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Abstract
We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present

this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio

wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop

here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our

approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to

geometrical optics.
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1. Introduction

The science of nonlinear optics is one of the rapidly growing

fields driven by multiple important technological applica-

tions. Since the invention of lasers this field has experienced

revolutionary progress fueled by splendid experimental and

theoretical results that provide deep understanding of the

nonlinear response of matter to high intensity electromag-

netic waves. However, as we will demonstrate here, this

achievement was accompanied by the fundamental failure

of one particular subdiscipline – the propagation of a laser

beam in nonlinear media.

Many theoretical works describing laser propagation in

nonlinear media have been published since the concept of

laser beam self-focusing and self-trapping was proposed[1].

After more than 50 years of intense research the theoretical

concepts and models of self-focusing, beam self-trapping,

filamentation and filament plasma defocusing and the corre-

sponding mathematical models were formulated. The books

and extensive reviews (for example, Refs. [2–8]) written

within the past two decades devote chapters to the detailed

description of the peculiarities of this physical phenomenon.

Current frontier research of laser beam propagation in

nonlinear media deals with ingenious formulations and

creative solutions of the nonlinear Schrodinger equation

that describes laser beam collapse, self-trapping, disper-

sion, filamentation, modulation instability, pulse splitting
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and other extraordinary particularities of nonlinear beam

propagation[6, 9, 10]. Therefore, understandably, we did not

expect to discover that the results obtained with our recent

straightforward theoretical model and numerical simulation

of ultrahigh intensity laser pulse propagation in gases[11, 12]

contradict the established models of self-focusing, beam

self-trapping, filamentation and continuum generation.

Being unable to find either errors or invalidating as-

sumptions in our forthright approach we journeyed back

to the source (Maxwell’s equations) in order to review the

foundational scientific principles. This examination exposed

the assumptions in the original physical concept that, in our

opinion, are inconsistent and self-contradictory. Also, this

examination provided theoretical justification and supports

the validity of our previously published approach[11, 12].

Below is the account of the results of this journey.

2. Formulation of general equation for beam of electro-
magnetic wave propagation in nonlinear media

As is well known, the electric and magnetic fields in di-

electric media are described by the macroscopic Maxwell’s

equations as follows:

∇ · �D = 0, (1)

∇ · �B = 0, (2)

∇ × �E = −∂ �B
∂t

, (3)
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∇ × �H = ∂ �D
∂t

, (4)

where �E and �B are the electric and the magnetic fields, cor-

respondingly, while �D and �H are, respectively, the displace-

ment and magnetization fields. The latter fields, sometimes

called ‘macroscopic’ fields, reflect the effect from matter and

are defined using phenomenological constituent equations

that relate them to the ‘microscopic’ electric field, �E , and

the magnetic field, �B:

�D = ε0ε �E, (5)

�B = μ0μ �H , (6)

where ε0 and μ0 are the permittivity and the permeability

of free space and ε and μ are the permittivity and the

permeability of material.

Following the known procedure we take the curl vector

operator of both sides of Equation (3) and the time derivative

of both sides of Equation (4) and assume that the magnetic

effect of the media is negligible, i.e., μ = 1. Then, using

Equations (5) and (6), we can eliminate the magnetic and

magnetization fields, obtaining the equation for the electric

field

∇ ×(∇ × �E)+ ε0μ0
∂2(ε �E)

∂t2
= 0. (7)

Assuming that the material effect on the electric field is

slow compared to the period of optical oscillation or the

laser pulse duration, i.e., assuming time independence of the

permittivity of material, assuming that the material is weakly

absorbing, and recalling that the speed of the electromagnetic

wave in a vacuum is c = 1/
√

ε0μ0 and the index of refraction

of the material is n = √ε, we rewrite Equation (7) as

∇ × (∇ × �E)+ n2

c2

∂2 �E
∂t2

= 0. (8)

Now, using the identity ∇ × (∇ × �A) = ∇(∇ · �A)−� �A we

rewrite Equation (8) in the following form:

� �E − n2

c2

∂2 �E
∂t2

−∇(∇ · �E) = 0. (9)

From this point the derivations will significantly deviate

from the procedure commonly performed in all of the books

and journal publications on nonlinear optics since we will

be considering the permittivity of the material and, conse-

quently, the index of refraction, as a coordinate dependent

function. In contrast to our approach, customary considera-

tions treat permittivity as a constant, zeroing the third term in

the left-hand side of Equation (9) and reducing this equation

to the commonly known form that contains only two first

terms and is called the wave equation. As we show below,

neglecting the third term is a significant mistake that leads to

an inadequate description of wave propagation in nonlinear

media.

For the conditions of inhomogeneity of the properties

of electrically neutral media, such as in the case of prop-

agation of short wavelength waves in the ionosphere[13],

Equation (9) can be rewritten in the following form:

� �E − n2

c2

∂2 �E
∂t2

+∇
(
∇ε · �E

ε

)
= 0, (10)

where we use Equations (1) and (5) from which it follows

that∇ε· �E+ε∇ · �E = 0 and, therefore,∇ · �E =−(∇ε · �E/ε).

Finally, recalling that ε = n2 and using the convenient

expression for the displacement field �D = ε0ε �E = ε0(1 +
χ) �E = ε0

�E + �P , where χ is the electric susceptibility and
�P is the polarization density, we rewrite Equation (7) in the

following form:

� �E − 1

c2

∂2 �E
∂t2

+ 2∇
(
∇n · �E

n

)
= μ0

∂2 �PL

∂t2
+ μ0

∂2 �PN L

∂t2
,

(11)

where the polarization density vector is represented by the

sum of linear and nonlinear components denoted using the

subscripts ‘L’ and ‘N L’, respectively.

The solution of the propagation equation expressed in the

form of either Equation (10) or (11) can be expressed in

terms of the slowly varying amplitude function

�E(�r , t) = �A(�r)ei(�k(�r)·�r−ωt) + c.c. (12)

In this solution the vector amplitudes of the electric field

and the wavevector are coordinate dependent, i.e., expres-

sion (12) represents the electric field of a nonplanar wave.

Below we will demonstrate that, within paraxial approx-

imation and considering the propagation range in which

variation of the spatial profile of laser beam irradiance due

to the effect of nonlinear induced refraction is small and,

thus, can be considered as perturbation, the propagation

Equations (10) or (11) can be straightforwardly modified into

an equation that, as proposed in Refs. [11, 12], has a solution

represented by the blending of the solution of the Helmholtz

equation for propagation of a laser beam in a medium with a

uniform and irradiance independent refractive index similar

to the one obtained by Kogelnik and Li[14] and a correction

term that represents nonlinear field perturbation expressed in

terms of paraxial ray optics (the eikonal equation)[15].

3. Examination of current theory for laser beam propa-
gation in nonlinear media

Now we will demonstrate that the current formulations of

the propagation equation in nonlinear (self-induced inho-

mogeneity) media are based on two inconsistent and self-
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contradictory assumptions. First, in all theoretical works

known to us it is assumed that the laser beam has a plane

wavefront. Second, as mentioned above, the term responsi-

ble for refraction due to media inhomogeneity is disregarded,

i.e., the media are assumed as homogeneous.

Under the first assumption, i.e., assumption of a plane

wavefront, the solution of the propagation equation is

expressed in the form of the slowly varying amplitude

function

�E(x, y, z, t) = Ax (x, y, z)ei(kz z−ωt) x̂

+ Ay(x, y, z)ei(kz z−ωt) ŷ + c.c. (13)

Note that here, in accordance with the plane wave assump-

tion, the scalar product of vectors �k · �r from Equation (12) is

substituted with the product of scalars – kzz, where kz is the

component of the wavevector along the z-axis. The solution

form of Equation (13) assumes that the x- and y-components

of the wavevector and z-component of the electric field are

zero, i.e., the beam propagates exactly along the z-axis.

According to the second assumption, the term describing

refraction on the gradient of the refractive index is neglected.

Then, assuming linear polarization and, since the require-

ment of slowly varying amplitude implies that

∣∣∣∣∣∂
2 A

∂z2

∣∣∣∣∣�
∣∣∣∣k ∂ A

∂z

∣∣∣∣ , (14)

Equation (10) can be reformulated in a form retaining only

the amplitude A(x, y, z) of the electric vector aligned along

either the x-axis or the y-axis,

�T A +
(

ω2n2

c2
− k2

z

)
A + 2ikz

∂ A
∂z
= 0, (15)

where �T is the transverse Laplace operator.

By definition, the wavevector k = ωn/c, and since a

plane wave is assumed, the second term in Equation (15)

must be zero. However, all textbooks and scientific articles

at this stage of consideration submit that the wavefront

deviates from a plane. This, of course, contradicts the initial

assumption of a strictly plane front; however, is necessary,

as otherwise the self-focusing and self-trapping would not

follow from Equation (15). Thus, the second term of

propagation Equation (15) in all current models is assumed

to be nonzero. We will show below that this manipulation

has a devastating consequence.

Another inconsistent assumption of the current theory of

electromagnetic wave propagation in nonlinear media is that

the third term in complete propagation Equation (11) is

negligible and can be omitted, leading to the commonly

used Equation (15). As far as we know a justification

for such an omission was never provided. It appears that

the origin of this assumption can be traced to the original

work[16]. All of the subsequent works, except for our recent

publications[11, 12], followed the path laid[16] and labored on

various mathematical treatments of equations that can be

traced to the propagation equation deduced for homogeneous

media. Thus, the ‘foundational’ propagation equation in

nonlinear optics was deduced while disregarding media

inhomogeneity (inherent, induced or self-induced), and has

the form of Equation (15) missing the ‘refraction’ term (see

for example, Equation 7.2.9 in Ref. [3]).

At this point one should wonder how an equation with a

term missing the refraction due to media inhomogeneity can

describe self-focusing. The answer is hidden in the second

term of Equation (15). The ‘nonzeroing’ of the second term

in Equation (15) is crucial for constructing all nonlinear

propagation effects out of this oversimplified equation. In-

deed, introducing nonlinearity of the refractive index, n =
n0 + n2〈|E |2〉t , Equation (15) can be modified into the

following form[17, 18]:

∂2 E
∂x2

+ 2ik
∂ E
∂z
= −k2 n2

n0
|E |2 E, (16)

that is equivalent to the infamous (in the realm of nonlinear

wave propagation) nonlinear Schrodinger’s equation[19]

∂2ψ

∂x2
+ i

∂ψ

∂z
= −κ|ψ |2ψ. (17)

4. Revised propagation equation for slowly varying am-
plitude

Let us revise the foundation of the current theory for the

propagation of a beam of an electromagnetic wave in a

nonlinear medium. In this consideration we will use the

general form of 3D propagation Equation (7) that follows

directly from Maxwell’s equations. Following a traditional

approach, we will look for the solution of this equation in

the following form of wave with varying amplitude:

�E = Ex x̂ + Ey ŷ + Ez ẑ = �A(x, y, z)p(t)ei(kx x̂+ky ŷ+kz ẑ−ωt)

= (Ax (x, y, z)x̂ + Ay(x, y, z)ŷ + Az(x, y, z)ẑ)p(t)

× ei(kx x̂+ky ŷ+kz ẑ−ωt), (18)

where function p(t) is the dimensionless pulse shape such

that the time integral of this function from minus to plus

infinity equals unity.

Let us now modify propagation Equation (9) assuming

that the pulse shape is a slowly varying function compared

to the period of wave oscillation and that the dielectric

constant, ε, and therefore the refractive index, n, are time

independent. Then, recalling that ε = n2, and substituting

solution of Eqaution (18) into Equation (9), neglecting the

time derivative of pulse shape p(t) as it is a slow function,
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and eliminating the exponent of phase, Equation (9) can be

transformed into the equation for the amplitude,(
k2

x + k2
y + k2

z −
ω2n2

c2

)
Ax x̂

+
(

k2
x + k2

y + k2
z −

ω2n2

c2

)
Ay ŷ

+
(

k2
x + k2

y + k2
z −

ω2n2

c2

)
Az ẑ

− 2i

(
kx

∂ Ax

∂x
+ ky

∂ Ax

∂y
+ kz

∂ Ax

∂z

)
x̂

−
(

∂2 Ax

∂x2
+ ∂2 Ax

∂y2
+ ∂2 Ax

∂z2

)
x̂

− 2i

(
kx

∂ Ay

∂x
+ ky

∂ Ay

∂y
+ kz

∂ Ay

∂z

)
ŷ

−
(

∂2 Ay

∂x2
+ ∂2 Ay

∂y2
+ ∂2 Ay

∂z2

)
ŷ

− 2i

(
kx

∂ Az

∂x
+ ky

∂ Az

∂y
+ kz

∂ Az

∂z

)
ẑ

−
(

∂2 Az

∂x2
+ ∂2 Az

∂y2
+ ∂2 Az

∂z2

)
ẑ

− 2

[
∇
(∇n

n
· ( �Aei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (19)

Note that the first three terms in the left-hand side of

Equation (19) are null, since by definition k2
x + k2

y + k2
z −

(ω2n2/c2) = 0, and, as in the previous deduction of Equa-

tion (10), we used equation ∇ · �E = −( �E∇ε/ε) in order

to formulate the right-hand side of Equation (19). Thus,

the propagation equation in the nonlinear media has the

following form:

� �A + 2i

(
kx

∂ �A
∂x
+ ky

∂ �A
∂y
+ kz

∂ �A
∂z

)

+ 2

[
∇
(∇n

n
· ( �Aei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (20)

This equation is cardinally different from the currently

used Equations (15)–(17) in both aspects of physics and

of mathematics. From the point of view of a physicist,

Equation (20) straightforwardly shows that beam refraction

is produced by self-induced inhomogeneity of the refractive

index (that can be a result of the Kerr effect, material

ionization etc.). Also, a physicist will find appealing that the

presented theory expressed by Equation (20) satisfies the cor-

respondence principle since, as we will demonstrate below,

it contains geometrical optics and Equation (20) transforms

into the ray-optics equation under the assumption of

infinitely small wavelength. In contrast, Equations (15)–(17)

do not lead to the geometrical optics in the limiting case

of infinitely small wavelength and thus do not satisfy the

correspondence principle.

From the point of view of a mathematician new equation

of propagation Equation (20) dramatically differs from the

current propagation equation in one very peculiar aspect –

it has no self-similar solution. In contrast, Equation (16)

rewritten as nonlinear Schrodinger’s Equation (17) has a

self-similar solution, or so called soliton solution, that serves

as the foundation for the prediction of laser beam self-

trapping and all the current ‘filament’ theories that predict

mind boggling lengths of self-trapped laser ‘filament’.

5. Modification of the revised propagation equation for
cases of slowly variable amplitude and paraxial laser
beam propagation at distances shorter than or compa-
rable to the Rayleigh length

Let us explore the complete 3D propagation Equation (20)

within paraxial beam approximation while considering a

propagation range in which perturbation of the spatial profile

of laser beam irradiance by the nonlinear induced refraction

is negligible. The latter condition is realized within the

range of several Rayleigh lengths for a focused laser beam

with pulse energy that is below a certain value (see detailed

discussion in Refs. [11, 12]).

Here we will demonstrate that the propagation Equa-

tion (20) leads, as proposed in Refs. [11, 12], to the solution

represented by the blending of the solution of the Helmholtz

equation for propagation of a laser beam in a medium with

uniform and irradiance independent refractive index similar

to the one obtained by Kogelnik and Li[14] and a correction

term that represents nonlinear field perturbation expressed in

terms of a paraxial ray-optics (eikonal) equation[15].

Assuming paraxial beam propagation it is easy to see

that one can neglect in propagation Equation (20) the terms

containing x- and y-components of the wavevector and

the terms containing the z-component of the electric field

amplitude as well as their derivatives (see the schematic of

the paraxial beam propagation in Figure 1).

Assuming linear polarization in the x–z plane and neglect-

ing smaller terms as described above allows the following

simplification of propagation Equation (20):[(
∂2 Ax

∂x2
+ ∂2 Ax

∂y2

)
+ 2i

(
kx

∂ Ax

∂x
+ kz

∂ Ax

∂z

)

− i

(
∂kx

∂x
+ ∂kz

∂z

)
Ax + 2i

(
x
∂kx

∂x
∂ Ax

∂x
+ z

∂kz

∂z
∂ Ax

∂z

)

− i

(
x
∂2kx

∂x2
+ z

∂2kz

∂z2

)
Ax+2

(
xkx

∂kx

∂x
+ zkz

∂kz

∂z

)
Ax
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dx

dzkz

kx

Ax

Az

A

Ray trajectory

Wave front Wave front

Figure 1. Schematic of evolution of electric field amplitude and wavevector

during laser beam propagation.

+
(

x2

(
∂kx

∂x

)2

+ z2

(
∂kz

∂z

)2
)

Ax

]
x̂

+
[(

∂2 Az

∂x2
+ ∂2 Az

∂y2

)
+ 2i

(
kx

∂ Az

∂x
+ kz

∂ Az

∂z

)

− i

(
∂kx

∂x
+ ∂kz

∂z

)
Az + 2i

(
x
∂kx

∂x
∂ Az

∂x
+ z

∂kz

∂z
∂ Az

∂z

)

− i

(
x
∂2kx

∂x2
+ z

∂2kz

∂z2

)
Az+ 2

(
xkx

∂kx

∂x
+ zkz

∂kz

∂z

)
Az

+
(

x2

(
∂kx

∂x

)2

+ z2

(
∂kz

∂z

)2
)

Az

]
ẑ

− 2

[
∇
(∇n

n
· ( �Aei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

≈
[(

∂2 Ax

∂x2
+ ∂2 Ax

∂y2

)
+ 2ikz

∂ Ax

∂z

]
x̂ +

[
2ikz

∂ Az

∂z

]
ẑ

− 2

[
∇
(∇n

n
· ( �Aei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (21)

Then, from the simplified propagation Equation (21) we can

extract two equations: one for the x-coordinate(
∂2 Ax

∂x2
+ ∂2 Ax

∂y2

)
+ 2ikz

∂ Ax

∂z

+ 2

[
∇x

(∇n
n

· �Aei(kx x+ky y+kz z)
)]

e−i(kx x+ky y+kz z)

= 0, (22)

and the second for the z-coordinate

ikz
∂ Az

∂z
+
[
∇z

(∇n
n

· ( �Aei(kx x+ky y+kz z))

)]
e−i(kx x+ky y+kz z)

= 0. (23)

The third term in the left-hand side of Equation (22) for

the x- (transverse) component of the amplitude of the

electric field is small compared to the first two terms, and

for the short propagation distances it can be neglected.

Then, Equation (22) acquires a form similar to the equation

obtained for diffraction dominated laser beam propagation

in empty resonators[14]. The solutions of Equation (22)

while neglecting the third term can be found in the classical

article of Kogelnik and Li[14], and according to this work,

the fundamental mode of the solution is represented by the

field that has Gaussian distribution of amplitude in the radial

direction with a beam width that changes along the z-axis

and has a spherical shape of the wavefront with a radius that

is also a function of z. Of course, for far field propagation

the third term in the left-hand side of Equation (22) must

be accounted for, since the relatively small deviations of

the amplitude of the electric field and the shape of the

wavefront should accumulate while propagating at long

distances, resulting in significant modification of both the

beam intensity distribution and the wavefront shape.

Both terms in the left-hand side of Equation (23) have

similar magnitude. Now, let’s demonstrate that the solution

of Equation (23) describes perturbation of the wavefront

of the ‘carrier’ field given by the approximate solution of

Equation (22) described above.

ikz
∂ Az

∂z
ẑ = −

[
∇z

(∇n
n

· ( �Aei(kx x+ky y+kz z))

)]
× e−i(kx x+ky y+kz z)

= −e−i(kx x+ky y+kz z) ∂

∂z

(
1

n
∂n
∂x

Ax ei(kx x+ky y+kz z)
)

ẑ

= −
[(

1

n
∂2

∂z∂x
− (∂n/∂z)(∂n/∂x)

n2

)
Ax

+ 1

n
∂n
∂x

(
∂ Ax

∂z
+ ikz Ax

)]
ẑ

≈ −ikz
1

n
∂n
∂x

Ax ẑ (24)

or

∂ Az

∂z
≈ −1

n
∂n
∂x

Ax . (25)

Finally, recalling that in paraxial approximation change of

the angle between the wavevector and z-axis, dϕ, equals the

ratio of the x and z components of the wavevector or the ratio

of the z- and x-components of the electric field amplitude,

Equation (25) can be rewritten as

dϕ = −δAz

Ax
≈ 1

n
∂n
∂x

dz, (26)

which is the eikonal equation[15]. We use integration of this

equation (see, for example, Equation (7) in Ref. [12]) in our

previous works[11, 12] in order to compute radial distribution
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of the angle of the wavevector after the propagation of a

focused laser beam through the caustic under conditions

when focusing due to the Kerr effect and defocusing due

to ionization take place (see, for example, Equation (8) in

Ref. [12]).

At the same time, the local projections of the wavevector

are uniquely determined from the system of equations

k2
x + k2

z =
ω2n2

c2

kx

kz
= tgϕ, (27)

with the solution

kz(x, z) = ωn(x, z)
c(1+ tgϕ(x, z))1/2

,

kx (x, z) = ωn(x, z)tgϕ(x, z)
c(1+ tgϕ(x, z))1/2

. (28)

Finally, complete Equation (20) for electromagnetic wave

propagation written, without affecting its generality, for

linear polarization in the x–z plane (or instead its simplified

equivalent Equation (21) deduced for paraxial and near field

propagation) in combination with Equations (26)–(28) and

with the addition of the equation describing inhomogeneity

of the index of refraction (either self-induced due to the Kerr

effect and ionization or externally induced due to thermal

effect, large scale turbulence, etc. or inherent due to spatially

variable material properties) represents a closed system of

equations that provides a unique solution describing electro-

magnetic wave propagation in an inhomogeneous medium.

6. Example of computational simulation of paraxial
propagation of a focused laser beam in nonlinear media

The results of the simulation of laser beam propagation

through air (normal conditions) assuming Gaussian temporal

shape of the laser pulse with duration τ = 100 fs and a

Gaussian spatial beam profile with the beam radius on 1/e2

level in the waist, w0 = 50 μm, are shown in Figure 2, that

presents the local angle of the wavevector, ϕzs , computed for

propagating from z0 = −2zR to zs = 2zR (here Rayleigh

length is zR = 19.62 mm) as a function of dimension-

less laser radius, r/w(zs) (ratio of radial coordinate to the

Gaussian beam radius w(zs) at the end of the computational

range, zs), for different moments of dimensionless time, η/τ

(negative – before the pulse), and for two pulse energies

of 0.2 and 0.4 mJ.

The simulation results show that the contribution to the

refractive index due to the Kerr effect (Figure 2a) results

in focusing of the central part of the beam. The diffrac-

tion divergence of the outer area of the beam is partially

compensated and in the locations with dimensionless laser

Figure 2. The angle of individual rays at the exit of the zone with high

beam intensity where induced refraction is large computed for laser beam

propagation through air (normal conditions) assuming Gaussian temporal

shape of the laser pulse with duration τ = 100 fs and a Gaussian spatial

beam profile with the beam radius on 1/e2 level in the waist, w0 = 50 μm,

shown as a function of dimensionless laser radius, r/w(zs ), for different

moments of dimensionless time, η/τ , (negative – before the pulse): (a)

total radiated energy per pulse Epulse = 0.2 mJ (maximum irradiance I0 =
2.87 × 1017 W m−2); (b) total radiated energy per pulse Epulse = 0.4 mJ

(maximum irradiance I0 = 5.75×1017 W m−2). All computational results

correspond to the laser wavelength λ = 800 nm.

radius r/w(zs) larger than approximately unity, the self-

induced refraction is negligible and the beam divergence is

governed predominantly by diffraction. For dimensionless

laser radius r/w(zs) < 1 the nonlinear focusing is dominant.

In this region the optical power of the Kerr self-focusing

‘lens’ is increasing with time, reaching its maximum when

laser power is at the maximum value (η = 0) and then

symmetrically (in time) decreasing. Simultaneously with

refraction the nonlinear Kerr produces a shift of the laser

frequency numerically described in Ref. [12].

In nonlinear media that are ionized by the laser radiation

the contribution of the Kerr effect that produces focusing

is combined with the defocusing effect due to nonuniform

ionization (Figure 2b). The ionization is considered as in
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Ref. [12]. We assume that the main ion produced in air is

O+2 . For the laser wavelength λ = 800 nm and typical values

of the radiation intensity at which self-focusing occurs, the

Keldysh parameter γ > 1 and the limit of multiphoton

ionization are valid. The electron number density is given

by the equation

Ne(r, z, t) =
∫ t

−∞
σk[N0−Ne(r, z, ξ)][I (r, z, ξ)]kdξ (29)

where N0 is the number density of neutrals, and I (r, z, t)
is the laser pulse intensity; σk is the ionization rate due to

absorption of k photons such that k = int[Ii/�ω] + 1, where

Ii is the potential ionization of gas and ω is the laser angular

frequency.

The effect of media ionization on the beam propagation

results in strong divergence of the near-axis part of the

beam (Figure 2b). The maximum angle of divergence is

increasing in time as the degree of ionization grows, reaching

its maximum at the end of the laser pulse. Simultaneously,

the outer part of the beam behaves similarly to the above

described dynamics, dominated by the focusing due to the

Kerr effect.

It was shown in our previous work[11] that the critical

laser power for self-focusing depends on the laser intensity,

which is determined by the effective radius of a Gaussian

beam. This power is substantially less than independent of

laser intensity critical power computed in accordance with

the current theory[16]. For example, our theory predicts that

for the interaction conditions as in Figure 2 the critical power

is Pcr ≈ 0.135 GW. Whereas, for the same conditions,

the current theoretical model predicts the almost order of

magnitude larger value Pcr ≈ 1.7 GW.

7. Concluding remarks

For obvious reasons, it is usual practice in the majority of

nonspecialized educational courses and textbooks to ignore

the contribution of the term containing ∇ε and describe

electromagnetic wave propagation using the equation de-

duced for uniform media. Unfortunately, without much

consideration, this propagation equation was adopted in

nonlinear optics and after modifications it took the form of

Equations (15) and (16). Then, a relatively recent trend

mandated further modification of this simplified equation

in order to acquire an appearance similar to the nonlin-

ear Schrodinger’s equation (i.e., Equation (17)). Here we

would like to reinforce that omitting the third term in the

left-hand side of the above derived complete propagation

Equation (9) leads to inadequate description of the physics

involved. Indeed, it is self-contradictory to disregard the

inhomogeneity of optical properties of media (both induced

and inherent) at the stage of deduction of the propagation

equation and then to reintroduce into the obtained sim-

plified propagation equation the nonlinear dependence of

the index of refraction, n, on the laser irradiance. Trivial

estimates show a non-negligible contribution of the term

containing ∇ε in complete Equation (10) for laser beam

propagation in nonlinear media. Therefore, ignoring this

term leads to false predictions. One of the examples of

such false prediction is waveguide like propagation of a laser

beam in nonlinear media[16] that leads to the development

of fascinating concepts of optical soliton and laser beam

filamentation that recently produced a flurry of extensive

theoretical research. It is easy to see that for a laser beam

with intensity distribution that is near-Gaussian a possible

solution of an incorrectly abbreviated propagation equation,

such as Equations (15)–(17), indeed has a self-similar form.

The currently accepted interpretation of this self-similarity

is that the diffraction divergence and divergence produced

due to media ionization is compensated by self-focusing[2–4].

One of the results, following on from the self-similarity of

the solution of this inadequate propagation Equations (15)–

(17), is a captivating (however, contradictory to experimental

observations) prediction that kilometers long transmission of

the laser beam can be achieved in an atmosphere without the

beam diverging[6].

Our work demonstrates that the solution of complete

Equation (10) that adequately describes laser beam propa-

gation in nonlinear media does not have self-similar form.

As a demonstration we solved a complete propagation equa-

tion for the conditions when input from the nonlinear re-

fraction can be treated as perturbation of the solution of

the linear Helmholtz equation describing propagation of a

focused laser beam[11, 12]. This solution demonstrated that

laser beam divergence is affected by Kerr self-focusing and

plasma defocusing differently in different radial locations of

the laser beam and in different times during the laser pulse,

i.e., self-similar beam propagation does not occur.

Another inconsistency of the customary approach in which

Equation (17) or its derivatives are utilized for modeling of

diverging or converging laser beam propagation in nonlinear

media is that Equation (17) is derived under the assumption

of a plane wavefront. Consequently, it is inapplicable for

the description of nonplanar wavefronts. However, in a

self-contradictory manner similar to the above illustrated

reinsertion of the nonlinear effect into Equation (17), the

complex nonplanar wave propagation is described in all

current theoretical models using plane wave propagation

Equation (17) or its derivatives. At this point it is worth

mentioning that the Poynting vector maintains its direction

in the approximation of a plane wavefront. In contrast, for a

converging or diverging laser beam the local direction of the

Poynting vector varies as a function of the distance from the

axis. Our previous eikonal-paraxial model[11, 12] correctly

reflects this behavior of the Poynting vector.

The effect of inhomogeneity of the dielectric constant

on electromagnetic wave propagation is known in several
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relatively narrowly specialized fields. So far, the practical

application of this concept was limited to the theory of

radio wave propagation in the ionosphere (see Ref. [13]) and

electromagnetic and acoustic wave propagation in stratified

media[20], such as radar propagation in atmospheric bound-

ary layers[21].

In conclusion we summarize the contribution of this work

to the field of nonlinear optics as follows. (1) Realization

that the gradient of dielectric constant always provides a non-

negligible contribution in the propagation equation of a laser

beam with realistic beam profile because the characteristic

length of change of irradiance is comparable to the ‘beam

size’ (for any reasonable definition of this physical property).

(2) Development of the method described in Refs. [11, 12]

in which we integrated diffractive and geometrical optics by

blending the solution of the linear Maxwell’s equation and

a correction term that represents nonlinear field perturbation

expressed as solution of a paraxial ray-optics (eikonal) equa-

tion that opens an elegant means of numerical computation

of the ray trajectories (avoiding singularities) as the focused

laser beam propagates in a nonlinear and ionized medium

through its caustic (the area near the focal plane that extends

several Rayleigh lengths).

The realm of nonlinear optics that deals with laser beam

propagation has benefited from a multitude of experimental

works and significant experience has been accumulated in

solving complex mathematical problems. However, it seems

that substantial improvement of the theoretical part of non-

linear optics is needed and revision of the fundamentals of

the theoretical model provided in our work can revitalize and

substantially advance this field.
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