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SAMELSON PRODUCTS IN SPACES OF
SELF-HOMOTOPY EQUIVALENCES

JESPER MICHAEL M@LLER

1. Introduction. The homotopy groups of any group-like space are equipped
with a Samelson product satisfying, up to sign, the identities of a graded Lie
bracket. We shall compute the Samelson product in two kinds of spaces of self-
homotopy equivalences arising when adding a homotopy or a homology group
to a space.

First, let A — X be a cofibration with a Moore space M (G, n) as cofibre.
For the monoid aut*(X) of maps under A homotopic (rel. A) to the identity, the
Samelson product is a pairing

Tnti(G3 X) @ i (G5 X) — Tpyinj (G5 X)

of homotopy groups with coefficients [1] in G. Theorem 2.1 computes this
pairing in terms of a homomorphism associated to a € 7;(aut*(X)). This homo-
morphism can be described as the boundary map m.(G;X) — T.i(G;X) of a
certain fibration

QX S E(a)— X

naturally associated to a.

Dually, let Y — B be a fibration with an Eilenberg-MacLane space K (G, n) as
fibre. For the space autg(Y) of maps over B homotopic (over B) to the identity,
the Samelson product is a pairing

H"™(Y;G)®H"(Y;G) — H""7(¥;G)

of cohomology groups with local coefficients. Theorem 4.1 computes this pairing
in terms of the differential H*(Y;G) — H*~/(Y;G) in the Wang sequence for
the fibration

Y — E(a) — S™!

classified by the element a € m;(autz(Y)).

Both these formulas are reminiscent of the classical one [3] relating the Samel-
son and Pontryagin products.

I use Switzer’s notation [5] for mapping spaces: If u : U — V is a map,
i: T — U a cofibration, and p : V — W a fibration, F,(U,T;V,W) is the
space of all maps v : U — V with vi = ui and pv = pu.
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2. Self-maps of Moore cofibrations. Let A be a connected space, G an
abelian group, n = 3 an integer, and X' : M — A a map of the Moore space
M = M(G,n— 1) into A. The mapping cone, X, of k' is the push-out

M —X 5 4
™ —— X

of k' and the inclusion of M into the top of the cone TM = *M/; .
Composition of maps makes F(X, A; X), i.e., the space of maps u such that

A
SN
X —> X

commutes, into a topological monoid. The component F; containing the identity
of X is even (homotopy equivalent to) a group-like space ([7], Theorem 2.4,
p. 462) and thus equipped with a Samelson product

( , )mF)@m(F) — miy(Fy).
The purpose of this section is to describe this Samelson product.

Let (Z, x) be any based connected space and [Z, x; F;] the group of homotopy
classes (rel. *) of based maps of Z into F.

LeMMa 2.1. There exists a natural bijection
[Z7 *; Fl] Aand TF,,(G; F*(Z7 *’X))

which is an isomorphism of abelian groups if Z is a coH -space.

Proof. There are homotopy equivalences

FKX,A;X)—"»F;,(TM,M;X)«—“'— F.(TM ,M;X).
The first of these maps, right-composition with 4, is even a homeomorphism by
the universal property of push-out. The second map is right-multiplication by A
with respect to the action

Fo(TM,M;X) X Fo(TM, %;X) — F.(TM, %, X)

induced by the coaction TM — XM VTM.
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Hence
[Z,% Fi] =[Z,x F(TM,M;X)]
and by adjointness the right hand set can be identified to
moF«(TM,M; F(Z, %; X)) = mn(G; Fx(Z, *; X)).
See [1] for the definition of homotopy groups with coefficients.

For general Z, the bijection of Lemma 2.1, in the following always denoted
by a double arrow <, does not preserve the group structure. It is, however,
natural in the sense that

[Z, *; F1] «—> m(G; Fe(Zy, *; X))

/] »

[Z2, x; F\]l «<—> m4(G; Fu(Z, %; X))

commutes for any based map f : Z; — Z,. Thus [Z, x; F';] supports two natural
group structures, one of which is abelian. If Z is a coH -space, e.g., a sphere,
the two group structures coincide.

CorOLLARY 2.2. For i > 0,m;(F) = myi(G; X).
In view of this corollary, I allow myself to confuse a map « : (S, *) — (F}, 1)

with its homotopy class in either 7;(F;) or 7,.;(G;X). The Samelson product,
for instance, can then be considered as a bilinear map

< P )3 i (G X) ® 7rn+j(G;X) — 7rn+i+j(G;X)-

I shall now describe this map.
Let j; : S'V S/ — S' x §/ be the inclusion of the wedge into the product of
two spheres. Since j; is a cofibration

Ji i FuS' x 8/, X) = Fu(S'V S/ % X) = Fu(S', %, X) X Fu(S/, %, X)
is a fibration with fibre

Fu(S'x 8. 8"V S:X)=F.(S'AS§,*X).
The long exact sequence for this fibration breaks up into short exact sequences

0 — Mg (G, X) — (G5 Fo(S' % S/, %:X0) " 1,,1(G: X) X 704(G:X) — 0

!

[S'xS/, % F]
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Provided the abelian group structure is used, 7,(p;)+m,(p2), with p; : S Ix§/ —
Si,p2: St x S — S/ the projections, is a splitting, and thus

A = 1= m(p)Ta(G1) — Tu(P2)Ta () 2 [S' X 87, %5 F11 — Tpaini(G; X)

is a homomorphism extending the identity on the subgroup m,.4;(G;X). (With
the other group structure on the middle term, the above short exact sequence
is in general not split; indeed, the Samelson product is the obstruction to the
existence of a splitting [6], ([7], X. 5)).

For a € mi(F1) = mpi(G; X) and § € m;(F) = mutj(G; X), I now define

8(a)(B) = Ma X B)
where the cross product
[S', % F1] X [87, 6 F1] =5[S' X 8,5 Fy x Fi] — [ST xS/, % F1]

is the one induced by the product on F;. It is proved below that f(a) :
TptiG; X) — Tp4is(G; X) is @ homomorphism. The next section contains the
proof of

THEOREM 2.3. If a € Tpi(G; X), B € Ty j(G; X), then

(@, B) = ()8 — (—=1)"8(B)cx.

It will be convenient to have a description of the cross product relative to the
bijection + of Lemma 2.1. On the level of spaces, the cross product

X 1 Fu(S', % F1) X Fo(§7, %, F1) — Fo(S' X 8/, %; Fy)
takes (a, §) to the map (a x B)(s,t) = a(s)3(t), (s, 1) € §' x §/. Let
Ta(ax ) Tu(G; Fo(S7, %, X)) — mn(G; Fo(S' X 87, %; X))

be the homomorphism induced by taking the cross product with a.

LemMA 2.4. The diagram

[S/, *; Fi] — [S' X §, ; F\]

l o

. TaX )+ (P " .
(G5 F(¥, *; X)) > (G Fu(§' X §, %; X))

commutes.
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Proof. Let
m:F (S' xS, %, F(TM,M;X)) — F(S' X §, %, F,(TM,M; X))
be the map that takes ¢ : S X §/ — F,(TM,M; X) to the map

m()(s,t) = {(s,t) - als)h, (s,t) €S’ x §.
Then the diagrams

[S' X &, *, Fa] = m,(G; Fu(S' X &, %; X))
v
(S X §, *; F,] T+ TP

~

[S' X &, %; Fu] = m,(G; Fo(S* X §, %; X))

and

FuS %, Fy) =2y Fu(S/ %, Fy) —1s Fu(§' %; F2) = Fu(TM, M; Fu(S/, %; X))

ol w] e o]

Fu(STX 8, *; F,)—Eé Fu(S'X S, %, Fp) EF(S' % S, % Fo) = FTM, M; F(S' X §, %, X))
commute. (The two middle vertical arrows take § to the map a(s)3(¢); -h is
defined in the proof of Lemma 2.1.)

To prove the lemma, apply the functor 7 to the second diagram using the
first diagram to interpret the maps occurring in the lower horizontal line.

If a: (S',%x) — (Fy, 1) is a map, the adjoint of « is the map
ad(a) : X — F.(§8;X)

given by ad(a)(x)(s) = a(s)(x). (Note that ad(a) takes X into the component
containing the constant map.) Form the pull-back

E(a) ——> F«(E*L X)

.

ad(a) .
X —> Fu«(S; X)

along ad(a) of the restriction fibration determined by S’ < E™*!, the (i + 1)-

dimensional disc. As the fibre of E(a) — X is Q™*'X, its long exact homotopy
sequence

o (G5 E(@) = 14(G X) = M41i(G5 X) — g 1(G; E(@) =+
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contains a boundary map which raises degrees by i.

COROLLARY 2.5. If ¢ 2 n, the above boundary map
(G X) — 744i(G5 X)
is equal to 6(c).
Proof. The boundary map in question is 87r,,+j(ad(a)) where
T(@d(@)) : Tpij(G; X) = Tj(G3 Fu(S'5 X)) = mu(G5 Fu(S' X (87, %); X))
is induced by ad(«) and 9 is the boundary map of the fibration
F((E™', 8" X (87,%);X) — FuE™' X (87, %);X) — Fo(S" X (87, %); X).

As shown by the commutative diagram

1T,,F¢(Sj, *; X)
I

T F (B X (87, %), X) = o Fu(STX (87, %); X) Do 0, Fu((E), §') X (87, +):X)

l
\ W Fa((S7, %) X (87, %); X)

where the upward slanted arrow is induced by an inclusion, d is zero on
im m,(p,) and the identity on m,,;j(G;X); so is A. The homomorphism
mnej(ad(a)) has an alternative description provided by the commutative dia-

‘ﬂ'n(ﬁz)

gram
. m(aX ) . .
(G, Fo(S, *; X)) > (G Fu(S' X 5, %, X))
[ ]
n+j(ad(a)) .
Tt /G; X) s > Wi l(G; Fu(S X))
Consequently,

0(c) = Mmp(ax )+ mu(p1)e) = Ama(aX ) = 9mpyj(ad(e))

where the first equality is Lemma 2.4.

Corollary 2.5 offers a description of §(cr) which stresses the duality between
this section and Section 4.

COROLLARY 2.6. B(a) = Am,(aX ) is a homomorphism.
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Since F, is group-like, the identity map 1 € [Fy, 1;F,] has an inverse J €
[F1,1;F1]. As J,(Y) = 77! for general ¥ € [Z,x;F,], we have in particular
Ji(o) = —at, Ju(B) = —B. Thus

CoROLLARY 2.7. 8(a)(J.3) = —0(a)S.

A little more effort is required to establish

LemMma 2.8. 8(J )8 = —6(a)s.

Proof. J,(a) = —a = agq for a degree —1 self-map ¢ of §'. With the notation
from the proof of Corollary 2.5, we have

0(<) = 0(ag) = dmy(ad(aq)) = Omu;(§)ma(ad(a))
= Muj—1(§)0mn(ad(a)) = —dmy(ad(a)) = —b(ar).

Finally, let (3, ) : §' x §/ — F| be the map 7(8, a)(s, ) = (J B)(D)a(s),s €
Si,tes.

LemMa 2.9. An(3, @) = —(—1)Y6(B)c.

Noting that n(8, a)r = J(3) X &, where 7: §/ X §' — §' x §/ interchanges the
coordinates, the proof becomes similar to that of Lemma 2.7. The sign comes

in because the self-map of S/ A S’ = § = §' A S/ induced by 7 has degree
(=1

3. The commutator. The commutator is the map
O.FixF—F, (uv)—uovolu)olJ(),
and the Samelson product of a € 7;(F) and 3 € m;(F) is the unique homotopy

class such that the diagram

axf

N Fy X F,
. . {a,B)
SINS > F,

commutes up to homotopy. This section contains the computation of (a, B).
Let S = 81 X 83 X 83 X S4 with §; = §3 =S andSz=S4=Sf,i,j2 1.
Following Whitehead [6], consider the stratification

iz i23

{*}ZP() HPIL—)P2L+P3‘E>P4=S
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where P;,0 = k = 4, is the set of points in S with at least 4 — k coordinates
equal to the base point *. Thus

4
Pi=JSi=S$i VS VS VS,

i=1
P =%,

ver

where T' = {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)} and Sy = Sy1) X Sy). For
1 £ = 4, consider the maps

pi: Py St ji, piji=1,
with p;(sy, s2,53,84) = s; and j; the obvious inclusion. For v € T, consider the
maps

pyiPr eS8y )y, pyy =1,

with py(si, 52, 53, $4) = (Sy(1), Sy2)) and jy the obvious inclusion.
The group [P;,*;F;] — m,(G;F.(Py,*;X)) is the middle term of a short
exact sequence

mo(i12)

0 — m(G; Fo(P2, P1; X)) — (G Fi(Po, %, X)) — m0(G Fi (P, ;X)) — 0
where

(G5 Fy (P2, P13 X)) = 1042i(G; X) @ 47414(G5 X) @ Tpa2j (G5 X)
Tn(G; Fe(P1, %, X)) = 104i(G3 X) © T4 (G5 X) @ 700i(G; X) D T (G X).

Note that

4
> (i) : (G Fu(Py, % X)) = m(G: Fu(Py, %, X))

i=1

is a splitting.
Now form the six endomorphisms 7,( py)m.(jy) of T, (G; F«(P2, %, X)).

LemMa 3.1 3 Ta(PTa(y) = 1+ 2 30 1l BT (i)-
Proof. The maps py,jy,7 € T, restrict to maps

Py i PL o Pr0Sy =80 VS i
inducing

Py i P2[P1 o Syay ASyy ¢ -
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The collection of these consitute a pair of homeomorphisms

P[P & V(S‘Y(l) A Sy2)
ver

inverse to each other. Thus the left hand side is the identity on the subgroup
T.(G; F«(P2, P1;X)); so is the right hand side.

It remains to consider the two sides of the equality sign applied to the four
subgroups im m,(py), 1 = k = 4. Since

mpmEmp0 = mpon = { 5P LS

im m,(py) is invariant under m,( py)m,(jy) and in fact

im 7'rn(l_’k) :im ﬂ-n(l_)k) — im 7"'n(pk)-

3= Tl pr)maCi)

ver

Since

_ (P fi=
7l-n(I_7i)7rn(ji)7'rn([_’k) = {g (Pe) if i # Il:

im ,(py) is invariant under 7,(p;)7,(j;) and
4
1= m(pi)yma(ic) l im (P ¢ im ma( i) — im (i)
i=1
This proves the lemma.

The Samelson product of a € m;(Fy), € mi(Fy) is

(o, ) = Amn(B){, B}
where

{a,B} : S — F1, (51,52,53,54) — a(s1) 0 B(s2) o (J a)(s3) o (J B)(s4)
and A : S' x §/ — S is the diagonal A(s,t) = (s,t,s,¢). Choose a cellular

approximation Ay : §' X §/ — P, such that iAy ~ A(rel. *),i : P, — S the
inclusion.

LemMMA 3.2.

@), 8} = D maBo)ma(py)ma(i) {2, B} | P2)-

ver
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Proof. This follows from the identity of Lemma 3.1 since

4
7'rn(AZ) (Z Wn(pi)ﬂ'n(.;i)({aa B} | PZ))

i=1

= 7'rn(j_.l)(a +Ja) + Wn(j2)(ﬂ +J.8) =0.

Lemma 3.2 implies that the Samelson product (e, 3) can be computed as

<(X, B) = )‘Wn(A){av B}
= D Mo ma( pr)ma(r)ma(i2){ e, B}

yer
= 8(c)B + Amu(p1)(x — &) + B()J«3)
+An(B, &) + Ama(p2)(B — B) + 0«0/, 8)
= 6(a)B — (=1)"0(B)c.

Corollary 2.7, Lemma 2.8, and Lemma 2.9 have been used for the last equality.
This completes the proof of Theorem 2.1.

4. Self-maps of Eilenberg-MacLane fibrations. Let B be a connected space,
G an abelian group, and p : Y — B a (not necessarily orientable) fibration with
an Eilenberg-MacLane space K(G,n),n 2 1, as fibre. The space F|(Y;Y,B),
consisting of all maps u such that

Y ——— Y
N /
B
commutes, is a topological monoid with composition of maps as multiplication.
The subject of this section is the Samelson product

(5, ):mF)Qmi(F1)— mu(F1)

of the submonoid consisting of the identity component F; of F\(Y;Y,B).
Leta: (Z,C)— (Fy, 1) be any map. The adjoint of « is the map

ad(): Y XZ —Y,(y,z) — a(z)y.

Note that both ad(cr) and the projection p; onto Y can fill in the diagonal of the
diagram

https://doi.org/10.4153/CJM-1990-006-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1990-006-7

SAMELSON PRODUCTS 105

Yxc —P2 5y

l I

Y XZ PP

Thus we can associate to « the primary difference [7]
8"(p1,ad(e)) € H'(Y X (Z,C); (pp1)*G)

where G now also denotes the system of local coefficients defined by the fibration
p. In this way we obtain a map

(Z,C;Fi1— H"(Y X (Z,C);(pp1)*G)

which is a bijection and even an isomorphism of abelian groups if Z is a coH -
space; cf. [2]. In particular,

m(F1) = H"'(Y;G)
for i > 0 and the Samelson product becomes a bilinear map
( , Y:H"'(Y;G)QH"(Y;G)— H""'(Y;G)

of cohomology groups with local coefficients.
Consider now a homotopy class a € m;(Fy),i > 0. Let

Y — E(a) — S§™!
be the fibration over S™*! classified by «; i.e., with
ad(a): Y xS' =Y

as its characteristic map. The total space is the push-out

Y X § SECERN Y X Eitl

I

Y X Eifl —> E(o)

of j_(y,s) = (a(s)(y),s) and the inclusion j,. Eit! are the two hemispheres of
S*1, Hence the cohomology of E(a) can be computed from the Wang sequence

- — HYUE(@); G) — HU(Y; G) X HI (Y G) — H* (E(0); G) — - -
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whose differential 6(«) is the composite
HO) = oy x ) Lo i)

where /si is slant product [4] with a generator s; € H;(S 7).
Writing 36(c) for §(c) applied to 3, the main result of this section is

THeOREM 4.1. If o € mi(F;) = H"'(Y;G), € mi(F1) = H"(Y;G),i >0,
j >0, then

(o, B) = aB(B) — (—1)"Bb(cx).

The proof of this theorem occupies the rest of this paper. First some lemmas.

Lemma 4.2, If oy, ap € mi(Fy),i > 0, then

0((11 + a2) = O(al) + 0((12).

Proof. Let v : §' — SV S’ be a map such that pjv ~ 1 ~ pov. The
lemma then follows from the map of Serre spectral sequences induced by the
commutative diagram

E(a; + az) —>  E(a;) UyE(ay)

l l

where X is the suspension functor and the total space to the right is E(c;) and
E(;) glued together along a common fibre Y.

COROLLARY 4.3. 0(J,a) = 0(—a) = —0(x).
For o and 3 as in Theorem 4.1, recall the map
Bxa:s x8 —Fy (t,5)— B)als)

introduced in Section 2.

Lemma 4.4.

B0(c) = &"(p1,ad(B X @))/s; X s;.

Proof. Let s’ € H/(S/;Z) be the dual generator of s; € H;(S’; Z). Considering
3 as an element of H" (Y ; G), we have

B x s =6(p;,ad(B)) € H"(Y x §/).
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The diagram

H"'j(Y) ad(a)* > H"‘f(Y X Si)

l l

(=D¥ HE)

(ad(a)x 1)* Isi X s5;

HY(Y X ) HY(Y X § X §)

which commutes up to the sign indicated [4], shows that
BO(e) = (=1)"8"(x(s)y, BO)x(s)y) [si X s,

where the primary difference is between the two maps
0,s8,8) — a(s)y and (y,s,1) — B()a(s)()

of Y x S x §/ into Y. Moreover,
8"y, BO(s)y)/si X 57 = 8"(cs)y, BO)()y) /si X 5

since 6"(y, a(s)y)/s; X s; = 0. Thus

BO(a) = (—1)18"(y, BO)ax(s)y)/si X 5
= 8"y, B("a(s)y) /Tu(s; X 57)
= (1 x D*"(y, B")as)y)) /5 X i
= §"(p1,ad(B X @))/s; X s;

by naturality of the slant product. Here, 7: §/ x §' — S§' x §/ is the map that
interchanges the two factors.

As in Section 2, consider the diagonal map A : §' x S/ — § of S x §/ into
S =8 x8 x§ xS Construct the map

{a,8}:Y X8 —Y,(y,s1,t1,8,1) — alsy) o f(t1) o J a)(s2) o (J B)(22)
and let also
{8} =8"(p1,{e, B}) € H"(Y x S;G)
denote the primary difference of p; and {«, 8}. Then
(@, B) = (1 x A)*{at, B})/si X 5.

I use this formula for the
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Proof of Theorem 4.1. For any s € H*(S; Z),
A*(S)/S,‘ X §j= A* Z p;];(s) /S,' X §j
B!

where

Py = Syay X Sy 1y
are the maps introduced in Section 3, and 7 belongs to the set {(1,2),(1,4),
2,3),(3,4)} CT. Since

H*Y X S;G) X H*(Y;G)QH*S;Z)

it follows that

(1 x &) {a, B /s x 55 = | D (1 x 8)*(1 X jopy){a, B} /s,- X s

p
is the sum of the four terms
8"(p1,ad(a x B))/si x s; = af(B)
8"(p1,ad(a x JB)/si X s; = ab(J.) = —ad(B)
8"y, BOJ a)(s)y)[si x 57 = —(—1)"0(ex)
8"(pr,adU a X JB))/si X 5; = (Joa)B(J.3) = ab(B)

according to Corollary 4.3 and Lemma 4.4. These four terms add up to

(o, B) = aB(B) — (—1)76(cx).
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