BULL. AUSTRAL. MATH. SOC.

VOL. 6 (1972), 169-175.

Projective groups in varieties

R.A. Bryce

A number of questions of Philip Hall concerning complemented normal subgroups of finite relatively free groups are considered.

1. Introduction

We here give answers of sorts to a number of questions of Philip Hall. In a well-known paper [3] Hall defines the concept of splitting group in a variety of groups. (The reader is referred to [3], or to \$4 of Chapter 4 of Hanna Neumann's book [4] for definitions.) In \$4 of that paper he finds various finite splitting groups in locally finite varieties. Since a group in a variety \underline{V} is a splitting group if and only if it is isomorphic to a complement of a normal subgroup in some free group of \underline{V} , the problem of finding splitting groups is in this sense the same as that of finding complemented normal subgroups in free groups of \underline{V} . Hence (paraphrasing (Q_1) of [3]) one asks,

(1.1) What normal subgroups of relatively free groups are complemented?

Let F be a (finite) free group in a locally finite variety \underline{V} . Following [4] write, for any finite group G, M(G) for some fixed term of the lower nilpotent series of G or some fixed term of a lower p-series of G. Then (Theorem 3 in [3]): M(F) is complemented in F. Now put

(1.2) $\underline{M} = \{G \in \underline{V} : G \text{ finite, } M(G) = 1\}.$

It is easy to see that $\underline{\mathbb{M}}$ is subgroup closed, quotient group closed and (finite) direct product closed. Hence, using 15.73 in [4], there is a (unique) subvariety $\underline{\mathbb{V}}$ of $\underline{\mathbb{V}}$ whose class of finite groups $\underline{\mathbb{V}}^*$ is precisely $\underline{\mathbb{M}}$:

Received 5 October 1971.

169

$\underline{U}^* = \underline{M}$.

But then if $F_{p}(\underline{U})$ is a free group of finite rank in \underline{U} , there exists an onto homomorphism $\alpha : F_{p}(\underline{V}) \rightarrow F_{p}(\underline{U})$. Now $F_{p}(\underline{V})$ is finite and one easily sees that ker $\alpha = M(F_{p}(\underline{V}))$; hence that ker α is complemented in $F_{p}(\underline{V})$ by Hall's Theorem mentioned above; and hence that

$$F_{p}(\underline{U})$$
 is a splitting group in \underline{V}

(Theorem 3 in [3]; 44.45 in [4]).

One then asks (paraphrasing (Q_2) of [3]):

(1.3) What subvarieties of $\underline{\vee}$ have the property that their free groups are splitting groups in $\underline{\vee}$?

It is questions (1.1) and (1.3) that are considered here in the case of locally finite varieties. In fact much of what is done is in Bryant [1] (in spirit if not in fact), and what is not can be deduced from his Lemmas 2 and 3, though these deductions are hardly shorter than doing things directly. Accordingly we proceed from first principles. Many helpful comments from Dr Bryant I gratefully acknowledge.

2. A splitting theorem

Let G be a finite group and N a normal subgroup of G . Denote by $\Phi(G\ \div\ N)$ that subgroup of $\ G$ defined by

$$\Phi(G \div N)/N = \Phi(G/N)$$

(the Frattini subgroup of G/N). Call $N \quad \Phi-minimal$ in G if for every normal subgroup M of G contained in N, $\Phi(G \div M) = \Phi(G \div N)$ only if M = N.

A group is a splitting group in a variety if and only if it is projective and we shall from now on speak mainly of projective, rather than splitting, groups in a variety (see §4 of Chapter 4 of [4]). A group will be called projective if it is projective in some variety.

The theorem now stated provides an answer to (1.1).

THEOREM 2.1. A normal subgroup of a finite projective group is

complemented if and only if it is Φ -minimal.

Proof. One way is easy: if N is complemented in any group G (never mind projective) suppose that M is normal in G and contained in N with

$$\Phi(G \div M) = \Phi(G \div N) .$$

Then

$$N/M \leq \Phi(G \div N)/M = \Phi(G \div M)/M = \Phi(G/M)$$

But N/M is complemented in G/M so it follows that N/M = 1 or M = N, as required.

Conversely suppose that P is projective and that N is $\Phi\text{-minimal}$ in P . Let L be a minimal supplement of N in P , so that

$$(2.2) L \cap N \leq \Phi(L)$$

(or else a maximal subgroup of L would supplement N in P contradicting the minimality of L). Now $P/N = LN/N \cong L/L \cap N$. Let $\gamma : P \rightarrow L/L \cap N$ be the natural homomorphism and put $\beta = \gamma | L$. Then, since P is projective, there exists $\alpha : P \rightarrow L$ such that the diagram

commutes.

Note that

$$L\alpha\beta = L\gamma = L/L\cap N$$
,

so that

$$L = (L\alpha) \ker \beta = L\alpha(L \cap N) = L\alpha$$

since $L \cap N$ is Frattini in L. Being onto, $\alpha | L$ is therefore one-to-one:

 $(2.3) ker \alpha \cap L = 1 ;$

and if $x \in P$, there exists $l \in L$ such that $x\alpha = l\alpha$ whence $l^{-1}x \in ker\alpha$, or

 $(2.4) Lker \alpha = P .$

Finally, ker $\alpha \leq N$ so that

 $\Phi(P \div \ker \alpha) = \ker \alpha \Phi(L) = \ker \alpha(L \cap N) \Phi(L) = N \Phi(L) = N \Phi(L \div L \cap N) = \Phi(P \div N)$. The Φ -minimality of N then ensures that $\ker \alpha = N$ and (2.3) and (2.4) that L complements N.

COROLLARY 2.5. Let P be a finite projective group in a variety $\underline{\mathbb{V}}$ with N normal in P. Every minimal supplement of N in P is projective in $\underline{\mathbb{V}}$, and, if N is Φ -minimal, every minimal supplement of N is a complement.

Proof. Up to (2.4) in the proof above, N was arbitrary.

COROLLARY 2.6 (Bryant [1]). Let $\underline{\mathbb{V}}$ be a locally finite variety and G a finite group in it. There exists a finite projective P in $\underline{\mathbb{V}}$ (the projective cover of G) such that $P/\Phi(P) \cong G/\Phi(G)$, and a homomorphism $\alpha : P \Rightarrow G$ onto G. Moreover if P_1 is projective in $\underline{\mathbb{V}}$ and $\beta : P_1 \Rightarrow G/\Phi(G)$ is onto then there exist onto homomorphisms $\gamma : P_1 \Rightarrow P$, $\delta : P_1 \Rightarrow G$ such that the diagram

commutes.

Proof. Choose a finite free group F of \underline{V} and a homomorphism $\mu : F \Rightarrow G$ onto G. Let $N \leq \ker \mu$ be Φ -minimal with

$$\Phi(F \div N) = \Phi(F \div \ker \mu)$$
.

By Theorem 2.1 N is complemented in F so F/N = P (say) is projective in \underline{V} , and there exists a homomorphism $\alpha : P \Rightarrow G$ onto G; note that ker $\alpha \leq \Phi(P)$. The rest of the proof follows from the projectivity of P_1 and the non-generator property of Frattini subgroups.

If N_1 , N_2 are normal in the finite group G, and $\tilde{\Phi}(G \div N_1) = \Phi(G \div N_2)$ then, as is easy to see, every supplement of one is a supplement of the other. Moreover, then every minimal supplement of one is a minimal supplement of the other. If, further, G is projective and N_1 , N_2 are Φ -minimal then every complement of one is a complement of the other: if C complements N_2 it is, by the preceding remark, a minimal supplement for N_1 , whence a complement by Theorem 2.1. That is

LEMMA 2.7. If P is projective and N_1 , N_2 are Φ -minimal normal subgroups of P such that $\Phi(P \div N_1) = \Phi(P \div N_2)$, then they have common complements.

COROLLARY 2.8 (Bryant [1]). A finite group P in a locally finite variety \underline{V} is projective if and only if it is maximal among finite groups of \underline{V} whose Frattini factor groups are isomorphic to $P/\Phi(P)$.

Proof. Suppose that P is maximal in this sense. Let F be free in \underline{V} and $\alpha : F \rightarrow P$ a homomorphism onto P. It is clear that ker α is Φ -minimal, hence complemented by Theorem 2.1, so P is projective in \underline{V} .

Conversely suppose that P is projective in <u>V</u> and that $H \in \underline{V}$ with

 $H/\Phi(H) \cong P/\Phi(P)$.

Choose F free in \underline{V} of large enough rank. Then there exist homomorphisms β , γ of F onto H, P respectively such that

 $\Phi(F \div \ker\beta) = \Phi(F \div \ker\gamma) .$

Let $N \leq \ker\beta$ be Φ -minimal with $\Phi(F \div N) = \Phi(F \div \ker\beta)$.

Both N and ker are Φ -minimal, and

 $\Phi(F \div N) = \Phi(F \div \ker \gamma) .$

By Lemma 2.7 therefore, N and kery have a common complement, C say, isomorphic to P. But H is a homomorphic image of C and therefore of P.

3. More projectives

We take up the question (1.3). Suppose that \underline{X} is a class of groups in a variety \underline{V} , and call \underline{X} saturated in \underline{V} if for all finite G in \underline{V} , $G/\Phi(G)$ is in \underline{X} only if G is in \underline{X} .

LEMMA 3.1. If \underline{X} is quotient group closed and saturated in \underline{V} and if P is a finite projective group in \underline{V} and N a normal subgroup of P minimal with respect to $P/N \in \underline{X}$, then N is complemented in P. Proof. For then N is Φ -minimal in P.

THEOREM 3.2. A subvariety \underline{U} of a locally finite variety $\underline{\underline{V}}$ has the property that its free groups of finite rank are projective in $\underline{\underline{V}}$ if and only if $\underline{\underline{U}}$ is saturated in $\underline{\underline{V}}$.

Proof. If \underline{U} is saturated in \underline{V} the result follows from Lemma 3.1. Conversely suppose each free group of finite rank in \underline{U} is projective in \underline{V} and that G in \underline{V} is finite with $G/\Phi(G) \in \underline{U}$. Let P be the projective cover of $G/\Phi(G)$ in \underline{U} . Since P is isomorphic to a complement of a normal subgroup of a free group of finite rank in \underline{U} , it follows that P is projective in \underline{V} . Hence by Corollary 2.6, G is a homomorphic image of P and therefore $G \in \underline{U}$, so \underline{U} is saturated in \underline{V} .

4. Remarks

1. The results of Hall mentioned in §] are covered by Lemma 3.1 and Theorem 3.2, for the classes \underline{M} of groups in (1.2) are saturated (and quotient group closed of course): for soluble groups this is well known to formation theorists, and the proof of Lemma 3 in [3] (or of (44.44) in [4]) can be read to give this in the general case. The crux of these proofs is the Frattini argument, which is not surprising as in essence one must show that a local formation is saturated, which is itself proved by the Frattini argument. In this context it is worth drawing attention to §5 of [3] and in particular to its last paragraph, the last sentence of which is simply the observation (though not in these terms) that the classes \underline{M} above are saturated.

2. Lemma 3.1 above suggests that in seeking projectives it is not natural to look for sub-*varieties* of \underline{V} whose free groups are projective. For example, since in a locally finite variety \underline{V} there is a bound on the order of *r*-generator groups, it is easy to see that any sub-formation \underline{F} of \underline{V}^* has an *r*-generator free group, and that these free groups are projective in \underline{V} if and only if \underline{F} is saturated in \underline{V} . On a different note it is natural to ask: are the free groups of finite rank in a subvariety \underline{U} of \underline{V} projective in \underline{V} if and only if the free group of countably infinite rank in \underline{U} is also projective in \underline{V} ?

3. A stricter interpretation than (1.3) of (Q_2) on p. 351 of [3] can be made, namely: for fixed r what subvarieties \underline{U} of \underline{V} have the

property that $F_{r}(\underline{U})$ is projective in \underline{V} ? Clearly an answer can be given to this in terms of saturation for (at most) *r*-generator groups.

4. Lemma 3.1 can be used to prove a well known result of Shult [5] and Carter and Hawkes [2] in the form: if G is finite and soluble, \underline{F} a saturated formation with $G^{\underline{F}}$ (the smallest normal subgroup of G whose factor group is in \underline{F}) abelian then every minimal supplement of $G^{\underline{F}}$ is a complement.

References

- [1] Roger M. Bryant, "Finite splitting groups in varieties of groups", Quart. J. Math. Oxford (2) 22 (1971), 169-172.
- [2] Roger Carter and Trevor Hawkes, "The <u>F</u>-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.
- [3] P. Hall, "The splitting properties of relatively free groups", Proc. London Math. Soc. (3) 4 (1954), 343-356.
- [4] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 37. Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [5] Ernest E. Shult, "A note on splitting in solvable groups", Proc. Amer. Math. Soc. 17 (1966), 318-320.

Department of Pure Mathematics, School of General Studies, Australian National University, Canberra, ACT.