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Linearised Reynolds-averaged predictions of
secondary currents in turbulent channels with
topographic heterogeneity
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A rapid predictive tool based on the linearised Reynolds-averaged Navier–Stokes
equations is proposed in this work to investigate secondary currents generated by
streamwise-independent surface topography modulations in turbulent channel flow.
The tool is derived by coupling the Reynolds-averaged momentum equation to the
Spalart–Allmaras transport equation for the turbulent eddy viscosity, using a nonlinear
constitutive relation for the Reynolds stresses to capture correctly secondary motions.
Linearised equations, describing the steady flow response to arbitrary surface modulations,
are derived by assuming that surface modulations are shallow. Since the equations are
linear, the superposition principle holds and the flow response induced by an arbitrary
modulation can be obtained by combining appropriately the elementary responses
obtained over sinusoidal modulations at multiple spanwise length scales. The tool
permits a rapid exploration of large parameter spaces characterising structured surface
topographies previously examined in the literature. Here, channels with sinusoidal walls
and with longitudinal rectangular ridges are considered. For sinusoidal walls, a large
response is observed at two spanwise wavelengths scaling in inner and outer units
respectively, mirroring the amplification mechanisms in turbulent shear flows observed
from transient growth analysis. For longitudinal rectangular ridges, the model suggests that
the analysis of the response and the interpretation of the topology of secondary structures
is facilitated when the ridge width and the gap between ridges are used instead of other
combinations proposed in the literature.
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1. Introduction

When a wall-bounded turbulent flow develops over a surface with heterogeneous
attributes, for example, with lateral variations of the topography or of the roughness
properties, secondary currents emerge in the form of coherent streamwise-aligned vortices.
These flows, named by Prandtl as secondary flows of the second kind (Prandtl 1952),
have attracted significant interest since the first experiments in rectangular ducts with
heterogeneous rough surfaces conducted by Hinze (1967, 1973). In fact, these flows are
highly relevant in many industrial and environmental applications, where aerodynamic
surfaces are rarely smooth and homogeneous. Despite being relatively weak, with
velocities of a few per cent of the external velocity scale, these currents can alter natural
wall-normal transport properties of wall-bounded turbulent flows (Volino, Schultz & Flack
2011; Mejia-Alvarez & Christensen 2013; Vanderwel & Ganapathisubramani 2015; Hwang
& Lee 2018; Medjnoun, Vanderwel & Ganapathisubramani 2020; Zampiron, Cameron &
Nikora 2020) and can thus increase friction and heat transfer (Stroh et al. 2020a) and
modify the performance of aerodynamic surfaces (Mejia-Alvarez & Christensen 2013;
Barros & Christensen 2014).

Broadly speaking, the heterogeneity can be distinguished between topographical
variations, i.e. alternating regions of high/low relative elevation (Hwang & Lee 2018;
Medjnoun, Vanderwel & Ganapathisubramani 2018; Medjnoun et al. 2020; Castro
et al. 2021) and skin-friction variations, where the local wall shear stress varies as
a consequence of changes in the surface attributes, such as the roughness properties
(Barros & Christensen 2014; Chung, Monty & Hutchins 2018; Forooghi, Yang & Abkar
2020; Stroh et al. 2020b) or over superhydrophobic surfaces (Türk et al. 2014; Stroh
et al. 2016). Combinations of these two have also been considered, (e.g. Vanderwel
& Ganapathisubramani 2015; Yang & Anderson 2018; Stroh et al. 2020b). However,
in all cases, the flow topology observed above such surfaces is characterised by
alternating high-momentum pathways (HMP), corresponding to a downwash motion,
and low-momentum pathways (LMPs), correlated to an upwash motion, as observed by
Mejia-Alvarez & Christensen (2013) and Willingham et al. (2014). This alternance of
HMP and LMPs is observed both experimentally (Barros & Christensen 2014; Anderson
et al. 2015; Vanderwel & Ganapathisubramani 2015) and numerically (Stroh et al. 2016;
Chung et al. 2018). Even though the instantaneous field is highly complex (Vanderwel
et al. 2019), these motions are associated, in a Reynolds-averaged sense, with large-scale
streamwise vortical structures, driven by a turbulent torque produced by lateral variations
of the (anisotropic) Reynolds stress tensor (Perkins 1970; Bottaro, Soueid & Galletti 2006).

The lateral organisation and intensity of HMP and LMPs and of the associated vortical
structures is often discussed in relation to a characteristic spanwise length scale of
the heterogeneity, such as the spacing between longitudinal ridges or the width of
roughness strips or patches of superhydrophobic surface. Many authors have performed
parametric studies and have demonstrated that secondary motions are most intense when
this characteristic length scale is of the order of the thickness of the turbulent shear layer
(Vanderwel & Ganapathisubramani 2015; Chung et al. 2018; Yang & Anderson 2018).
However, significant changes in the flow topology, for example, the appearance of tertiary
flows, have also observed when other surface parameters are varied, such as the width of
the ridges or the ridge geometry. In an effort to quantify these aspects, Medjnoun et al.
(2020) introduced the ratio between the cross-sectional areas above and below the mean
surface height as the key surface parameter that distinguishes different topographies and
the observed flow structure. They showed that the circulation of the time-averaged vortical
structures is proportional to this ratio. However, a complete description of how surface

944 A4-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

47
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.478


Linearised RANS equations for the prediction of secondary flows

characteristics influence the structure and intensity of secondary motions is still lacking.
In fact, this endeavour has been hindered by the high-dimensional nature of the parameter
space that characterises heterogeneous surfaces, which is costly to fully explore using
experiments or scale-resolving simulations.

The overarching aim of this work is to develop a rapid predictive tool to aid the
exploration of such spaces. In this paper, we restrict our attention to surfaces with lateral
variations of the topography, but extensions to other types of heterogeneity are possible.
The proposed tool is based on the steady linearised Reynolds-averaged Navier–Stokes
(RANS) equations, augmented by a turbulent eddy-viscosity term. These equations have
been used in past work to clarify key mechanisms of wall bounded turbulence. For
instance, the characteristic spanwise length of near-wall streaks and large-scale motions
in turbulent shear flows is well captured by the energy amplification properties of the
Orr–Sommerfeld–Squire equations (del Álamo & Jiménez 2006; Pujals et al. 2009;
Hwang & Cossu 2010). Luchini & Charru (2010) and Russo & Luchini (2016) used
linearised RANS equations to model flows over undulated bottoms or to examine the
response to volume forcing. Meyers, Ganapathisubramani & Cal (2019) utilised the
linearised RANS equations to predict the decay rate of dispersive stresses associated
with secondary motions in the outer-layer region. Unlike in some of the previous
literature, where simple analytical profiles for the eddy viscosity have been used, here
the Reynolds-averaged momentum equations are coupled with the Spalart–Allmaras (SA)
transport equation for the turbulent eddy viscosity (Spalart & Allmaras 1994), to capture
more faithfully the variable topography. Linearised equations are then derived by assuming
that the topography is shallow when compared with any inner or outer length scale. For
shallow modulations, the nonlinear convective terms are negligible and arbitrary surface
topographies can be modelled using inhomogeneous linearised boundary conditions
(Luchini 2013). Using these equations, the response of the shear flow to an arbitrary,
spectrally complex surface topography can be obtained by applying the superposition
principle, i.e. by appropriately combining the elementary responses obtained for all the
harmonic components defining the given surface. Channels with sinusoidal walls (Vidal
et al. 2018) and with longitudinal rectangular ridges are considered in this paper as two
paradigmatic configurations that have received significant attention in the recent literature.

The modelling technique and the linearisation of the governing equations is discussed
in § 2. The approach is first applied to sinusoidal modulations in § 3, to clarify the
fundamental role of the spanwise length scale on the strength and structure of secondary
motions. With this insight, channels with rectangular ridges are considered in § 4. Finally,
conclusions are reported in § 5.

2. Methodology

2.1. Problem set-up and equations of motion
The incompressible flow of a fluid with kinematic viscosity ν in a pressure-driven channel
with fixed streamwise pressure gradient Π is examined. The streamwise, wall-normal
and spanwise directions, normalised by the channel mean half-height h, are identified
by the Cartesian coordinates (x1, x2, x3), with the origin of the wall-normal coordinate
located at the channel midplane. The friction velocity uτ = √

τw/ρ, with τw = hΠ the
mean wall friction, is used to normalise the velocity components (u1, u2, u3) along the
three directions. The reference pressure is pref = ρu2

τ and this leads to a non-dimensional
pressure gradient ∂ p̄/∂xi = δi1, with δij being the Kronecker delta. Reynolds-averaging
produces the mean velocity ūi and the fluctuation u′

i. The superscript (·)+, generally
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Figure 1. (a) Sinusoidal and (b) ridge-type topographies considered in this paper. The coordinate system
(x1, x2, x3), with origin on the symmetry plane, is shown. The streamwise direction x1 is oriented into the page.
When scaled by h, the mean channel height is equal to 2. Symmetric configurations obtained by mirroring
the lower wall geometries shown in the diagrams about the midplane x2 = 0 are considered. For sinusoidal
topographies, the period of the modulation is denoted by λ3. For ridge-type topographies, the spacing between
elements (the period) is denoted by S, while W and G are used to indicate the ridge width and the gap between
elements, respectively.

used for inner scaled quantities, is omitted in the following to reduce clutter, unless
necessary. With these definitions, the friction Reynolds number is Reτ = uτh/ν. We
consider channels with streamwise-independent modulations of the wall topography,
namely, sinusoidal modulations and rectangular ridges, as illustrated in figure 1.

The time-averaged flow structure in the channel is governed by the non-dimensional
Reynolds-averaged continuity and momentum equations

∂ ūi

∂xi
= 0, (2.1a)

ūj
∂ ūi

∂xj
= −δi1 + 1

Reτ

∂2ūi

∂x2
j

−
∂u′

iu
′
j

∂xj
, (2.1b)

with no-slip boundary conditions on the two walls. As common, the trace of the Reynolds
stress tensor is absorbed in the pressure term and we thus introduce the traceless stress
tensor τij = −u′

iu
′
j + 1

3 u′
iu

′
jδij. Assuming that a streamwise-independent mean flow (i.e.

∂(·)/∂x1 ≡ 0) develops over streamwise-independent modulations, the mean pressure can
be eliminated by employing a streamwise velocity/stream function formulation, where the
stream function ψ̄ satisfies ∇2ψ̄ = ω̄1 with

ω̄1 = ∂ ū3

∂x2
− ∂ ū2

∂x3
, (2.2)

the streamwise vorticity. With these definitions, the cross-stream velocity components
are ū2 = −∂ψ̄/∂x3 and ū3 = ∂ψ̄/∂x2, satisfying automatically the continuity equation
reduced to the cross-plane section. The Reynolds-averaged streamwise momentum and
stream function equations then become

∂ψ̄

∂x2

∂ ū1

∂x3
− ∂ψ̄

∂x3

∂ ū1

∂x2
= 1 + 1

Reτ

(
∂2ū1

∂x2
2

+ ∂2ū1

∂x2
3

)
+ ∂τ12

∂x2
+ ∂τ13

∂x3
, (2.3a)
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∂2

∂x2∂x3

[(
∂ψ̄

∂x2

)2

−
(
∂ψ̄

∂x3

)2]
+
(
∂2

∂x2
3

− ∂2

∂x2
2

)
∂ψ̄

∂x2

∂ψ̄

∂x3

= 1
Reτ

(
∂2

∂x2
2

+ ∂2

∂x2
3

)2

ψ̄ + ∂2

∂x2∂x3
(τ33 − τ22)+

(
∂2

∂x2
2

− ∂2

∂x2
3

)
τ23. (2.3b)

2.2. Linearised response model
Without loss of generality, we assume the wall modulation to be spanwise periodic, with
fundamental period λ3. We only consider zero-mean modulations of the wall geometry
since perturbations of the mean channel height are trivially explained as a change in the
Reynolds number, or as a wall-normal shift of the flow characteristics in boundary layers.
Hence, an arbitrary modulation can be expressed by a function f (x3), with cosine series

f (x3) =
∞∑

n=1

f n cos(nk3x3), (2.4)

with k3 = 2π/λ3 the fundamental wavenumber and f n the amplitude of the nth
wavenumber mode. Expressions for f (x3) for the two surfaces considered in the present
work are given in (3.1) and (4.1), respectively. Following Russo & Luchini (2016), we then
assume that the amplitude of the modulation is smaller than any other relevant geometric
or flow length scale and we introduce a small parameter ε � 1. The lower channel wall is
then located at x2 = −1 + εf (x3), while several configurations are possible for the upper
wall. In one of the alternatives, the upper wall is located at x2 = 1 − εf (x3), defining
symmetric channels where secondary currents occupy at most half the channel height. In
antisymmetric channels, where the upper wall is located at x2 = 1 + εf (x3), as in Vidal
et al. (2018), the secondary currents can occupy the entire channel height and interact
with the two shear layers developing over the top and bottom walls. In order to model
more closely secondary currents in boundary layers (Vanderwel & Ganapathisubramani
2015; Hwang & Lee 2018; Medjnoun et al. 2020) or open channel flows (Zampiron et al.
2020), where the secondary currents develop across the shear flow, symmetric channels
are considered in this paper.

In a small-modulation scenario, a generic time-averaged quantity q(x2, x3) in the
channel with modulated walls (dropping the overbar to reduce clutter) can be expanded
in a Taylor series in ε as

q(x2, x3) = q(0)(x2)+ εq(1)(x2, x3)+ O(ε2), (2.5)

where q(0) denotes the plane channel solution. This expansion implies that the strength of
secondary flows produced by a shallow modulation varies linearly with the amplitude ε and
the perturbation quantity q(1) can be thus interpreted as the flow response (i.e. secondary
currents) for a unitary change of the wall geometry given by (2.4).

Substituting the Taylor expansion (2.5) for all flow variables in the Reynolds-averaged
equations (2.3b) and considering terms at order zero in ε, the time-averaged streamwise
momentum equation is

0 = 1 + 1
Reτ

∂2u(0)1

∂x2
2

+ ∂τ
(0)
12
∂x2

, (2.6)
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while the stream function equation is trivially satisfied, since u(0)2 = u(0)3 = 0 in a plane
channel. Retaining terms at order one in ε, we obtain the set of equations

−∂ψ
(1)

∂x3
Γ = 1

Reτ

(
∂2

∂x2
2

+ ∂2

∂x2
3

)
u(1)1 + ∂τ

(1)
12
∂x2

+ ∂τ
(1)
13
∂x3

, (2.7a)

0 = 1
Reτ

(
∂2

∂x2
2

+ ∂2

∂x2
3

)2

ψ(1) + ∂2

∂x2∂x3
(τ
(1)
33 − τ

(1)
22 )+

(
∂2

∂x2
2

− ∂2

∂x2
3

)
τ
(1)
23 , (2.7b)

where Γ = ∂u(0)1 /∂x2. These equations describe the new equilibrium between the
perturbation of mean flow quantities (u(1)1 , ψ(1)) and the perturbation of the turbulent
stress tensor τ (1)ij . It is worth pointing out that the term ∂ψ(1)/∂x3Γ , analogous to
the off-diagonal coupling operator in the Orr–Sommerfeld–Squire linearised equations
(Schmid & Henningson 2000), is the only coupling term explicitly appearing in this set
of equations. Physically, this terms produces a spanwise modulation of the streamwise
velocity as a result of secondary motions in the cross-stream plane.

The key property of these equations is linearity, since second-order perturbation–
perturbation terms arising from the convective nonlinearity are neglected at order one. As
pointed out in Meyers et al. (2019), neglecting these terms is justified by the fact that the
cross-stream velocity components are generally quite weak, i.e. less than 5 % the external
velocity scale (Anderson et al. 2015; Hwang & Lee 2018; Medjnoun et al. 2020), especially
at large distances from the wall. The key advantage is that the flow response induced by an
arbitrary, spectrally complex modulation f (x3) can be obtained by appropriately combining
solutions of linear equations obtained at each spanwise wavenumber characterising the
modulation in the expansion (2.4).

2.3. Nonlinear Reynolds stress model
To close the mean equations at order zero and one, it is now necessary to express the
Reynolds stress tensor as a function of other mean quantities. One option is to introduce
a linear Boussinesq hypothesis, using the turbulent eddy viscosity νt to derive the linear
constitutive relation

τL
ij = 2νtSij, (2.8)

with Sij the mean velocity gradient tensor

Sij = 1
2

(
∂ ūi

∂xj
+ ∂ ūj

∂xi

)
. (2.9)

Expanding the turbulent stresses in a Taylor series as in (2.5), the leading terms at order
zero and one are

τ
L(0)
ij = 2ν(0)t S(0)ij , (2.10)

τ
L(1)
ij = 2ν(0)t S(1)ij + 2ν(1)t S(0)ij , (2.11)

where ν(1)t is the unknown perturbation of the eddy-viscosity profile induced by the wall
modulation. When a linear relation is used, however, no secondary flows are predicted
(Perkins 1970; Speziale 1982; Bottaro et al. 2006). In fact, the stresses appearing in
(2.7b) would not depend on the streamwise velocity since the stress tensor is isotropic and
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the stream function equation (2.7b) decouples from the streamwise momentum equation
(2.7a). Transient energy amplification from inhomogeneous initial conditions can be
observed (del Álamo & Jiménez 2006; Pujals et al. 2009) but the steady response to an
exogenous forcing, for example, from the wall modulation, is trivial, ψ(1) ≡ 0. Hence, a
nonlinear Reynolds stress model is necessary. Several approaches have been described in
the literature (e.g. Speziale 1991; Speziale, Sarkar & Gatski 1991; Chen, Lien & Leschziner
1997). Here we use the quadratic constitutive relation (QCR) nonlinear model introduced
by Spalart (2000), which contains simple terms proportional to the product of the rotation
and the strain tensors. This model was recently utilised by Spalart, Garbaruk & Stabnikov
(2018) to predict the high-Reynolds number asymptotic properties of secondary flows in
square and elliptical ducts, providing a good approximation of the secondary vortical flow
topology and of the wall friction coefficient. Compared with other approaches, the QCR
model is straightforward to manipulate analytically, and it is thus chosen here to remain
in the original spirit of developing a simple predictive model of secondary flows over
heterogeneous surfaces.

In the QCR model, the Reynolds stresses become

τij = τL
ij − Cr1[Oikτ

L
jk + Ojkτ

L
ik], (2.12)

where the tuning constant Cr1 controls the anisotropy of the Reynolds stress tensor.
Spalart (2000) suggests using Cr1 = 0.3 to match the anisotropy in the outer region of
wall-bounded turbulent flows and we follow this indication in this paper. In (2.12), Oij is
the normalised rotation tensor

Oij = 2Wij√
∂ ūm

∂xn

∂ ūm

∂xn

, with Wij = 1
2

(
∂ ūi

∂xj
− ∂ ūj

∂xi

)
. (2.13)

At order zero, the nonlinear stress tensor is equal to the expression obtained from the
linear constitutive relation. At first order, the Reynolds stress tensor is

τ
(1)
ij = τ

L(1)
ij − Cr1[O(1)ik τ

L(0)
jk + O(0)ik τ

L(1)
jk + O(1)jk τ

L(0)
ik + O(0)jk τ

L(1)
ik ], (2.14)

where O(1)ij is the normalised rotation tensor induced by the first-order velocity components
(see Appendix A). Developing (2.14), the individual perturbation Reynolds stresses
appearing in (2.7) are

τ
(1)
12 = ν

(0)
t
∂u(1)1
∂x2

+ ν
(1)
t Γ + 2Cr1sign(Γ )ν(0)t

∂2ψ(1)

∂x2∂x3
, (2.15a)

τ
(1)
13 = ν

(0)
t
∂u(1)1
∂x3

− 2Cr1sign(Γ )ν(0)t
∂2ψ(1)

∂x2
2
, (2.15b)

τ
(1)
23 = ν

(0)
t

(
∂2

∂x2
2

− ∂2

∂x2
3

)
ψ(1) + 2Cr1sign(Γ )ν(0)t

∂u(1)1
∂x3

, (2.15c)

τ
(1)
22 = −2ν(0)t

∂2ψ(1)

∂x2∂x3
+ 2Cr1

[
sign(Γ )ν(0)t

∂u(1)1
∂x2

+ sign(Γ )ν(1)t Γ

]
, (2.15d)

τ
(1)
33 = 2ν(0)t

∂2ψ(1)

∂x2∂x3
, (2.15e)
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where ‘sign’ is the sign function. Except for τ (1)33 , which coincides with its linear
Boussinesq definition, all other stresses contain an additional term specific to the QCR
model, which results in a tighter, two-way coupling between the stream function and
streamwise velocity equations, able to sustain secondary currents.

2.4. Eddy-viscosity transport model
The perturbation of the turbulent stresses (2.15) still contains the unknown perturbation
eddy viscosity ν(1)t . Past studies that have utilised linearised RANS equations to examine
transient energy amplification in plane turbulent channels (del Álamo & Jiménez 2006;
Pujals et al. 2009) have often used analytical eddy-viscosity profiles (Cess 1958; Reynolds
& Hussain 1972). In these works, the eddy viscosity was assumed to be constant and
not influenced by the growth of the optimal structures. This assumption, however, has
little physical justification for a modulated geometry. To provide a better description of
the eddy-viscosity distribution in the modulated geometry and capture transport effects,
we use in the present paper the one-equation SA turbulence transport model (Spalart &
Allmaras 1994), initially developed for attached shear flows. Using the channel half-height
and the friction velocity for normalisation, the SA model introduces one transport equation
for the transformed eddy viscosity ν̃ related to the turbulent viscosity by the relation

νt = ν̃fv1, (2.16)

where

fv1 = χ3

χ3 + c3
v1
, (2.17)

with χ = Reτ ν̃ and cv1 a tuning constant. The modified eddy viscosity coincides with the
turbulent viscosity away from the wall. Additionally, the term (2.17) ensures the correct
decay of the turbulent viscosity in the viscous sublayer (Spalart & Allmaras 1994; Herring
& Mellor 1968) when ν̃ behaves linearly in the log-layer down to the surface, which is
advantageous for numerical reasons. The steady transport equation for ν̃,

ūi
∂ν̃

∂xi
= cb1S̃ ν̃ + 1

σ

{
∂

∂xj

[(
1

Reτ
+ ν̃

)
∂ν̃

∂xj

]
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

}
− cw1fw

(
ν̃

d

)2

, (2.18)

is composed of convection, production, diffusion and destruction terms. In the production
term, the quantity S̃ is defined as

S̃ = √
2WijWij + ν̃

k2d2 fv2 with fv2 = 1 − χ

1 + χ fv1
, (2.19)

with k the von Kármán constant. The destruction term in (2.18) captures the blocking
effect of the wall on turbulent fluctuations and is a function of the distance to the nearest
surface d. With this term, the model produces an accurate log-layer in wall-bounded flows.
It includes a non-dimensional function fw that increases the decay of the destruction term
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x3

–1 + ε f (x3)

(x2, x3) d (0) = 1 + x2

Plane channel

Modulated channelεd (1) = –ε f (x3)

–1

x2

0
x1

Figure 2. Illustration of the effect of topographic modulations on the distance d appearing in the production
and destruction terms of the SA transport model. For a point (x2, x3) above the trough in the lower channel half,
the (positive) distance to the nearest wall increases from d(0), the original distance from the flat lower wall, by
an amount d(1) = −f (x3). Opposite effects are produced on the crests of the topography or in the upper half of
the channel.

in the outer region. This term reads as

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, (2.20)

with

g = r + cw2

(
r6 − r

)
and r = ν̃

S̃k2d2
. (2.21a,b)

Standard values for the calibration constants cv1 = 7.1, cb1 = 0.1355, σ = 2/3, cb2 =
0.622, cw2 = 0.3, cw3 = 2 are used (Spalart & Allmaras 1994), with cw1 = cb1/k2 + (1 +
cb2)/σ to balance production, diffusion and destruction in the log-layer and with k = 0.41.

Expanding all flow variables in a Taylor series, the transport equation for the modified
eddy viscosity at order zero and one can be obtained. At order zero, the equation is trivially
obtained from (2.8) and it is omitted here. At first order, the eddy viscosity ν(1)t appearing
in the stresses (2.15) can be readily obtained as

ν
(1)
t = ν̃(1)f (0)v1 + ν̃(0)f (1)v1 , (2.22)

where f (1)v1 and other additional terms appearing at first order are reported in Appendix B.
In the linearisation process, it is key to observe that the topographic modulation can be
thought of as a perturbation of the distance from the solid wall. This is a key physical
parameter in the SA turbulence model as it controls the formation of a log-layer through
the balance of production and destruction, where it appears directly. In particular, the
distance is expanded as

d(x2, x3) = d(0)(x2)+ εd(1)(x2, x3), (2.23)

with d(0) the original distance in the plane channel and

d(1)(x2, x3) = sign(x2)f (x3), (2.24)

where the sign function in (2.24) captures the symmetric modulation of the walls and
models the fact that the distance from the nearest physical wall decreases/increases for
points above the crests/troughs of the topography in the lower channel half, as illustrated
in figure 2.
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After algebraic operations, the transport equation for the perturbation of the modified
eddy viscosity ν̃(1) reads as

−∂ψ
(1)

∂x3

∂ν̃(0)

∂x2
= 1
σ

(
1

Reτ
+ ν̃(0)

)(
∂2

∂x2
2

+ ∂2

∂x2
3

)
ν̃(1) + 1

σ

∂2ν̃(0)

∂x2
2
ν̃(1)

+ 1
σ
(2 + 2cb2)

∂ν̃(0)

∂x2

∂ν̃(1)

∂x2
+ cb1ν̃

(0)S̃(1) + cb1ν̃
(1)S̃(0)

− 2ν̃(0)cw1f (0)w
ν̃(1)d(0) − ν̃(0)d(1)

d(0)3
− cw1f (1)w

(
ν̃(0)

d(0)

)2

. (2.25)

This equation is coupled to the stream function equation by the convective transport term
on the left-hand side, modelling the wall-normal transport of the background turbulent
fluctuations by the secondary motions. An additional coupling term with the streamwise
momentum equation appears in the production term S̃(1), which models the change in
the production of turbulent kinetic energy as a result of the distortion of the streamwise
velocity profile.

2.5. Linearised boundary conditions
Boundary conditions for the linearised transport equations are now derived using
established methods (Busse & Sandham 2012; Luchini 2013). Assuming that the
topographic perturbation is small, we retain the original rectangular geometry of the
domain but we introduce inhomogeneous boundary conditions on the perturbation
quantities derived by imposing the original conditions on the displaced surface.

Considering the lower wall, expanding the velocity near the surface in a Taylor series
and enforcing the no-slip condition we obtain

ūi(−1 + εf (x3), x3) = ūi|x2=−1 + εf (x3)
∂ ūi

∂x2

∣∣∣∣
x2=−1

= 0. (2.26)

Substituting the expansion (2.5) for the velocity in (2.26), noting that u(0)i = 0 at x2 = −1,
and retaining terms at order one in ε provides

u(1)i |x2=−1 + f (x3)
∂u(0)i
∂x2

∣∣∣∣∣
x2=−1

= 0, (2.27)

i.e. the perturbation velocity at the boundary of the numerical domain is proportional
to the wall-normal gradient of the velocity in the plane channel to preserve the no-slip
condition on the modulated topography. The boundary condition on the streamwise
velocity perturbation then becomes

u(1)1 (x2 = −1) = −f (x3)
∂u(0)

∂x2

∣∣∣∣∣
x2=−1

= −f (x3)Reτ , (2.28)

while u(1)3 (x2 = −1) = 0 and u(1)2 (x2 = −1) = 0. The boundary conditions for the
perturbation stream function are

∂ψ(1)

∂x2
(x2 = −1) = ψ(1)(x2 = −1) = 0. (2.29)
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Using a similar strategy, and noting that the modified eddy viscosity satisfies homogeneous
boundary conditions at the wall (Spalart & Allmaras 1994), the inhomogeneous boundary
condition

ν̃(1)(x2 = −1) = −f (x3)
∂ν̃(0)

∂x2

∣∣∣∣∣
x2=−1

= −f (x3)k, (2.30)

can be derived for the perturbation of the transformed eddy-viscosity at the lower
numerical boundary. The last equality holds since the modified eddy viscosity obeys
the linear relation ν̃ = kx2 near the wall (Spalart & Allmaras 1994). No conditions are
required for the eddy viscosity νt, since this is not directly associated with a transport
equation in the SA model. With a similar procedure, boundary conditions on the upper
numerical boundary can be obtained. Equivalently, symmetric boundary conditions can
also be applied at the channel centreline when symmetric channels are studied, to reduce
computational costs. However, in the present work, the full channel domain with linearised
boundary conditions on both upper and bottom surfaces was considered, as it was easily
modelled using available Chebyshev discretisation tools.

2.6. Fourier spectral expansion of the solution
When using linearised equations, any arbitrary topography can be analysed by examining
each fundamental spanwise length scale separately from the others. The solution of the
linearised equations can be first expressed by the Fourier series

u(1)1 (x2, x3) =
∞∑

n=1

û1(x2; n) cos (nk3x3), (2.31a)

ψ(1)(x2, x3) =
∞∑

n=1

ψ̂(x2; n) sin (nk3x3), (2.31b)

ν̃(1)(x2, x3) =
∞∑

n=1

ν̂(x2; n) cos (nk3x3), (2.31c)

where û1(x2; n), ψ̂(x2; n) and ν̂(x2; n) are the real-valued, wall-normal profiles of the
perturbation streamwise velocity, stream function and modified eddy viscosity at each
integer spanwise wavenumber n. Then, components at different spanwise wavenumbers
decouple, forming the set of three ordinary differential equations

−nk3ψ̂Γ = 1
Reτ

(
d2

dx2
2

− n2k2
3

)
û1 + nk3τ̂13 + dτ̂12

dx2
, (2.32a)

0 = 1
Reτ

(
d2

dx2
2

− n2k2
3

)2

ψ̂ − k3
d

dx2
(τ̂33 − τ̂22)+

(
d2

dx2
2

+ n2k2
3

)
τ̂23, (2.32b)
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−nk3ψ̂
dν̃(0)

dx2
= 1
σ

(
1

Reτ
+ ν̃(0)

)(
d2

dx2
2

− n2k2
3

)
ν̂ + 1

σ

d2ν̃(0)

dx2
2
ν̂

+ 1
σ
(2 + 2cb2)

dν̃(0)

dx2

dν̂
dx2

+ cb1ν̃
(0)̂̃S + cb1S̃(0)ν̂

− 2ν̃(0)cw1f (0)w
ν̂d(0) + ν̃(0)f (x3)

d(0)3
− cw1f (1)w

(
ν̃(0)

d(0)

)
, (2.32c)

along the wall-normal direction at each integer wavenumber n = 1, 2, . . . . In these
equations, the wall-normal profiles τ̂ij(x2; n) are the components of the Reynolds stress
tensor τ (1)ij obtained by substituting the expansion (2.31) into the definitions of the
perturbations (2.15). This leads ultimately to a set of equations that only contains the
quantities û1(x2; n), ψ̂(x2; n) and ν̂(x2; n). Using the boundary conditions ((2.28)–(2.30)),
these variables must satisfy

û1(x2 = ±1) = −f nReτ , (2.33a)

ψ̂(x2 = ±1) = dψ̂/dx2(x2 = ±1) = 0, (2.33b)

ν̂(x2 = ±1) = −f nk. (2.33c)

Inspection of these boundary conditions and the governing equation shows that the
wall topography affects the formation of secondary flows with three separate forcing
terms. The first mechanism is mediated by the distance perturbation d(1) = −f (x3). This
term appears directly in the linearised transport equation of the eddy viscosity as a
source term, suggesting that the topography modulation is felt throughout the domain
as an alteration of the wall-normal development of the turbulent stresses. Crucially,
spanwise heterogeneity of the topography produces a spanwise modulation of the eddy
viscosity, i.e. of the Reynolds stress, which is known to be a source term in the transport
equation of the turbulent kinetic energy (Barros & Christensen 2014; Hwang & Lee
2018). The second and third mechanisms are localised at the wall and are controlled by
the inhomogeneous boundary conditions on the streamwise velocity and the perturbation
eddy viscosity, respectively. The former produces a positive/negative velocity slip on
the trough/crests of the modulation and generates a streaky motion with the associated
streamwise velocity spanwise gradients. All these forcing terms are proportional to the
strength of the coefficient f n in the series (2.4) characterising the surface geometry,
showing the importance of fully characterising the spectral content of the wall topography.

The numerical solution of the system (2.32c) with the boundary conditions (2.33) is
obtained by discretising the equations over x2 ∈ [−1, 1] using a Chebyshev collocation
method. A spectral technique is technically not ideal for this problem, because d(0) has
a sharp cusp at x2 = 0. Nevertheless, we have observed that the spectral technique is
robust in practice and provides accurate results when a sufficiently fine collocation grid
is utilised. In the following calculations, we used no less than 202 collocation points,
progressively increasing the resolution at the higher Reynolds numbers considered. The
numerical code was also validated on sinusoidal channels using a nonlinear SA–QCR
custom implementation in OpenFoam, with good agreement.
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Figure 3. (a,b) Profiles of streamwise velocity (b,d) and of the turbulent eddy viscosity in plane channel from
the SA model (− − −−) and from the direct numerical simulation (DNS) (—-) of Lee & Moser (2015). Data
is shown for Reτ = 550 in panels (a,c) and Reτ = 5200 in panels (b,d).

2.7. Reynolds-averaged solution in plane channels
The profiles of the mean streamwise velocity and the eddy viscosity of the plane channel
appear in the first-order equations (2.32c) and are thus shown in this section. Profiles
of these quantities were obtained by solving the SA equation (2.18) coupled with the
streamwise momentum equation (2.1b) on a one-dimensional domain extending in the
wall-normal direction using an in-house code. A linear Boussinesq approach is used,
as this is sufficient in plane channels. The numerical code is based on a Chebyshev
collocation discretisation and uses a Jacobian-free Newton–Krylov technique to solve the
nonlinear coupled system of algebraic equations (Knoll & Keyes 2004).

Mean streamwise velocity profiles obtained from the RANS solver at Reτ = 550 and
Reτ = 5200 are shown in figures 3(a) and 3(b), respectively, as a function of the wall
normal distance x+

2 scaled by the viscous length (dashed red lines). These profiles extend
to the channel midplane and are compared with the direct numerical simulation results
of Lee & Moser (2015) (solid blue lines). The SA solution agrees well with the DNS
data, especially in the log-layer, although higher velocities are observed in the buffer
layer region. Profiles of the turbulent eddy viscosity ν(0)t are shown in figures 3(c) and
3(d), for the same Reynolds numbers. The eddy viscosity is extrapolated from the DNS
simulation data by dividing the turbulent stress −u′

1u′
2 with the wall-normal gradient of the
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streamwise velocity Γ . Good agreement with the DNS data is observed, although larger
deviations are observed for |x2| � 0.4.

3. Secondary flows in sinusoidal channels

Secondary flows in symmetric channels with sinusoidal walls (see figure 1a) are now
considered to elucidate the fundamental role of the spanwise length scale on the generation
of secondary flows. This insight can then be used to analyse surfaces with complex
spatial characteristics (Barros & Christensen 2014; Anderson et al. 2015). We consider
modulations expressed by the cosine law

f (x3) = λ3 cos(k3x3). (3.1)

Scaling the amplitude with the period λ3 ensures that the aspect ratio of the modulation
(peak-to-peak amplitude to spanwise length scale) remains constant, i.e. we follow the
shallow-roughness limit introduced in Luchini (2013).

3.1. Organisation of secondary currents
The flow topology predicted by the linearised model is visualised in figure 4 for λ3 =
0.2, 0.5, 1, 2 and 4, in figure 4(a)–(d), respectively. Contours of the perturbation stream
function (dashed contours for negative values) are reported. The colour map shows the
wall-normal component u(1)2 . Data at a large Reynolds number, Reτ = 5200, is reported
as an illustrative example. Reynolds number effects are discussed later. A sketch of the
harmonic topography is also reported below figure 4(e) for λ3 = 4. For the symmetric
configuration considered here, only data in the lower half of the channel is shown. The
predicted secondary structure displays two counter-rotating vortices per period in the lower
half of the channel. A similar flow organisation was recently observed by Vidal et al. (2018)
using DNS on wavy channels with antisymmetric walls. However, the present results refer
to a symmetric channel where the vortices are confined to the half-channel height. On the
contrary, in the simulations carried out by Vidal et al. (2018) the vortices extend from the
bottom to the upper wall. In addition, finite modulation amplitudes, with non-negligible
convective effects, are considered Vidal et al. (2018), unlike in the present case, where
the modulation is infinitesimal. Nevertheless, in both cases the vortices flank the crest
of the modulation and produce an upwelling motion above the crests. Conservation of
mass through the channel then implies that a downwash is observed in the troughs of the
topography. The height of the region affected by the secondary motion increases with λ3
and, eventually, the vortices occupy the full half-height of the channel for λ3 ≈ 1. This
topology persists from low periods up to λ3 ≈ 6, beyond which a large-scale flow reversal,
where secondary currents rotate in the opposite direction and produce a downwash over
the crest, is observed. This phenomenon is not related to the appearance of tertiary flows
(Vanderwel & Ganapathisubramani 2015; Hwang & Lee 2018; Medjnoun et al. 2020)
and might be a product of the turbulence model utilised in this paper that would not be
observed in DNS or experiments. However, data to validate or disprove this behaviour for
modulations with such large period does not seem to be available in the literature and
further investigation is warranted.

3.2. Velocity profiles
Wall-normal profiles of the streamwise velocity component for λ3 = 0.2, 0.5, 1, 2, 4 and
10 are reported in figure 5 at Reτ = 550 in figure 5(a) and at Reτ = 5200 in figure 5(b).
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Figure 4. Contours of the perturbation stream function ψ(1) in the cross-plane (x2, x3) at Reτ = 5200 and
varying wavelength: panel (a) λ3 = 0.2; panel (b) λ3 = 0.5; panel (c) λ3 = 1; panel (d) λ3 = 2; panel (e) λ3 =
4. The stream function perturbation is limited to [−1, 1] in panels (a) and (b), to [−2, 2] in panels (c) and (d),
to [−0.2, 0.2] in panel (e), for a better representation of the flow structures. Dashed lines are used for negative
values. The colour map of the wall-normal velocity perturbation (in units of the friction velocity and per unit
of modulation amplitude) is also reported. For wavelengths smaller than λ3 = 4, the flow topology for a single
period is repeated to better display the evolution in size and strength of secondary flows. The topography from
crest-to-crest is illustrated for the sake of clarity for λ3 = 4 below panel (e).
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Figure 5. Streamwise velocity perturbation per unit of wall-modulation amplitude u(1)1 (x2, 0)/λ3 at Reτ = 550
(a) and Reτ = 5200 (b) from λ3 = 0.2 to λ3 = 10. The velocity profiles are extracted above the modulation
crest. The velocity axis is restricted to [−80, 0] for clarity, since the velocity perturbation at the lower domain
boundary is −Reτ .

These profiles are localised at x3 = 0, on the crest of the modulation. Velocity profiles
at any other spanwise location, for example, over the trough, can be obtained by utilising
the expansion (2.31) restricted to a single spanwise wavenumber mode. Given that the
amplitude of the wall modulation (3.1) is proportional to λ3, the velocity is first scaled by
the wavelength and it should thus be interpreted as the flow response per unit amplitude
of modulation expressed in terms of h. The velocity perturbation at the lower domain
boundary is equal to −Reτ due to the boundary conditions (2.28). We observe that the
streamwise velocity is always negative, for all periods considered, corresponding to a
LMP over the crest, as previously observed by other authors, for example Vanderwel
& Ganapathisubramani (2015) among others. The velocity perturbation decreases in
magnitude when moving towards the channel centre. The depth of the disturbance
increases with λ3, as the secondary structures grow in size. The effect of the Reynolds
number is moderate and consists of a slight increase in the momentum deficit when
comparing corresponding profiles in figure 5(a) and figure 5(b).

To better elucidate how the wall modulation alters the spatial structure of the streamwise
velocity component, the quantity Γ x2 is subtracted from the profiles of figure 5. This
quantity attempts to capture the velocity perturbation produced by the shift in the mean
velocity profile when the wall is displaced, particularly strong in the near-wall region but
formally zero at the midplane. Results are reported in figure 6(a,b). It can be observed
that the streamwise velocity perturbation is more pronounced in the near-wall region
and relatively less in the channel centre. For short periods, this perturbation is positive,
indicating that the near-wall flow over the crests moves faster than it would do over a
flat wall. By contrast, for larger periods, the streamwise velocity perturbation is negative,
initially in the vicinity of the wall and then gradually across the full channel half-width.

The change of sign with λ3 suggests that two competing mechanisms are at play. The first
mechanism is originated from the vertical ‘protrusion’ of the crests towards the midplane,
causing higher velocity over the crests ‘exposed’ to the bulk of the flow. The second
mechanism is the upwelling/downwelling motion introduced by the secondary structures.
As shown in figure 4, these structures transport low momentum fluid from the near-wall
region over the crest upwards towards the channel core, causing a local reduction of
the flow velocity and vice versa over the troughs. When λ3 is sufficiently large so that
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Figure 6. Profiles of the modified streamwise velocity perturbation u(1)1 (x2, 0)/λ3 − Γ x2 at Reτ = 550, panel
(a), and Reτ = 5200, panel (b), at different spanwise wavelengths. Profiles are located over the modulation
crest. In the figure: —◦— λ3 = 0.2; —�— λ3 = 0.5; —�— λ3 = 1; − − − λ3 = 2; —♦— λ3 = 4; —X—
λ3 = 10. In panels (c,d), the effect of turning on/off the QCR strain-stress model is shown for the same
Reynolds numbers. Symbols are the same as in panel (a) but filled symbols are used for solutions at Cr1 = 0.

secondary currents are strong enough and they span a sufficiently large fraction of the
channel, this second effect prevails and a low speed streak forms over the crests between
the streamwise rolls, similarly to the optimal roll/streak configuration found in shear flows
(del Álamo & Jiménez 2006; Pujals et al. 2009).

To better quantify the strength of these two competing mechanisms, we report in
figure 6(c,d) the streamwise velocity profiles obtained from calculations where the QCR
constant Cr1 is set to zero (filled symbols), corresponding to using a linear Boussinesq
stress/strain relation. From a practical perspective, this is equivalent to ‘turning off’
secondary motions, so that only the first mechanism is active. The profiles are compared
with the reference case at Cr1 = 0.3 (open symbols) and data for λ3 = 0.2, 1 at the same
Reynolds numbers of figure 6(a,b) is shown. When Cr1 = 0, the velocity perturbation
is always positive due to the protrusion of the crests into the bulk of the flow, as just
mentioned, but when the QCR model is activated, negative velocities can be observed.

A further remark is that the profiles of the streamwise velocity show that the local
wall shear stress perturbation can be significant. However, the perturbation of the
spanwise-averaged shear stress predicted by the present linearised model is identically
zero. In fact, from the expansions (2.31), it is easy to show that the wall shear stress is
simply a harmonic function, with zero mean. A linear method cannot predict changes in
spatially averaged quantities for flows obeying translational symmetries as in the present
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case, and second-order effects (i.e. large perturbations) must be taken into account to
uncover, for example, how drag is affected by topography changes. However, having
zero-mean velocities does not imply that spatial averaging is trivial for all other quantities.
For instance, the spanwise averaged dispersive stresses often reported to characterise the
secondary currents (Smith & McLean 1977; Raupach & Shaw 1982; Nikora et al. 2001)
can be non-zero. It is worth noting that the effective streamwise velocity profile resulting
from the wall modulation is given, in our framework, by the sum of the flat channel
profile and a small perturbation produced by the wall modulation. The streamwise velocity
perturbation reported in figure 6 does not show any logarithmic behaviour, as it is the
product of the two competing mechanisms discussed above. This might explain the strong
distortion of the log-layer behaviour often observed in experiments or simulations of flows
over heterogeneous surfaces (Medjnoun et al. 2018).

Profiles of the wall-normal and spanwise velocity components at x3 = 0, on the crest of
the modulation, and x3 = λ3/4, respectively, are reported in figure 7 for the same Reynolds
numbers and wavelengths considered in figure 6. As anticipated, in the lower half of the
domain, the linearised RANS model predicts positive wall-normal velocities, indicating
an upwash on the crest of the modulation and a downwash in the trough produced by
secondary currents induced by the topography. For short periods, these effects are confined
near the wall but the depth of the region influenced by this upwelling motion increases with
the spanwise period up until λ3 ≈ 1, where the wall-normal motion involves the entire
channel half-height. When the spanwise length scale is further increased, the wall-normal
velocity decreases, as the vortical structures do not have additional space to grow.

For λ3 = 10, the direction of rotation of the secondary vortices, occupying the entire
channel half-height, is opposite to what is observed at the lower periods shown in figure 4
and downwash is now observed over the crest. Interestingly, the streamwise velocity profile
in figure 5 is still negative, i.e. the flow displays a LMP associated with a downwash.
Although this might appear to contradict established knowledge, the downwash velocity is
relatively small in magnitude. It is argued that the negative streamwise velocity is purely
a result of the contraction of the channel height over the crest (symmetric channels are
considered), since the wall-normal velocity is too weak in this case to justify the observed
change in the streamwise velocity. This effect would not be observed in an open flow like a
boundary layer, where the wall modulation does not produce a contraction of the available
cross-sectional area.

For the spanwise velocity, strong negative values are observed near the wall on the
right-hand flank of the harmonic topography, producing a lateral jet-like motion towards
the modulation crest. Generally, the negative velocity peak is larger than the peak of
positive velocity, due to the confinement of the vortices near the wall (see figure 7c,d).
The peak location varies only modestly with λ3, but it gets closer to the wall and more
intense at larger Reynolds numbers. For λ3 = 10, the spanwise velocity profile shows a
positive peak in the near-wall region due to the change of direction of rotation discussed
previously.

3.3. Effect of wavelength and Reynolds number on the intensity of secondary flows
We now turn to investigating in more depth the effect of the wavelength λ3 and of the
Reynolds number on the strength of the secondary flows. For this purpose, we utilise the
volume-averaged kinetic energy of the cross-flow components

K = 1
4λ3

∫ 1

−1

∫ λ3

0
[u(1)2 (x2, x3)

2 + u(1)3 (x2, x3)
2] dx3 dx2, (3.2)
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Figure 7. Comparison of the profiles of the velocity components for different λ3, at Reτ = 550 in panels (a,c)
and Reτ = 5200 in panels (b,d). In panels (a,b) the wall-normal velocity u(1)2 (x2, 0) is plotted, in (c,d) the
spanwise velocity u(1)3 (x2, λ3/4) is plotted. In the figure: —◦— λ3 = 0.2; —�— λ3 = 0.5; —�— λ3 = 1;
− − − λ3 = 2; —♦— λ3 = 4; —X— λ3 = 10.

to characterise the global amplitude of secondary flows. We also utilise the peak value
of the perturbation stream function maxx2,x3 |ψ(1)(x2, x3)|, following Vidal et al. (2018),
to characterise the flow rate associated with the vortical flow and the peak wall-normal
velocity maxx2,x3 |u(1)2 (x2, x3)|. Results are reported in figure 8. In the left-hand panels, the
dimensional spanwise period is scaled with the viscous length, i.e. λ+3 = λ3Reτ , while in
the right-hand panels the dimensional spanwise period is scaled with the outer scale h.
Data for several Reynolds numbers, spanning the range Reτ = 550 to 5200 are reported.
The vertical red lines denote regions where the predicted qualitative behaviour changes and
are discussed later on. The key result is that the linearised model predicts two amplification
peaks, indicating that the response of the turbulent wall-bounded flow to a harmonic
topography modulation is stronger at preferential spanwise length scales. The location
of these peaks is weakly dependent on the metric employed. In particular, the location
of the first peak collapses when the wavelength is expressed in outer units to a value
of λ3 ≈ 1.54. This peak is associated with large-scale vortical structures that occupy the
entire half-height of the channel and produce a significant wall-normal transport through
intense upwash/downwash regions on the crests/troughs of the modulation, as described
in figure 4. On the other hand, the location of the second peak collapses when scaled in
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Figure 8. Intensity of secondary flows as a function of the spanwise wavelength. Different intensity metrics
are compared. The panels (a,b) display the kinetic energy density K, panels (c,d) the maximum stream function
maxx2,x3 |ψ(1)| and panels (e,f ) the maximum of the wall-normal velocity maxx2,x3 |u(1)2 |. The wavelength
is scaled in inner units in (a,c,e) and outer units in (b,d,f ). In the figure: —— Reτ = 550; − − − − −
Reτ = 1000; —•— Reτ = 3000; —♦— Reτ = 5200. The vertical lines denote particular spanwise length
scales where a change in the flow structure (flow reversal) is predicted.

inner units, at λ+3 ≈ 45. We have tested that the constant Cr1 of the QCR model does not
affect the location of these peaks, but only their amplitude.

This behaviour mirrors the predictions of transient growth analysis reported by del
Álamo & Jiménez (2006) and Pujals et al. (2009) for plane channels. However, the location
of the inner peak predicted in the present case is approximately half of the value found
from the transient analysis, i.e. λ+3 ≈ 100, which is predictive of the spanwise spacing of
near-wall velocity streaks. It is also lower than what proposed by the conceptual model of
Vidal et al. (2018) who suggested an inner peak at λ+3 ≈ 130.
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Figure 9. Wall-normal (a,b) and spanwise (c,d) velocity profiles for the outer peak at λ3 = 1.54 in (a,c) and
inner peak at λ+3 = 46.5 in (b,d) for increasing Reynolds number. In the figure: —— Reτ = 550; − · − · −
Reτ = 1000; —•— Reτ = 3000; —♦— Reτ = 5200.

To further characterise these amplification peaks, profiles of the wall-normal and
spanwise velocity components are reported in figure 9 for the outer peak (left-hand panels)
and inner peak (right-hand panels). The Reynolds number varies from 550 to 5200. There
are two major observations. Firstly, the present model predicts that the flow response to
the surface modulation becomes, asymptotically, independent of the Reynolds number
when scaled with the friction velocity, for both the inner and outer peaks. This is a
major difference from transient growth analysis, where the energy gain increases with
the Reynolds number. More importantly, this result is also in contrast with the findings
of Vidal et al. (2018) (and references therein) who performed DNS in wavy channels and
showed that secondary flow velocities scaled by the bulk velocity are not sensitive to the
Reynolds number if the Reynolds number is large enough to prevent marginally turbulent
flow effects. The predictions of the present model can be attributed to fundamental
properties of the SA model used in this study, as already indicated by Spalart et al. (2018).
In fact, the SA model is built in order to obtain a collapse of the eddy viscosity profile in
the log-layer, where the transport equation (2.18) has solution ν̃ = kx2, as well as in the
outer layer. This implies that the eddy-viscosity profile, and thus the Reynolds stresses
driving the formation of secondary flows of (2.15) are also, asymptotically, Reynolds
number independent when scaled with the friction velocity.
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The second major observation is that the flow topology predicted by our model for the
inner peaks is characterised by a downwash over the crest of the modulation, confined in
the near-wall region (x+

2 < 30). In fact, all quantities shown in figure 8 display two low
amplification regions: one at λ+3 ≈ 102 and one at λ3 ≈ 6, as denoted by the vertical lines
in figure 8. At these spanwise length scales, a structural change in the topology predicted
by the present model is observed, where a downwash is predicted over the crests of the
modulation for either very large or very small wavelengths. While data for very large
wavelengths, λ3 > 6, does not appear to be presently available in the literature to compare
our model with, the flow past surface corrugations at λ+3 ≈ 50 is well known (e.g. Choi,
Moin & Kim 1993; Chu & Karniadakis 1993; Goldstein & Tuan 1998) and an upwash is
typically observed over the crests of the corrugations. The origin of this discrepancy and of
the difference in the location of the inner peak compared with what is found from transient
growth analysis, can be attributed to the fact that the present RANS-based model is likely
not able to capture correctly the nature of the interaction between the surface modulations
and near-wall turbulent structures when these have commensurate lengths.

3.4. Large-scale motions in wall-bounded shear flows and secondary currents
The secondary currents predicted by the present model (figure 4) and their amplification
as a function of the spanwise length scale (figure 8) are reminiscent of the optimal
structures found with transient growth analysis in flat-wall turbulent channels by various
authors (del Álamo & Jiménez 2006; Pujals et al. 2009). These smooth-wall analyses have
demonstrated that the Navier–Stokes operator linearised around the turbulent mean profile
and augmented with an eddy-viscosity term can support transient energy amplification
at two specific spanwise length scales, scaling in inner and outer units, respectively.
Specifically, streamwise-elongated roll-like motions introduced as initial conditions of the
initial value problem develop into longitudinal streamwise streaks. These analyses have
provided a formal description of the ubiquitous presence of near-wall streaky motions and
large-scale structures in the outer layer of turbulent shear flows. The underlying mechanism
is well known, i.e. the constructive interaction of nearly parallel stable eigenfunctions of
the Orr–Sommerfeld–Squire equations (Butler & Farrell 1993). It was recently proposed
by Chung et al. (2018) that a lateral variation of surface attributes may act a ‘phase
lock’ to hold naturally occurring large-scale, outer layer structures around a fixed spatial
location. Our linear operator analysis clarifies the relation between these structures and
secondary currents, following the view expressed in, for example, Adrian & Marusic
(2012). Spanwise heterogeneity of surface attributes may be interpreted as a steady forcing
on the linearised operator, which then produces strong secondary motions with non-zero
time average, locked on to the surface modulation. On the contrary, large-scale, outer-layer
structures may be interpreted as the manifestation of the amplified response to unsteady
turbulent velocity fluctuations, as proposed by del Álamo & Jiménez (2006) and Pujals
et al. (2009), without spatial locking and hence with zero time-average. Hence, both types
of structures may be interpreted as the independent manifestation of the amplification
properties of the same linear operator, subjected to either steady or unsteady perturbations.

4. Secondary flows above rectangular ridges

Secondary flows above rectangular ridges are now considered. As shown in figure 1(b),
the geometrical parameters considered are the spacing between the ridges S and the ridge
width W. The gap between the elements is G = S − W. Linearised flow solutions in this
geometry are obtained wavenumber-by-wavenumber as discussed in § 2.6. Except for very
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near the wall, the solution is smooth and the Fourier expansion (2.31) converges rapidly.
To improve the convergence of our spectral code in the near-wall region, the discontinuous
wall geometry is approximated by the smooth function

f (x3) = 1
arctan(α)

arctan
(
α

[
cos(k3x)− cos

(
k3

W
2

)])
, (4.1)

where α is used to round the corners of the ridges and to increase the roll-off of the
coefficients f n of its cosine series (2.4). Here, α is chosen so that df /dx3(W/2) = 2 × 104.
The surface geometry is then discretised with at least 150 cosine waves, ensuring that the
ratio | f 1/f 150| is no less than 300. We have repeated some calculations at finer resolutions,
and no appreciable change in the structure of large-scale motions developing over this
geometry has been observed.

4.1. Effect of geometrical parameters
To elucidate the role of relevant parameters, we use the kinetic energy density of
the cross-stream components, defined in (3.2), to characterise the global response in
the cross-stream plane, and the peak stream function value maxx2,x3 |ψ(1)(x2, x3)| to
characterise the flow rate associated with the cross-stream motions (Vidal et al. 2018).
These two quantities are reported in figure 10 as a function of the width W and the gap
G. Configurations at constant spacing S = G + W = 1, 2, 3, . . . lie on the white lines
with slope −1. Note that configurations at constant duty cycle DC = W/S, considered
as a relevant parameter in, for example, Castro et al. (2021), lie on straight lines passing
through the origin with slope 1/DC − 1. Results for Reτ = 5200 are reported, since, as
discussed in § 3.3, the SA-based RANS model predictions are asymptotically Reynolds
number independent, and no qualitative changes to the following discussion arise when
the response at other Reynolds numbers is examined.

Regardless of the metric used, secondary motions are weak for S < 1 and their strength
peaks at S ≈ 1.34, close to that obtained for sinusoidal walls and in agreement with
predictions obtained in experiments on rectangular ridges (Medjnoun et al. 2020) but also
for secondary flows developing over roughness strips (Chung et al. 2018; Wangsawijaya
et al. 2020) and streamwise arrays of roughness elements (Yang & Anderson 2018). The
contours of the response have a preferential orientation whereby weaker changes in the
response are observed when the spacing S is held constant at the optimal value and W
and G are varied. This occurs because such surfaces have a strong periodic component
at the optimal length scale S ≈ 1.34. This explains why many studies have identified this
length scale as producing the largest response, despite significant differences in the ridge
width/gap utilised. Nevertheless, our model predicts that the strongest response occurs
when gap and width are equal, at (W,G) ≈ (0.67, 0.67), i.e. for relatively wide ridges.

For constant G or W equal to 0.67, significant amplification is observed when varying
W or G, respectively, along the two orthogonal red dashed lines in figure 10. Along these
directions, one additional local peak is clearly visible at spacing S ≈ 2.8, but several other
(weaker) peaks occur at higher gaps or widths, at integer multiples of the optimal width
W ≈ 0.67. It is anticipated that these further peaks correspond to configurations with
strong tertiary, quaternary of high-order structures (Hwang & Lee 2018) above/within the
ridge/trough, confirming the conceptual model of Medjnoun et al. (2020). Nonetheless,
further increasing the width (respectively, the gap) at constant gap (respectively, W) does
not produce major changes in the strength of the response. These configurations tend
asymptotically to the isolated ridge (respectively, gap) state, where the interaction between
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Figure 10. Contours of the volume averaged kinetic energy of the cross-stream plane velocities K (a) and
stream function peak value maxx2,x3 |ψ(1)| (b) as a function of the gap G and ridge width W. The Reynolds
number is Reτ = 5200. In panel (a), cases at constant duty cycle DC = 0.25 and 0.5 are identified by the red
lines. Cases at constant spacing S = 1, 2, 3, . . . are identified by the white lines. Dashed lines identify cases at
constant gap or width, with markers for configurations discussed later in the text.

flow structures generated by adjacent ridges (respectively, gaps) can be neglected and the
response is constant, regardless of the measure utilised.

A further important observation is that the response shows a symmetry with respect to
the line G = W. The symmetry arises from the linear nature of the present analysis. For
any surface configuration (W,G), the flow topology in the trough is identical but with
opposite flow direction to that on the ridge when G and W are swapped. The symmetry
of the problem implies that the conceptual model developed by Medjnoun et al. (2020)
speculating on the formation of tertiary structures over wide ridges can also be employed to
describe the formation of tertiary structures in wide troughs induced by ‘virtual roughness
element’ as proposed by Vanderwel & Ganapathisubramani (2015).

Finally, the implication of the response maps of figure 10 is that, despite the spacing
S is a relevant length scale to characterise secondary flows, two surface parameters are
required to characterise in a complete manner the strength of secondary currents. While
many choices are possible, for example, S and W as in Hwang & Lee (2018), Vanderwel &
Ganapathisubramani (2015) and Medjnoun et al. (2020), or S/W and S as in Castro et al.
(2021), using G and W is particularly convenient as (i) the response has a symmetry with
respect to the line G = W and (ii) these two parameters have similar roles when the flow
organisation is considered, as we discuss in the next section.

A comparison with harmonic wall modulations is now performed to highlight
similarities and differences between the two types of heterogeneity. To enable a direct
comparison, we use the period λ3 for harmonic walls and the spanwise spacing S for
rectangular ridges. Hence, for the latter case, where two geometrical parameters are strictly
necessary, we restrict the analysis to specific configurations at duty cycle DC = 0.25, 0.5
and for a fixed width W = 0.67, corresponding to the special identified by the additional
lines in figure 10. Due to the symmetry of response discussed above, cases at duty cycles
DC′ greater than 0.5 have the same kinetic energy density and stream function peak
of a cases at DC = 1 − DC′. For both types of heterogeneity, the same infinitesimal
peak-to-peak modulation amplitude is used. The major similarity between the two types
of heterogeneity is that the secondary structures have maximum intensity at a similar
spanwise period, regardless of the quantity considered. For sinusoidal walls, the peak
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Figure 11. Comparison of the kinetic energy density K (a) and the maximum of the stream function
maxx2,x3 |ψ(1)| (b) at Reτ = 5200 as a function of the periodicity S. For the rectangular ridges, the quantities
are obtained for constant W = 0.67 and for DC = 0.25 and 0.5.

occurs at λ3 ≈ 1.54 while for rectangular ridges the peak is observed at S ≈ 1.34. The
effect of the duty cycle is only moderate, due to the orientation of the contours of
the kinetic energy density in figure 10. The small difference between the two types of
heterogeneity can be attributed to the fact that the first harmonic mode of the expansion
(2.4) for the rectangular ridge geometry given by (4.1) is the largest and hence provides
the dominant contribution to the overall response. However, the peak strength depends on
the duty cycle. For instance, at DC = 0.25, the strength of secondary flows is 75 % less
intense than the vortices generated for the same spacing at DC = 0.5. As discussed later
on in § 4.2, secondary vortices do not have enough lateral space to develop at a sufficient
strength when the ridges are too narrow, i.e. for small duty cycles. Interestingly, the peak
value observed in figure 11 for rectangular ridges can be larger than what is observed for
sinusoidal walls, provided the duty cycle is selected appropriately to intersect the high
amplification region in the map of figure 10. Within the present linear framework, this
effect can be explained to be the result of the constructive interference of the individual
flow responses at all wavenumber modes defining the rectangular ridge geometry.
A second major difference is that the response for rectangular ridges can exhibit a second
peak at a larger spanwise period depending on the duty cycle. In particular, a peak at
S ≈ 2.5 can be observed at DC = 0.25 and for W = 0.67, while for DC = 0.5, the second
peak is shifted to a higher spacing (S ≈ 4), associated with configurations at higher W
and G. It is anticipated that these secondary peaks correspond to ridge configurations
where tertiary flows, developing at the centre of the ridge (or troughs), have the maximum
strength.

4.2. Topology of secondary flows
Based on the symmetry highlighted from the response maps, we now show how the
parameters W and G affect the organisation of secondary flows. We consider flows at
Reτ = 5200, at which the response has saturated to its high-Re asymptotic state. In
figure 12, contours of the perturbation stream function are reported together with colour
maps of the wall-normal velocity perturbation for configurations at constant gap G = 0.67
and at varying W = 0.3, 0.67, 1.5 and 2 (see triangles in figure 10). The black lines at
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Figure 12. Flow organisation for G = 0.67 and width W = 0.3 (a), 0.67 (b), 1.5 (c) and 2 (d). Results for
Reτ = 5200 are shown. Contours of the perturbation stream function ψ(1) between −2 and 2 are shown. The
dashed lines indicate negative stream function values. The colour map of the perturbation wall-normal velocity
component u(1)2 is also reported in the lower half of the channel. The ridges are sketched on the bottom line
using bold lines. Note that the ridges are centred at x3 = 0 and 1 and the fields are spanwise periodic.

x2 = −1 define the locations of the ridges. Note that the fields are spanwise periodic and
only half of the ridge is shown, as the ridges are centred at x3 = 0.

Starting from W = 0.3, the linear model predicts counter-rotating vortical structures
elongated in the wall-normal direction and occupying the entire half-width of the channel.
These structures are locked in proximity of the ridge edges where the surface discontinuity
acts as a strong source term. A downwash inside the troughs and an upwash above the
ridges in proximity of the edge is observed. The maximum intensity of these vertical
motions at W = 0.67 is approximately 15uτ , per unit of ridge height. This means that for a
peak-to-peak ridge height of 0.09 (in units of the boundary layer thickness) as in case HS6
(Medjnoun et al. 2020) for Reτ = 3239, the predicted peak vertical velocity is 3 % of the
bulk velocity, which agrees with the experimental data (2 %). However, the comparison
between the case HS6 of Medjnoun et al. (2020) and the present model can only be
qualitative because of structural differences between channel flows and boundary layers.
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In particular, wall-normal secondary motions in a boundary layer are not confined or
blocked by the upper wall (or symmetry plane), but can develop freely. This effect is
likely more important when the secondary structures have size comparable to the shear
layer thickness, and secondary motions can reach the outer edge of the turbulent shear
flow. For a short W = 0.3 (figure 12a), the vortical structures compete for the available
space over the ridge, push each other towards the gap centre and are highly elongated
in the vertical direction. For W = 0.67 (figure 12b), the vortices can now fully extend
towards the ridge centre. For W = 1.5 (figure 12c), there is sufficient space over the ridge
for tertiary flows to emerge in the region immediately above the ridge. In this condition,
downwash is observed over the ridge centre. This, however, is associated with a reduction
in the strength of the upwash in the vicinity of the edges, strongest at W = 0.67. Tertiary
vortical structures are initially weak but gain strength at W ≈ 2.1, where they can fully
extend to the channel midplane. The strength of the downwash velocity at the ridge
centre for W = 2.1 relative to the downwash velocity over the gap is significant. This is
likely exacerbated by confinement effects in the channel, in which the spanwise-averaged
vertical mass transport operated by secondary currents is necessarily zero. In boundary
layers, no such constraint would exist. Although not shown here, for W > 3.5 a further
reorganisation is observed, where weak quaternary vortical structures emerge near the
ridge centre (x3 = 0), producing a weak upwash motion.

One important remark is that the present linearised model does not capture correctly
flow features observed in the immediate vicinity of the ridge such as, for instance,
recirculation regions induced by strong spanwise motions over the ridge top, frequently
observed in direct numerical simulations (Hwang & Lee 2018; Castro et al. 2021). The
wall-normal extent of these regions is (i) strongly influenced by the ridge geometry
(rectangular, circular, etc.) and (ii) likely scaling with the ridge height, which is always
finite in experiments and simulations. In the present linear model, the ridge height is
infinitesimal and only large-scale flow features developing far away from the surface
are likely to be captured correctly. Localised near-wall effects produced by a finite ridge
height and contributing less prominently to the alteration of vertical transport phenomena
are unlikely to be accounted for. Nevertheless, the model predicts structures with similar
characteristics to those observed in many other studies, where the ridges protrude into the
log region. It could be argued that, for a shallow surface modulation, all the mean flow
quantities (e.g. the Reynolds stresses) develop in the wall-normal direction according to
the same law of the wall, as if the wall was flat. The lateral variation of the origin of these
profiles produced by the modulation then produces at any distance from the wall spanwise
gradients of the Reynolds stresses, i.e. the required source terms in the streamwise
vorticity equation (2.7). This mechanism might be at play regardless of the height of the
modulation, although for large protrusions other mechanism became relevant, for example,
the wall-normal deflection of spanwise velocity fluctuations (see e.g. Hwang & Lee 2018).

For completeness, the evolution of the flow organisation for a constant W = 0.67 as the
gap G increases is shown in figure 13. These configurations correspond to the squares in
figure 10, and parallel the configurations shown in figure 12. For G = 0.3 (figure 13a),
the vortical structures compete for the available space over the gap and push each other
away towards the ridge. As the gap is further increased to G = 1.5 and then 2, tertiary
structures form in the centre of the trough producing vertical velocities weaker than the
velocity induced by the secondary structures over the ridge. As anticipated, this behaviour
was described by Vanderwel & Ganapathisubramani (2015), who observed that, when the
spacing is large enough, an additional upwelling motion is generated at the centre of the
trough as if a ‘virtual’ ridge element was placed between physical ridges.
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Figure 13. Flow organisation for W = 0.67 and gap G = 0.3 (a), 0.67 (b), 1.5 (c) and 2 (d). Results for
Reτ = 5200 are shown. Contours of the perturbation stream function ψ(1) between −2 and 2 are shown. The
dashed lines indicate negative stream function values. The colour map of the perturbation wall-normal velocity
component u(1)2 is also reported is also reported in the lower half of the channel. The ridges are sketched on
the bottom line using bold lines. Note that the ridges are centred at x3 = 0 and 1 and the fields are spanwise
periodic.

In conclusion, the secondary structures shown in figures 12 and 13 and predicted
by the present model are similar in size and organisation, especially in the region
closest to the wall, to the secondary currents observed over strip-type roughness both
numerically (Anderson et al. 2015; Chung et al. 2018) and experimentally (Hinze 1967,
1973; Mejia-Alvarez & Christensen 2010, 2013; Barros & Christensen 2014; Anderson
et al. 2015; Bai, Kevin & Monty 2018; Forooghi et al. 2020; Wangsawijaya et al. 2020).
The similarity may be due to the fact that for strip-type heterogeneity, the wall-normal
extent of the surface perturbation is localised, loosely speaking, within the roughness
height. When scaled in outer units, this height is often much smaller than the typical
(and finite) ridge height used in previous work. However, the key difference is that the
direction of rotation of secondary structures over strip-type roughness is opposite to what
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is observed for ridge-type heterogeneity and a downwash motion is predicted over the
high roughness region (Stroh et al. 2020b; Schäfer et al. 2022). The strong similarity
suggests that the present linearised framework may also be adapted to study secondary
currents produced by other types of complex surfaces, where the lateral variation of the
surface attributes may be modelled accurately by suitable boundary conditions that capture
the physics of the flow-surface interaction. In addition to the strip-type roughness case
just discussed, examples of such surfaces include superhydrophobic surfaces (Busse &
Sandham 2012; Türk et al. 2014; Stroh et al. 2016), porous surfaces (Abderrahaman-Elena
& Garcìa-Mayoral 2017; Efstathiou & Luhar 2018; Rosti, Brandt & Pinelli 2018; Bottaro
2019) or surface lateral variations of the heat flux (Salesky, Calaf & Anderson 2022).

4.3. Velocity profiles over rectangular ridges
For a better characterisation of the flow structures developing over the ridges, the
wall-normal velocity profile at five different locations between the left-hand edge of the
ridge and its centre are reported in figure 14. The sketch the sketch beneath figure 14(c,d)
illustrates the location where profiles are extracted. The velocity profiles are obtained at
Reτ = 5200 and for DC = 0.5. The ridge width W varies from 0.3 in figure 14(a) to 2 in
figure 14(d). For the two smaller widths, the velocity is always positive corresponding to
the upwash region of figure 12(a,b). For the optimal configuration W = 0.67, where the
vortical structures fit the available space without significant lateral distortion, the velocity
above the ridge edge is small. This contrasts with experimental/numerical observations
(e.g. Medjnoun et al. 2020), where intense upwards motions are often observed at the ridge
edge. This might be the result of the finite ridge height in these cases, which produces a
wall-normal deflection of the spanwise velocity fluctuations. The present linear model,
with infinitesimal ridges, does not capture this deflection although it does predict an
intense spanwise motion at the ridge edge. Tertiary flows occur for W = 1.5 and 2, where
the u(1)2 profile at the centre of the ridges (light red) displays a negative value. However, the
negative peak is approximately 50 % less intense than the positive one, although the size
of the region interested by the wall normal motion is similar (figure 14c,d). The intensity
of the tertiary flows slightly increases with W while the secondary flows appear to be
unaffected. This suggests a saturation of the secondary flows, while higher-order structures
occur at the ridge centre.

To better characterise the intensity and direction of the secondary flows as a function of
the spanwise location, the quantity

Ip
2 (x3) =

∫ 0

−1
u(1)

p

2 (x2, x3) dx2, (4.2)

is now introduced. We first discuss the case for p = 2. Results are reported in figure 15
for DC = 0.5 and W varying from 0.67 to 3. To align all profiles, we use the spanwise
coordinate x3 + W/2, so that the ridge edge is always located at 0 while the ridge centre
corresponds to W/2. For the smaller widths, the quantity I2

2 (x3) is quite intense and a
single peak produced by the secondary structures locked on the ridge edges is observed,
approximately at the ridge centre. Increasing the ridge width to W = 1.5, the quantity
I2

2 (x3) shows two peaks: the first in proximity to the ridge edge (with smaller magnitude
than at the optimal width W = 0.67) and the second at the ridge centre, characterising
the strength of tertiary flows. When the width is further increased, secondary flows
develop fully and only moderate effects on their strength near the ridge edge is observed.
Major differences are still observed for tertiary flows at the ridge centre, although the
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Figure 14. Wall-normal velocity profiles at different locations along the ridge. The Reynolds number is Reτ =
5200 and duty cycle is DC = 0.5. The width W varies from 0.3 (a) to 2 (d). The profile locations are also
reported in the sketch beneath panels (c,d) using a different colour gradation.

expectation is that such differences would eventually vanish as the ridge width is increased
further.

4.4. Analysis of the wall-normal velocity direction over the ridge centre
To better visualise the region of parameter space where the present linearised model
predicts a large-scale change in the flow direction above the centre of the ridges, we use the
quantity I1

2 (0) to quantify the average, or ‘bulk’, wall-normal flow direction at x3 = 0, as
a function of the gap G and the width W. Results are reported in figure 16. The linearised
model indicates that the bulk wall-normal velocity becomes negative for W � 1.2, with
a moderate effect of the gap. The maximum average velocity occurs for W ≈ 0.5,G ≈
0.75, indicating that optimising the intensity of secondary currents using the strength of
the average wall-normal velocity yields narrower ridges than what suggested by using
the integral perturbation energy or the stream function peak. The bulk velocity turns
positive again for W � 2.8 when the ridge is wide enough to support the formation of
quaternary structures. The quantity I1

2 (0) alone, however, might not be sufficient to
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Figure 15. The quantity I2
2 (x3) for Reτ = 5200 and duty cycle DC = 0.5. The ridge width W varies from 0.67

to 3. In particular: —◦— W = 0.67; —�— W = 0.8; − − − W = 1; —♦— W = 1.5; —X— W = 2; ——
W = 2.5; − − −� − −− W = 3.

capture the change in flow direction that is often observed in the proximity of the obstacle
(Castro et al. 2021). The onset of this change is thus also indicated in the figure, by tracing
the set of points (solid black line) in parameter space where the wall-normal velocity at the
centre of the ridge first changes sign. Due to the aforementioned symmetries, large-scale
or incipient change in flow direction in the troughs, observed, for example, by Vanderwel
& Ganapathisubramani (2015) can be characterised by swapping the role of G and W
and inverting the sign of I1

2 (0) (computed at x3 = S/2, in the centre of the trough).
The region where a change in flow direction is predicted in the troughs by the present
model is shown as a dashed black line. The model predicts that the difference between
the average and incipient change of flow direction is minimal. However, this difference
might be more pronounced for finite height ridges, where the flow topology near the ridge
is more complicated than what can be captured by the present linear model.

Data from recent numerical and experimental investigations that have considered
streamwise rectangular ridges are also reported in figure 16. As a note of caution, most
of these cases (with the exception of Castro et al. (2021) who considered channel flows)
are extracted from studies of secondary flows in boundary layers. As discussed previously,
secondary flow structures originating in different flow types might display significant
topological differences and the following analysis should be regarded as qualitative.
Interestingly, a large fraction of experiments and numerical simulations available in the
literature is focused on the region of narrow width, relatively far from the optimal
configuration predicted by the present model. In the figure, closed symbols denote
configurations where a large-scale change in the flow direction (and not simply in the
neighbourhood of the ridge) was observed above the ridge or in the trough. These are the
case HS6 from Medjnoun et al. (2018) and P24S12 from Hwang & Lee (2018), where
a downwelling motion is observed above the ridge at large distance from the wall, and
S/δ = 1.76 from Vanderwel & Ganapathisubramani (2015), where upwelling is measured
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Figure 16. Colour map of the quantity I1
2 (0) as a function of the gap G and width W, for Reτ =

5200. Configurations studied in the recent literature are denoted by symbols (VG2015 for Vanderwel &
Ganapathisubramani (2015), MVG2020 for Medjnoun et al. (2020), CKS2021 for Castro et al. (2021) and
HL2018 for Hwang & Lee (2018)). Closed symbols denote configurations where downwash over the ridge has
been observed. The black lines delimit the regions where the linear model predicts incipient change of flow
direction at the midpoint over the ridge (solid line) and at the centre of the trough (dashed line).

in the trough. For case HS6, the present model predicts a positive net wall-normal velocity,
in contrast to experimental evidence. Inspection of the velocity field for this case in
Medjnoun et al. (2018) shows that the Reynolds-averaged vortical structures are smaller in
size (in both directions) and less coherent than what is predicted by the present model.
In turn, this would increase the space available for fluid to reverse its direction. This
difference might be due to the different flow type (boundary layer in Medjnoun et al.
(2018) and channel flow in the present work) or to the finite ridge height in experiments.

5. Conclusions

A rapid tool for the prediction of secondary currents developing in turbulent channels
with streamwise-independent surface modulations has been presented. The approach is
based on the linearisation of the steady RANS equations, coupled to the SA equation
for the transport of the turbulent eddy viscosity. The linearisation of these equations is
based on the assumption that the surface modulation is small when compared with any
relevant geometric or physical length scale. The influence of the surface modulation is
then modelled using inhomogeneous boundary conditions for the streamwise velocity
component and the turbulent eddy viscosity. Because of the linearity, the superposition
principle applies and the flow response induced by an arbitrary surface with spectrally
complex topography can be obtained by appropriately combining the elementary
responses to harmonic modulations at each spanwise wavelength.

The computational efficiency of the tool allows large parameter spaces characterising
complex surfaces to be explored at little cost. In this paper, two canonical surface
configurations are studied, namely, harmonic modulations and rectangular ridges. For
harmonic modulations, characterised by a single spanwise length scale, the wavelength λ3,
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the turbulent shear flow is found to have the largest response at two spanwise wavelengths,
scaling in inner and outer units, respectively. The outer peak is found at λ3 ≈ 1.54, in
units of the half-channel width, and corresponds to large-scale secondary vortices that
occupy the entire half-channel width. These produce an upwelling motion over the crests
and a downwelling motion over the troughs, with no tertiary vorticity observed. The inner
peak, of much lower intensity, is found at λ+3 ≈ 45 and corresponds to small scale vortices
extending by approximately 30 viscous units in the wall normal direction. The presence
of two peaks mirrors the results of transient growth analysis in turbulent channels by del
Álamo & Jiménez (2006) and Pujals et al. (2009) and suggests that surface topography
modulation of the right spanwise length scale can excite a strong, steady response by
leveraging amplification mechanisms intrinsic to the turbulent shear flow. However, a
major difference with the optimal structures found by these works is that the strength
of the steady response to surface modulations predicted by the present tool becomes
asymptotically Reynolds number independent when the cross-plane velocities are scaled
with the friction velocity. Fundamentally, this is due to the SA transport model utilised
in this work, designed to produce the law of the wall and in which the turbulent eddy
viscosity (and the Reynolds stresses driving secondary currents) become, asymptotically,
Reynolds number independent.

For rectangular ridges, the present model suggests that (i) both the ridge width W
and the gap between ridges G are key parameters to quantify the response and that
(ii) the analysis is more revealing when these two parameters are used and not other
combinations previously used in the literature. More importantly, the largest response is
found at a symmetric configuration where W = G = 0.67, i.e. a rather large ridge width for
a spanwise spacing of S = G + W ≈ 1.34. For other ridge configurations, the secondary
vortices compete for the available space with structures developing on the same ridge or
over neighbouring ridges or are weakened by tertiary structures appear at large gaps or
widths.

It is important to mention that the proposed approach has its limitations and it should not
be seen as a replacement for DNS or experiments to obtain precise quantitative predictions.
Secondary currents have been shown to display highly unsteady behaviour (Vanderwel
et al. 2019) and meander in the spanwise direction (Hutchins & Marusic 2007; Kevin,
Monty & Hutchins 2019; Zampiron et al. 2020). The present model assumes steady,
streamwise-independent perturbations, and cannot fully capture any of these phenomena.
Secondly, it is likely that surfaces characterised by prominent ridges, or surfaces with
rapid lateral variations of the geometry (i.e. surfaces with sharp corners or with large
lateral slope) cannot be satisfactorily modelled using linearised boundary conditions. For
example, several authors (e.g. Hwang & Lee 2018) have observed that the wall-normal
deflection of spanwise velocity fluctuations operated by the vertical sides of rectangular
ridges is an important mechanism for the generation of secondary currents. This effect
may be important, especially when the ridges protrude significantly in the log-layer and
convective effects result in complex flow topologies, as in Castro et al. (2021). This
mechanism is clearly not accounted for in the present model, where the ridge height is
infinitesimal. Nevertheless, the model does produce secondary structures that resemble
those observed in DNS or experiments. Most importantly, it correctly predicts the spanwise
ridge spacing at which peak strength is achieved, in agreement with previous observations.
This suggests that while different generation mechanisms might be at play, the linearised
Navier–Stokes operator still provides an adequate description of the response to an external
forcing.
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With appropriate modelling assumptions, the present approach would also enable a
rapid exploration of the vast parameter space characterising other surface heterogeneities
that have been recently considered in the literature, for example, strip-type roughness
(Willingham et al. 2014; Anderson et al. 2015; Chung et al. 2018), superhydrophobic
surfaces (e.g. Türk et al. 2014; Stroh et al. 2016) or combinations of topography and
roughness, as in, for example, Stroh et al. (2020b) and Schäfer et al. (2022). However,
modelling the physics of the flow–surface interaction within a linear framework is less
straightforward than modelling a modulation of the surface height, as in the present case.
These configurations are currently being considered and results will be reported in future
work.
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Appendix A. Linearisation of the normalised rotation tensor

Expression of the normalised rotation tensor at order zero and order one are reported

O(0) =
⎡⎣ 0 sign(Γ ) 0

−sign(Γ ) 0 0
0 0 0

⎤⎦ , (A1)

O(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
sign(Γ )
Γ

∂u(1)1
∂x3

0 0
sign(Γ )
Γ

(
∂u(1)2
∂x3

− ∂u(1)3
∂x2

)

−sign(Γ )
Γ

∂u(1)1
∂x3

−sign(Γ )
Γ

(
∂u(1)2
∂x3

− ∂u(1)3
∂x2

)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(A2)

where Γ is the zero-order streamwise velocity wall-normal gradient and sign is the sign
function.

Appendix B. Terms of the linearised SA model

In this section, additional terms appearing in the linearised SA transport equation (2.25)
are reported. Firstly, terms in (2.22) are

f̃v1 = 3Re3
τ c3
v1

ν̃(0)
2

(Re3
τ ν̃
(0)3 + c3

v1)
2ν̃(1)

. (B1)

Similarly, the source term S̃ can be written as the sum of a zero order and first-order
contributions, too. Thus,

S̃ = S̃(0) + εS̃(1), (B2)
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where the zero-order function S̃(0) is readily obtained from its nonlinear definition.
Furthermore, the first order S̃(1) is here decomposed into S̃(1) = S̃1ν̃

(1) + S̃2(∂u(1)1 /∂x2)+
S̃3d(1) where

S̃1 = f (0)v2

k2d(0)2
+ ν̃(0)

k2d(0)2 f (1)v2

, (B3a)

S̃2 = sign(Γ ), (B3b)

S̃3 = −2
ν̃tf

(0)
v2

k2d(0)3
. (B3c)

Similarly, the function expanded in fv2 = f (0)v2 + ε f̃ (1)v2 where

f̃v2 = −Reτ
c6
v1ν̃

(0)6 + Re3
τ c3
v1ν̃

(0)3(2 − 3Reτ ν̃(0))

[c3
v1 + Re3

τ ν̃
(0)3(1 + Reτ ν̃(0))]2

ν̃(1). (B4)

Finally, the remaining terms of the SA model can be written as

r = r(0) + ε

(
r1ν̃

(1) + r2
∂u(1)1
∂x2

+ r3d(1)
)
, (B5a)

g = g(0) + ε

(
g1ν̃

(1) + g2
∂u(1)1
∂x2

+ g3d(1)
)
, (B5b)

fw = f (0)w + ε

(
fw1 ν̃

(1) + fw2

∂u(1)1
∂x2

+ fw3d(1)
)
, (B5c)

where

r1 = S̃(0)d(0) − ν̃(0)S̃2d(0)

S̃(0)2k2d(0)3
, (B6a)

r2 = −ν̃(0)S̃1d(0)

S̃(0)2k2d(0)3
, (B6b)

r3 = −ν̃(0)S̃3d(0) − 2ν̃(0)S̃(0)
S̃(0)2k2d(0)3

. (B6c)

Similarly, for g we have

g1 = ((6r(0)
5 − 1)cw2 + 1)r1, (B7a)

g2 = ((6r(0)
5 − 1)cw2 + 1)r2, (B7b)

g3 = ((6r(0)
5 − 1)cw2 + 1)r3, (B7c)
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while for fw we have

fw1 = c6
w3

c6
w3 + 1

(
c6

w3 + 1

g(0)6 + c6
w3

)7/6

g1, (B8a)

fw2 = c6
w3

c6
w3 + 1

(
c6

w3 + 1

g(0)6 + c6
w3

)7/6

g2, (B8b)

fw3 = c6
w3

c6
w3 + 1

(
c6

w3 + 1

g(0)6 + c6
w3

)7/6

g3. (B8c)
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