations was initially developed during
the first iteration of our advanced FP course, where it was designed according to Design-
Based Research (DBR) principles by utilizing theory and involving participants. Students
who participated in developing this approach generally expressed a positive opinion about
the result, but found using it in practice to be taxing. After this tentative trial, we included
also the step-by-step worked examples in our introductory course material, which allowed
us to conduct a more formal experiment, described in the following section, during the
introductory course.
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4.2 Experiment setup

The number of students available for the experiment was small. The test subjects needed
just the right amount of Haskell experience to be able to understand the material presented
but still be sufficiently challenged by types. This limitation ruled out the usual quantitative
experiments with control groups and we opted to perform repeated single subject qualita-
tive study over the available student population instead.

Our experimental setup follows the basic three-phase reversal experiment where each
individual test subject undergoes three experiment phases. In the experiment the first and
last phases provide experimental control for the experiments, and the middle phase intro-
duces the variable being studied. Differing from the basic reversal experiment, where the
performance of the subjects is expected to return to the baseline level after the intervention,
we observed a learning effect, which should not demonstrate significant reversal after the
intervention has been subtracted. In our experiment, we attempted to establish baseline
performance by requiring the students to follow Lipovaca’s (2012) popular book while
completing the exercises in the control phases. In the middle phase, we required the stu-
dents to use the stepwise deductions and the exact notation for the type deduction presented
in this paper. The material presented to the students comprised short explanations of each
type level construction used in the experiment, the deductive rules presented in Section 3.1
and five worked examples of type deductions. Before this experiment, worked examples in
the Dijkstra’s style notation had been introduced to the students in the context of working
with value-level expressions.

The test questions that were used in the experiment are given in Figure 3. The questions
form two similar sets denoted by letters A and C. The A set of questions was repeated
in both first and second phases of the trial. This was done to assess the intervention and
the baseline performance with the same measure. Questions A1 to A3 and C1 to C3 were
made abstract in an attempt to force students to work without hints such as suggestive
names from which the answer could be guessed. Questions A4 and C4 are a part of an
exercise given in the introductory course and provide helpful naming to gauge the effect
of having less abstract code. Finally, questions A5 and C5 represent tasks that might arise
from working with truly abstract code. These questions are not presented in the results as
none of the students could make a meaningful headway with these.

From our previous experience we had formed a conclusion that the students’ mathemat-
ical background and programming avocation were significant factors for performance in
the introductory FP course. The background of test subjects was studied with the following
questions:

• How well do you remember secondary level mathematics? (not at all – clearly)
• How much have you studied university level mathematics? (not at all – completed

the advanced level studies)
• How much do you practise programming? (not at all – almost daily)

After completing the given exercises, we presented the following questions to evaluate
the student perception of the method used:

• How fast was the taught method to use? (fast to use – very arduous to use)
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Fig. 3. Questions about types in the experiment.

• How well did the taught method help you understand types? (it did – it made types
more difficult to understand)

• How hard was this exercise? (very easy – very hard), asked after each exercise.

The preceding questions were answered by checking suitable answer from a 5-level scale
provided with the question. The scale questions were augmented with a free form question
that prompted the students to describe their learning experiences during the test:

• Describe your learning experience.

This experiment was piloted by observing the performance of a CS 1 instructor (later on
referred to as subject #1), who had taken the introductory course during the previous year.
After the pilot phase, the experiment was taken by seven volunteers from the introductory
FP course, who were motivated to participate with a small reward. Three of the participants
could be considered beginners in programming in general, while the rest had studied for
more than three years and demonstrated a solid programming background. Other than
subject #1, no participant had an earlier FP experience.

Our experiment does not offer validation for the general use of the method due to small
number of participants and so it should be read as an explorative study. Further threats to
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3rd year. Phys. ◦
Prog: ••◦◦◦
Math: ••◦◦◦

‘Seems like the only rea-
sonable presentation – B
part was very helpful’.

Subject #2

A B A
0

4

A B A
0

4

2nd year. CS. ◦
Prog: ••◦◦◦
Math: ◦◦◦◦◦

‘Helped somewhat’.
Subject #7

A B A
0

4

A B A
0

4

Fig. 4. Performance of beginners.

CS1 instructor •
Prog: ••••◦
Math: •••••

‘Writing out deductions
helped to understand types
better’.

Subject #1

A B A
0

4

A B A
0

4

3rd year. CS ◦
Prog: •••◦◦
Math: ••◦◦◦

‘I think I understand types
better now – helped me to
proceed mechanically’.

Subject #3

A B A
0

4

A B A
0

4

5th year. CS. ◦
Prog: ••◦◦◦
Math: ◦◦◦◦◦

‘The method is good since
it likely leads to a result’.

Subject #5

A B A
0

4

A B A
0

4

Fig. 5. Performance of advanced students.

generalizability of this experiment arise due to the selecting of volunteers as experiment
subjects. Choosing persons with the highest interest towards the topic might have adverse
effect on this study as these students are less likely to have difficulties with the topic taught,
but can also be more open to trying novel ways of studying. In addition, our decision
of using the same exercises for both first and second phases made it more difficult to
interpret the results obtained: the mistakes that were made during the first phase of the
experiment tended to carry over to the second phase, with the result that some students ‘cor-
rected’ properly done deductions in the second phase to match the wrong result in the first
phase.

4.3 Results

In this section, we use a graphical presentation to give an overview of the student per-
formance (see Figures 4–6). In the figures, the leftmost column shows a short student
background and their answers to survey questions about their mathematical background
and their familiarity with programming in general. The line graphs in the centre of the
figures indicate the level of success for each of the exercises in each of the three exper-
iment phases. The empty circles are used to indicate subject’s estimate of the difficulty
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5th year. Hum. ◦
Prog: • •◦◦◦
Math: ◦◦◦◦◦

‘Finding types without
derivations felt like
gambling’.

Subject #4 (*)

A B A
0

4

A B A
0

4

8th year. CS. ◦
Prog: • •◦◦◦
Math: • •◦◦◦

‘Time consuming rather
than arduous – worked
quite well’.

Subject #6

A B A
0

4

A B A
0

4

Fig. 6. Performance of other students

of exercises. Missing circles indicate that the students did not estimate the difficulty, and
the grey squares indicate where the subject deviated from the study protocol and used the
taught method when instructed not to do so. The rightmost column contains a quote of the
subject’s free form evaluation of the taught method. When observing the figure, note that
each plot represents only four different exercises and the visual impact of single mistake
can be large.

4.3.1 Effect on beginners

Subjects #2 and #7 can be best described as beginners, and they are arguably the most
relevant subjects for this study. Their performance is shown in Figure 4. These students also
show the highest measured performance difference between the control and intervention
phases, and their comments suggest that they had benefitted from the exercise.

The performance of subject #2 is dismal in both first and last experiment phases. The
comments made by subject #2 hint to an unwillingness to consider the problem without
a formal tool in the first phase, and this hypothesis is further reinforced by the fact that
the subject spent little time on the first portion of exercises: 12 min in the first phase in
contrast to 1 h 23 min in the second phase and 27 min in the third phase. Regardless, the
subject shows a marked improvement in the middle phase of the experiment, and most
of the mistakes done in this phase are result of simple errors in applying the rules and
misconceptions about type classes. This same difficulty could be observed, although in
lesser scale, in answers of all the subjects, and this most likely resulted from the fact
that type classes had not been used in the early part of the introductory course and thus
had insufficient examples. As is evident from the positive comment of the student, the
mechanical way of deducing types had a positive effect. Unfortunately, in the last phase,
and without the given notation, the subject’s performance regresses back to the baseline
level. We assume that this happened due to the subject following our instructions to the
letter, and actively avoiding the use of the presented notation and instead trying to find an
alternative.

In contrast to subject #2, the poor performance of subject #7 can be explained through a
single misunderstanding: The subject systematically confused application with abstraction
and when asked the type of expression \x->g (f x) with given types g::[a]→[a] and
f::[a]→[[a]], the subject answers ([a]→[[a]])→[a]→[a]. The same pattern is
observed several times in the first phase, but it does not appear after the second phase.
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Subject #7 performs almost perfectly during the middle phase of the experiment, which
is remarkable considering that the subject had spent little more than an hour studying the
topic. Unlike subject #2, subject #7 does exhibit a learning effect in the third phase.

4.3.2 Effect on advanced students

As shown in Figure 5, subjects #1, #3 and #5 exhibit almost identical performance through-
out the experiments and all of them perform either very well or perfectly in the first phase
of the test. In contrast to beginners, the performance of these subjects degrades in the
second phase. This loss of performance was expected, since the exercises in the middle
phase are strictly more discriminating than those in other phases: these exercises require a
correct deduction leading to the correct answer as well as the correct answer. Regardless
of the degraded performance, the students comment favourably about the method and
indicated that they felt that they had learned something new. The common mistakes that
these students made concern the use of type classes.

Although these students do not strictly belong to the target audience of this method, it is
possible that they might have benefitted from this exercise as more misconceptions could
be brought to light and eliminated. However, though only one of the subjects indicate this
in comments, demanding such heavy method of students who are already proficient with
types might lead to motivational issues.

4.3.3 Effect on other students

As shown on Figure 6, subjects #4 and #6 exhibit more variability in their performance as
well as their background than other students. These subjects also confused the experimental
protocol so that subject #4 used the formal deduction in the first question of the first phase
and subject #6 did the same for all questions in the last phase.

The initially weak performance of student #4 could be explained by two persistent
misconceptions: refusal to accept the concept of curried functions, and difficulties in un-
derstanding scoping of type variables. The exercises consistently used groups of type
definitions that shared the same variable names which the subject took to mean the same
variable. After failing to conclude proper types for the majority of the exercises in the first
two phases, the subject was instructed to fix the latter misconception, which shows a high
improvement in performance in the last experiment phase (this intervention is marked with
an asterisk in Figure 6). In the free form comments, this subject also indicated that the
taught method was found to be helpful and clarifying.

Variability in the performance of subject #6 can also be observed to originate from a
single root cause, which is again the improper understanding of type classes. The curious
failure in the first question of the last phase seems to be an honest mistake, which the
subject probably could have fixed if given another try. All in all, subjects #4 and #6 were
positive in their comments, and their comments indicated open mindedness about new
ways of teaching this topic.
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5 Discussion

In this paper, we have described an approach to teaching types by using an algebraic, step-
by-step approach. The proposed approach is inspired by CLT and has been developed with
the participation of student cohort. The approach has been also studied experimentally and
the results are reported in the present paper.

Our approach to teaching types was reported to be a positive experience by the students
who participated in the experiment. Students felt that they had spent their time well and
that they had learned much about types. From the actual answers, we can conjecture that
the students with inferior initial performance benefitted most by using our approach, while
those with adequate initial performance gained relatively little. From the teacher’s point
of view, we find that requiring stepwise deductions for the exercises can make it easier to
discover and correct student misconceptions. We also believe that our approach to teaching
types can make it easier to develop exercises and teaching materials that make the use of
CLT effective.

As for the challenges in using our approach, we have observed that teaching formal
deduction is costly, and cannot be done solely for the benefit of teaching types. Without
introducing the concept of step-by-step deductions earlier in the course, it is likely that
requiring it with types will require too much extra effort for it to be beneficial. Also, in
our case, all of the test subjects reported that they would have liked to see more examples
related to our approach and would have further benefitted from a more clear presentation
of the material.

Our findings suggest that the use of this approach requires exact and well-designed
course materials to minimize the effort of learning to use the deductive system. It appears
necessary to introduce step-by-step deductions early during FP courses to make full use of
the proposed approach. However, as is evident from many introductory books about FP, the
step-by-step deductions are a good tool for teaching, and introducing these early in course
materials should not be problematic. As a final note, the mechanical nature of this approach
hints that learning this process could be benefitted from computer-aided learning environ-
ment in the same way as programming itself is benefitted from development environments
that help to eliminate simple mistakes.
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