SAMELSON PRODUCTS IN SPACES OF SELF-HOMOTOPY EQUIVALENCES

JESPER MICHAEL MØLLER

1. Introduction. The homotopy groups of any group-like space are equipped with a Samelson product satisfying, up to sign, the identities of a graded Lie bracket. We shall compute the Samelson product in two kinds of spaces of selfhomotopy equivalences arising when adding a homotopy or a homology group to a space.

First, let $A \rightarrow X$ be a cofibration with a Moore space $M(G, n)$ as cofibre. For the monoid aut ${ }^{A}(X)$ of maps under A homotopic (rel. A) to the identity, the Samelson product is a pairing

$$
\pi_{n+i}(G ; X) \otimes \pi_{n+j}(G ; X) \longrightarrow \pi_{n+i+j}(G ; X)
$$

of homotopy groups with coefficients [1] in G. Theorem 2.1 computes this pairing in terms of a homomorphism associated to $\alpha \in \pi_{i}\left(\mathrm{aut}^{A}(X)\right)$. This homomorphism can be described as the boundary map $\pi_{*}(G ; X) \rightarrow \pi_{*+i}(G ; X)$ of a certain fibration

$$
\Omega^{i+1} X \rightarrow E(\alpha) \rightarrow X
$$

naturally associated to α.
Dually, let $Y \rightarrow B$ be a fibration with an Eilenberg-MacLane space $K(G, n)$ as fibre. For the space $\operatorname{aut}_{B}(Y)$ of maps over B homotopic (over B) to the identity, the Samelson product is a pairing

$$
H^{n-i}(Y ; G) \otimes H^{n-j}(Y ; G) \longrightarrow H^{n-i-j}(Y ; G)
$$

of cohomology groups with local coefficients. Theorem 4.1 computes this pairing in terms of the differential $H^{*}(Y ; G) \rightarrow H^{*-i}(Y ; G)$ in the Wang sequence for the fibration

$$
Y \rightarrow E(\alpha) \rightarrow S^{i+1}
$$

classified by the element $\alpha \in \pi_{i}\left(\operatorname{aut}_{B}(Y)\right)$.
Both these formulas are reminiscent of the classical one [3] relating the Samelson and Pontryagin products.

I use Switzer's notation [5] for mapping spaces: If $u: U \rightarrow V$ is a map, $i: T \rightarrow U$ a cofibration, and $p: V \rightarrow W$ a fibration, $F_{u}(U, T ; V, W)$ is the space of all maps $v: U \rightarrow V$ with $v i=u i$ and $p v=p u$.

[^0]2. Self-maps of Moore cofibrations. Let A be a connected space, G an abelian group, $n \geqq 3$ an integer, and $k^{\prime}: M \rightarrow A$ a map of the Moore space $M=M(G, n-1)$ into A. The mapping cone, X, of k^{\prime} is the push-out

of k^{\prime} and the inclusion of M into the top of the cone $T M=I \times M / o \times M$.
Composition of maps makes $F_{1}(X, A ; X)$, i.e., the space of maps u such that

commutes, into a topological monoid. The component F_{1} containing the identity of X is even (homotopy equivalent to) a group-like space ([7], Theorem 2.4, p. 462) and thus equipped with a Samelson product
$$
\langle\quad, \quad\rangle: \pi_{i}\left(F_{1}\right) \otimes \pi_{j}\left(F_{1}\right) \rightarrow \pi_{i+j}\left(F_{1}\right) .
$$

The purpose of this section is to describe this Samelson product.
Let $(Z, *)$ be any based connected space and $\left[Z, * ; F_{1}\right]$ the group of homotopy classes (rel. *) of based maps of Z into F_{1}.

Lemma 2.1. There exists a natural bijection

$$
\left[Z, * ; F_{1}\right] \leftrightarrow \pi_{n}\left(G ; F_{*}(Z, * ; X)\right)
$$

which is an isomorphism of abelian groups if Z is a coH-space.
Proof. There are homotopy equivalences

$$
F_{1}(X, A ; X) \xrightarrow{\bar{h}} F_{h}(T M, M ; X) \stackrel{\cdot h}{\longleftrightarrow} F_{*}(T M, M ; X) .
$$

The first of these maps, right-composition with h, is even a homeomorphism by the universal property of push-out. The second map is right-multiplication by h with respect to the action

$$
F_{*}(T M, M ; X) \times F_{*}(T M, * ; X) \rightarrow F_{*}(T M, * ; X)
$$

induced by the coaction $T M \rightarrow \Sigma M \vee T M$.

Hence

$$
\left[Z, * ; F_{1}\right]=\left[Z, * ; F_{*}(T M, M ; X)\right]
$$

and by adjointness the right hand set can be identified to

$$
\pi_{0} F_{*}\left(T M, M ; F_{*}(Z, * ; X)\right)=\pi_{n}\left(G ; F_{*}(Z, * ; X)\right)
$$

See [1] for the definition of homotopy groups with coefficients.
For general Z, the bijection of Lemma 2.1, in the following always denoted by a double arrow \leftrightarrow, does not preserve the group structure. It is, however, natural in the sense that

commutes for any based map $f: Z_{1} \rightarrow Z_{2}$. Thus $\left[Z, * ; F_{1}\right]$ supports two natural group structures, one of which is abelian. If Z is a coH -space, e.g., a sphere, the two group structures coincide.

Corollary 2.2. For $i>0, \pi_{i}\left(F_{1}\right)=\pi_{n+i}(G ; X)$.
In view of this corollary, I allow myself to confuse a map $\alpha:\left(S^{i}, *\right) \rightarrow\left(F_{1}, 1\right)$ with its homotopy class in either $\pi_{i}\left(F_{1}\right)$ or $\pi_{n+i}(G ; X)$. The Samelson product, for instance, can then be considered as a bilinear map

$$
\langle\quad, \quad\rangle: \pi_{n+i}(G ; X) \otimes \pi_{n+j}(G ; X) \rightarrow \pi_{n+i+j}(G ; X) .
$$

I shall now describe this map.
Let $j_{1}: S^{i} \vee S^{j} \rightarrow S^{i} \times S^{j}$ be the inclusion of the wedge into the product of two spheres. Since j_{1} is a cofibration

$$
\bar{j}_{1}: F_{*}\left(S^{i} \times S^{j}, * ; X\right) \rightarrow F_{*}\left(S^{i} \vee S^{j}, * ; X\right)=F_{*}\left(S^{i}, * ; X\right) \times F_{*}\left(S^{j}, * ; X\right)
$$

is a fibration with fibre

$$
F_{*}\left(S^{i} \times S^{j}, S^{i} \vee S^{j} ; X\right)=F_{*}\left(S^{i} \wedge S^{j}, * ; X\right)
$$

The long exact sequence for this fibration breaks up into short exact sequences

$$
\begin{gathered}
0 \rightarrow \pi_{n+i+j}(G, X) \xrightarrow{\kappa} \pi_{n}\left(G ; F_{*}\left(S^{i} \times S^{j}, * ; X\right)\right) \xrightarrow{\pi_{n}\left(\bar{j}_{1}\right)} \pi_{n+i}(G ; X) \times \pi_{n+j}(G ; X) \rightarrow 0 \\
\quad \\
{\left[S^{i} \times S^{j}, * ; F_{1}\right]}
\end{gathered}
$$

Provided the abelian group structure is used, $\pi_{n}\left(\bar{p}_{1}\right)+\pi_{n}\left(\bar{p}_{2}\right)$, with $p_{1}: S^{1} \times S^{j} \rightarrow$ $S^{i}, p_{2}: S^{i} \times S^{i} \rightarrow S^{j}$ the projections, is a splitting, and thus

$$
\lambda=1-\pi_{n}\left(\bar{p}_{1}\right) \pi_{n}\left(\bar{j}_{1}\right)-\pi_{n}\left(\bar{p}_{2}\right) \pi_{n}\left(\bar{j}_{1}\right):\left[S^{i} \times S^{j}, * ; F_{1}\right] \rightarrow \pi_{n+i+j}(G ; X)
$$

is a homomorphism extending the identity on the subgroup $\pi_{n+i+j}(G ; X)$. (With the other group structure on the middle term, the above short exact sequence is in general not split; indeed, the Samelson product is the obstruction to the existence of a splitting [6], ([7], $X .5$)).
For $\alpha \in \pi_{i}\left(F_{1}\right)=\pi_{n+i}(G ; X)$ and $\beta \in \pi_{j}\left(F_{1}\right)=\pi_{n+j}(G ; X)$, I now define

$$
\theta(\alpha)(\beta)=\lambda(\alpha \times \beta)
$$

where the cross product

$$
\left[S^{i}, * ; F_{1}\right] \times\left[S^{j}, * ; F_{1}\right] \xrightarrow{\times}\left[S^{i} \times S^{j}, * ; F_{1} \times F_{1}\right] \rightarrow\left[S^{i} \times S^{j}, * ; F_{1}\right]
$$

is the one induced by the product on F_{1}. It is proved below that $\theta(\alpha)$: $\left.\pi_{n+i} G ; X\right) \rightarrow \pi_{n+i+j}(G ; X)$ is a homomorphism. The next section contains the proof of

Theorem 2.3. If $\alpha \in \pi_{n+i}(G ; X), \beta \in \pi_{n+j}(G ; X)$, then

$$
\langle\alpha, \beta\rangle=\theta(\alpha) \beta-(-1)^{i j} \theta(\beta) \alpha .
$$

It will be convenient to have a description of the cross product relative to the bijection \leftrightarrow of Lemma 2.1. On the level of spaces, the cross product

$$
\times: F_{*}\left(S^{i}, * ; F_{1}\right) \times F_{*}\left(S^{j}, * ; F_{1}\right) \rightarrow F_{*}\left(S^{i} \times S^{j}, * ; F_{1}\right)
$$

takes (α, β) to the map $(\alpha \times \beta)(s, t)=\alpha(s) \beta(t),(s, t) \in S^{i} \times S^{j}$. Let

$$
\pi_{n}(\alpha \times \quad): \pi_{n}\left(G ; F_{*}\left(S^{j}, * ; X\right)\right) \rightarrow \pi_{n}\left(G ; F_{*}\left(S^{i} \times S^{j}, * ; X\right)\right)
$$

be the homomorphism induced by taking the cross product with α.
Lemma 2.4. The diagram

commutes.

Proof. Let

$$
m: F_{*}\left(S^{i} \times S^{j}, * ; F_{*}(T M, M ; X)\right) \rightarrow F_{*}\left(S^{i} \times S^{j}, * ; F_{h}(T M, M ; X)\right)
$$

be the map that takes $\zeta: S^{i} \times S^{j} \rightarrow F_{*}(T M, M ; X)$ to the map

$$
m(\zeta)(s, t)=\zeta(s, t) \cdot \alpha(s) h, \quad(s, t) \in S^{i} \times S^{j}
$$

Then the diagrams

$$
\left[S^{i} \times S^{j}, * ; F_{*}\right]=\pi_{n}\left(G ; F_{*}\left(S^{i} \times S^{j}, * ; X\right)\right)
$$

and

$$
\begin{gathered}
F_{*}\left(S^{j} * ; F_{1}\right) \xrightarrow{\underline{\underline{h}}} F_{*}\left(S^{j} * ; F_{h}\right) \xrightarrow{\cdot h} F_{*}\left(S^{j} * ; F_{*}\right)=F_{*}\left(T M, M ; F_{*}\left(S^{j}, * ; X\right)\right) \\
\alpha \times \downarrow
\end{gathered}
$$

$F_{*}\left(S^{i} \times S^{j}, * ; F_{1}\right) \xrightarrow{\bar{h}} F_{*}\left(S^{i} \times S^{i}, * ; F_{h}\right) \stackrel{m}{\leftarrow} F_{*}\left(S^{i} \times S^{i}, * ; F_{*}\right)=F_{*}\left(T M, M ; F_{*}\left(S^{i} \times S^{j}, * ; X\right)\right)$
commute. (The two middle vertical arrows take β to the map $\alpha(s) \beta(t) ; \cdot h$ is defined in the proof of Lemma 2.1.)

To prove the lemma, apply the functor π_{0} to the second diagram using the first diagram to interpret the maps occurring in the lower horizontal line.

If $\alpha:\left(S^{i}, *\right) \rightarrow\left(F_{1}, 1\right)$ is a map, the adjoint of α is the map

$$
\operatorname{ad}(\alpha): X \rightarrow F_{*}\left(S^{i} ; X\right)
$$

given by $\operatorname{ad}(\alpha)(x)(s)=\alpha(s)(x)$. (Note that $\operatorname{ad}(\alpha)$ takes X into the component containing the constant map.) Form the pull-back

along $\operatorname{ad}(\alpha)$ of the restriction fibration determined by $S^{i} \hookrightarrow E^{i+1}$, the $(i+1)$ dimensional disc. As the fibre of $E(\alpha) \rightarrow X$ is $\Omega^{i+1} X$, its long exact homotopy sequence

$$
\cdots \rightarrow \pi_{q}(G ; E(\alpha)) \rightarrow \pi_{q}(G ; X) \rightarrow \pi_{q+i}(G ; X) \rightarrow \pi_{q-1}(G ; E(\alpha)) \rightarrow \cdots
$$

contains a boundary map which raises degrees by i.
Corollary 2.5. If $q \geqq n$, the above boundary map

$$
\pi_{q}(G ; X) \longrightarrow \pi_{q+i}(G ; X)
$$

is equal to $\theta(\alpha)$.
Proof. The boundary map in question is $\partial \pi_{n+j}(\operatorname{ad}(\alpha))$ where

$$
\pi_{n}(\operatorname{ad}(\alpha)): \pi_{n+j}(G ; X) \rightarrow \pi_{n+j}\left(G ; F_{*}\left(S^{i} ; X\right)\right)=\pi_{n}\left(G ; F_{*}\left(S^{i} \times\left(S^{j}, *\right) ; X\right)\right)
$$

is induced by $\operatorname{ad}(\alpha)$ and ∂ is the boundary map of the fibration

$$
F_{*}\left(\left(E^{i+1}, S^{i}\right) \times\left(S^{j}, *\right) ; X\right) \rightarrow F_{*}\left(E^{i+1} \times\left(S^{j}, *\right) ; X\right) \rightarrow F_{*}\left(S^{i} \times\left(S^{j}, *\right) ; X\right)
$$

As shown by the commutative diagram

where the upward slanted arrow is induced by an inclusion, ∂ is zero on im $\pi_{n}\left(\bar{p}_{2}\right)$ and the identity on $\pi_{n+i+j}(G ; X)$; so is λ. The homomorphism $\pi_{n+j}(\operatorname{ad}(\alpha))$ has an alternative description provided by the commutative diagram

Consequently,

$$
\theta(\alpha)=\lambda\left(\pi_{n}(\alpha \times \quad)+\pi_{n}\left(\bar{p}_{1}\right) \alpha\right)=\lambda \pi_{n}(\alpha \times \quad)=\partial \pi_{n+j}(\operatorname{ad}(\alpha))
$$

where the first equality is Lemma 2.4.
Corollary 2.5 offers a description of $\theta(\alpha)$ which stresses the duality between this section and Section 4.

Corollary 2.6. $\theta(\alpha)=\lambda \pi_{n}(\alpha \times \quad)$ is a homomorphism.

Since F_{1} is group-like, the identity map $1 \in\left[F_{1}, 1 ; F_{1}\right]$ has an inverse $J \in$ $\left[F_{1}, 1 ; F_{1}\right]$. As $J_{*}(\gamma)=\gamma^{-1}$ for general $\gamma \in\left[Z, * ; F_{1}\right]$, we have in particular $J_{*}(\alpha)=-\alpha, J_{*}(\beta)=-\beta$. Thus

Corollary 2.7. $\theta(\alpha)\left(J_{*} \beta\right)=-\theta(\alpha) \beta$.
A little more effort is required to establish
Lemma 2.8. $\theta\left(J_{*} \alpha\right) \beta=-\theta(\alpha) \beta$.
Proof. $J_{*}(\alpha)=-\alpha=\alpha q$ for a degree -1 self-map q of S^{i}. With the notation from the proof of Corollary 2.5 , we have

$$
\begin{aligned}
\theta\left(J_{*} \alpha\right)=\theta(\alpha q) & =\partial \pi_{n}(\operatorname{ad}(\alpha q))=\partial \pi_{n+j}(\bar{q}) \pi_{n}(\operatorname{ad}(\alpha)) \\
& =\pi_{n+j-1}(\bar{q}) \partial \pi_{n}(\operatorname{ad}(\alpha))=-\partial \pi_{n}(\operatorname{ad}(\alpha))=-\theta(\alpha) .
\end{aligned}
$$

Finally, let $\eta(\beta, \alpha): S^{i} \times S^{j} \rightarrow F_{1}$ be the map $\eta(\beta, \alpha)(s, t)=(J \beta)(t) \alpha(s), s \in$ $S^{i}, t \in S^{j}$.

Lemma 2.9. $\lambda \eta(\beta, \alpha)=-(-1)^{i j} \theta(\beta) \alpha$.
Noting that $\eta(\beta, \alpha) \tau=J(\beta) \times \alpha$, where $\tau: S^{j} \times S^{i} \rightarrow S^{i} \times S^{j}$ interchanges the coordinates, the proof becomes similar to that of Lemma 2.7. The sign comes in because the self-map of $S^{j} \wedge S^{i}=S^{i+j}=S^{i} \wedge S^{j}$ induced by τ has degree $(-1)^{i j}$.
3. The commutator. The commutator is the map

$$
\Phi: F_{1} \times F_{1} \rightarrow F_{1}, \quad(u, v) \rightarrow u \circ v \circ J(u) \circ J(v),
$$

and the Samelson product of $\alpha \in \pi_{i}\left(F_{1}\right)$ and $\beta \in \pi_{j}\left(F_{1}\right)$ is the unique homotopy class such that the diagram

commutes up to homotopy. This section contains the computation of $\langle\alpha, \beta\rangle$.
Let $S=S_{1} \times S_{2} \times S_{3} \times S_{4}$ with $S_{1}=S_{3}=S^{i}$ and $S_{2}=S_{4}=S^{j}, i, j \geqq 1$. Following Whitehead [6], consider the stratification

$$
\{*\}=P_{0} \hookrightarrow P_{1} \xrightarrow{i_{12}} P_{2} \xrightarrow{i_{23}} P_{3} \xrightarrow{i_{34}} P_{4}=S
$$

where $P_{k}, 0 \leqq k \leqq 4$, is the set of points in S with at least $4-k$ coordinates equal to the base point $*$. Thus

$$
\begin{aligned}
P_{1} & =\bigcup_{i=1}^{4} S_{i}=S_{1} \vee S_{2} \vee S_{3} \vee S_{4} \\
P_{2} & =\bigcup_{\gamma \in \Gamma} S_{\gamma}
\end{aligned}
$$

where $\Gamma=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$ and $S_{\gamma}=S_{\gamma(1)} \times S_{\gamma_{(2)}}$. For $1 \leqq i \leqq 4$, consider the maps

$$
p_{i}: P_{2} \leftrightarrow S_{i}: j_{i}, \quad p_{i} j_{i}=1,
$$

with $p_{i}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=s_{i}$ and j_{i} the obvious inclusion. For $\gamma \in \Gamma$, consider the maps

$$
p_{\gamma}: P_{2} \leftrightarrow S_{\gamma}: j_{\gamma}, \quad p_{\gamma} j_{\gamma}=1,
$$

with $p_{\gamma}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=\left(s_{\gamma(1)}, s_{\gamma(2)}\right)$ and j_{γ} the obvious inclusion.
The group $\left[P_{2}, * ; F_{1}\right] \leftrightarrow \pi_{n}\left(G ; F_{*}\left(P_{2}, * ; X\right)\right)$ is the middle term of a short exact sequence

$$
0 \rightarrow \pi_{n}\left(G ; F_{*}\left(P_{2}, P_{1} ; X\right)\right) \rightarrow \pi_{n}\left(G ; F_{*}\left(P_{2}, * ; X\right)\right) \xrightarrow{\pi_{n}\left(\bar{i}_{12}\right)} \pi_{n}\left(G ; F_{*}\left(P_{1}, * ; X\right)\right) \rightarrow 0
$$

where

$$
\begin{aligned}
\pi_{n}\left(G ; F_{*}\left(P_{2}, P_{1} ; X\right)\right) & \cong \pi_{n+2 i}(G ; X) \oplus 4 \pi_{n+i+j}(G ; X) \oplus \pi_{n+2 j}(G ; X) \\
\pi_{n}\left(G ; F_{*}\left(P_{1}, * ; X\right)\right) & \cong \pi_{n+i}(G ; X) \oplus \pi_{n+j}(G ; X) \oplus \pi_{n+i}(G ; X) \oplus \pi_{n+j}(G ; X) .
\end{aligned}
$$

Note that

$$
\sum_{i=1}^{4} \pi_{n}\left(\bar{p}_{i}\right): \pi_{n}\left(G ; F_{*}\left(P_{1}, * ; X\right)\right) \rightarrow \pi_{n}\left(G ; F_{*}\left(P_{2}, * ; X\right)\right)
$$

is a splitting.
Now form the six endomorphisms $\pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right)$ of $\pi_{n}\left(G ; F_{*}\left(P_{2}, * ; X\right)\right)$.
Lemma 3.1. $\sum_{\gamma \in \Gamma} \pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right)=1+2 \sum_{i=1}^{4} \pi_{n}\left(\bar{p}_{i}\right) \pi_{n}\left(\bar{j}_{i}\right)$.
Proof. The maps $p_{\gamma}, j_{\gamma}, \gamma \in \Gamma$, restrict to maps

$$
p_{\gamma}: P_{1} \leftrightarrow P_{1} \cap S_{\gamma}=S_{\gamma_{(1)}} \vee S_{\gamma(2)}: j_{\gamma}
$$

inducing

$$
p_{\gamma}: P_{2} / P_{1} \leftrightarrow S_{\gamma(1)} \wedge S_{\gamma(2)}: j_{\gamma}
$$

The collection of these consitute a pair of homeomorphisms

$$
P_{2} / P_{1} \leftrightarrow \bigvee_{\gamma \in \Gamma}\left(S_{\gamma(1)} \wedge S_{\gamma(2)}\right)
$$

inverse to each other. Thus the left hand side is the identity on the subgroup $\pi_{n}\left(G ; F_{*}\left(P_{2}, P_{1} ; X\right)\right)$; so is the right hand side.

It remains to consider the two sides of the equality sign applied to the four subgroups im $\pi_{n}\left(\bar{p}_{k}\right), 1 \leqq k \leqq 4$. Since

$$
\pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right) \pi_{n}\left(\bar{p}_{k}\right)=\pi_{n}\left(\overline{p_{k} j_{\gamma} p_{\gamma}}\right)= \begin{cases}\pi_{n}\left(\bar{p}_{k}\right) & \text { if } k \in \gamma \\ 0 & \text { if } k \notin \gamma\end{cases}
$$

$\operatorname{im} \pi_{n}\left(\bar{p}_{k}\right)$ is invariant under $\pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right)$ and in fact

$$
3=\sum_{\gamma \in \Gamma} \pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right) \mid \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right): \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right) \rightarrow \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right) .
$$

Since

$$
\pi_{n}\left(\bar{p}_{i}\right) \pi_{n}\left(\bar{j}_{i}\right) \pi_{n}\left(\bar{p}_{k}\right)= \begin{cases}\pi_{n}\left(\bar{p}_{k}\right) & \text { if } i=k \\ 0 & \text { if } i \neq k,\end{cases}
$$

im $\pi_{n}\left(\bar{p}_{k}\right)$ is invariant under $\pi_{n}\left(\bar{p}_{i}\right) \pi_{n}\left(\bar{j}_{i}\right)$ and

$$
1=\sum_{i=1}^{4} \pi_{n}\left(\bar{p}_{i}\right) \pi_{n}\left(\bar{j}_{i}\right) \mid \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right): \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right) \rightarrow \operatorname{im} \pi_{n}\left(\bar{p}_{k}\right) .
$$

This proves the lemma.
The Samelson product of $\alpha \in \pi_{i}\left(F_{1}\right), \beta \in \pi_{j}\left(F_{1}\right)$ is

$$
\langle\alpha, \beta\rangle=\lambda \pi_{n}(\bar{\Delta})\{\alpha, \beta\}
$$

where

$$
\{\alpha, \beta\}: S \rightarrow F_{1},\left(s_{1}, s_{2}, s_{3}, s_{4}\right) \rightarrow \alpha\left(s_{1}\right) \circ \beta\left(s_{2}\right) \circ(J \alpha)\left(s_{3}\right) \circ(J \beta)\left(s_{4}\right)
$$

and $\Delta: S^{i} \times S^{j} \rightarrow S$ is the diagonal $\Delta(s, t)=(s, t, s, t)$. Choose a cellular approximation $\Delta_{2}: S^{i} \times S^{j} \rightarrow P_{2}$ such that $i_{2} \Delta_{2} \simeq \Delta\left(\right.$ rel. $*$), $i_{2}: P_{2} \rightarrow S$ the inclusion.

Lemma 3.2.

$$
\pi_{n}(\bar{\Delta})\{\alpha, \beta\}=\sum_{\gamma \in \Gamma} \pi_{n}\left(\bar{\Delta}_{2}\right) \pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right)\left(\{\alpha, \beta\} \mid P_{2}\right) .
$$

Proof. This follows from the identity of Lemma 3.1 since

$$
\begin{aligned}
& \pi_{n}\left(\bar{\Delta}_{2}\right)\left(\sum_{i=1}^{4} \pi_{n}\left(\bar{p}_{i}\right) \pi_{n}\left(\bar{j}_{i}\right)\left(\{\alpha, \beta\} \mid P_{2}\right)\right) \\
&=\pi_{n}\left(\bar{j}_{1}\right)\left(\alpha+J_{*} \alpha\right)+\pi_{n}\left(\bar{j}_{2}\right)\left(\beta+J_{*} \beta\right)=0 .
\end{aligned}
$$

Lemma 3.2 implies that the Samelson product $\langle\alpha, \beta\rangle$ can be computed as

$$
\begin{aligned}
\langle\alpha, \beta\rangle & =\lambda \pi_{n}(\bar{\Delta})\{\alpha, \beta\} \\
& =\sum_{\gamma \in \Gamma} \lambda \pi_{n}\left(\bar{\Delta}_{2}\right) \pi_{n}\left(\bar{p}_{\gamma}\right) \pi_{n}\left(\bar{j}_{\gamma}\right) \pi_{n}\left(\bar{i}_{2}\right)\{\alpha, \beta\} \\
& =\theta(\alpha) \beta+\lambda \pi_{n}\left(\bar{p}_{1}\right)(\alpha-\alpha)+\theta(\alpha)\left(J_{*} \beta\right) \\
& +\lambda \eta(\beta, \alpha)+\lambda \pi_{n}\left(\bar{p}_{2}\right)(\beta-\beta)+\theta\left(J_{*} \alpha\right)\left(J_{*} \beta\right) \\
& =\theta(\alpha) \beta-(-1)^{i j} \theta(\beta) \alpha .
\end{aligned}
$$

Corollary 2.7, Lemma 2.8, and Lemma 2.9 have been used for the last equality.
This completes the proof of Theorem 2.1.
4. Self-maps of Eilenberg-MacLane fibrations. Let B be a connected space, G an abelian group, and $p: Y \rightarrow B$ a (not necessarily orientable) fibration with an Eilenberg-MacLane space $K(G, n), n \geqq 1$, as fibre. The space $F_{1}(Y ; Y, B)$, consisting of all maps u such that

commutes, is a topological monoid with composition of maps as multiplication. The subject of this section is the Samelson product

$$
\langle\quad, \quad\rangle: \pi_{i}\left(F_{1}\right) \otimes \pi_{j}\left(F_{1}\right) \rightarrow \pi_{i+j}\left(F_{1}\right)
$$

of the submonoid consisting of the identity component F_{1} of $F_{1}(Y ; Y, B)$.
Let $a:(Z, C) \rightarrow\left(F_{1}, 1\right)$ be any map. The adjoint of α is the map

$$
\operatorname{ad}(\alpha): Y \times Z \rightarrow Y,(y, z) \rightarrow \alpha(z) y .
$$

Note that both $\operatorname{ad}(\alpha)$ and the projection p_{1} onto Y can fill in the diagonal of the diagram

Thus we can associate to α the primary difference [7]

$$
\delta^{n}\left(p_{1}, \operatorname{ad}(\alpha)\right) \in H^{n}\left(Y \times(Z, C) ;\left(p p_{1}\right)^{*} G\right)
$$

where G now also denotes the system of local coefficients defined by the fibration p. In this way we obtain a map

$$
\left[Z, C ; F_{1}\right] \rightarrow H^{n}\left(Y \times(Z, C) ;\left(p p_{1}\right)^{*} G\right)
$$

which is a bijection and even an isomorphism of abelian groups if Z is a $\mathrm{coH}-$ space; cf. [2]. In particular,

$$
\pi_{i}\left(F_{1}\right) \cong H^{n-i}(Y ; G)
$$

for $i>0$ and the Samelson product becomes a bilinear map

$$
\langle\quad, \quad\rangle: H^{n-i}(Y ; G) \otimes H^{n-j}(Y ; G) \rightarrow H^{n-i-j}(Y ; G)
$$

of cohomology groups with local coefficients.
Consider now a homotopy class $\alpha \in \pi_{i}\left(F_{1}\right), i>0$. Let

$$
Y \rightarrow E(\alpha) \rightarrow S^{i+1}
$$

be the fibration over S^{i+1} classified by α; i.e., with

$$
\operatorname{ad}(\alpha): Y \times S^{i} \rightarrow Y
$$

as its characteristic map. The total space is the push-out

of $j_{-}(y, s)=(\alpha(s)(y), s)$ and the inclusion $j_{+} . E_{ \pm}^{i+1}$ are the two hemispheres of S^{i+1}. Hence the cohomology of $E(\alpha)$ can be computed from the Wang sequence

$$
\cdots \rightarrow H^{q}(E(\alpha) ; G) \rightarrow H^{q}(Y ; G) \xrightarrow{\theta(\alpha)} H^{q-i}(Y ; G) \rightarrow H^{q+1}(E(\alpha) ; G) \rightarrow \cdots
$$

whose differential $\theta(\alpha)$ is the composite

$$
H^{q}(Y) \xrightarrow{\operatorname{ad}(\alpha)^{*}} H^{q}\left(Y \times S^{i}\right) \xrightarrow{\mid s_{i}} H^{q-i}(Y)
$$

where $/ s_{i}$ is slant product [4] with a generator $s_{i} \in H_{i}\left(S^{i} ; \mathbf{Z}\right)$.
Writing $\beta \theta(\alpha)$ for $\theta(\alpha)$ applied to β, the main result of this section is
Theorem 4.1. If $\alpha \in \pi_{i}\left(F_{i}\right)=H^{n-i}(Y ; G), \beta \in \pi_{j}\left(F_{1}\right)=H^{n-j}(Y ; G), i>0$, $j>0$, then

$$
\langle\alpha, \beta\rangle=\alpha \theta(\beta)-(-1)^{i j} \beta \theta(\alpha) .
$$

The proof of this theorem occupies the rest of this paper. First some lemmas.
Lemma 4.2. If $\alpha_{1}, \alpha_{2} \in \pi_{i}\left(F_{1}\right), i>0$, then

$$
\theta\left(\alpha_{1}+\alpha_{2}\right)=\theta\left(\alpha_{1}\right)+\theta\left(\alpha_{2}\right)
$$

Proof. Let $\nu: S^{i} \rightarrow S^{i} \vee S^{i}$ be a map such that $p_{1} \nu \simeq 1 \simeq p_{2} \nu$. The lemma then follows from the map of Serre spectral sequences induced by the commutative diagram

where Σ is the suspension functor and the total space to the right is $E\left(\alpha_{1}\right)$ and $E\left(\alpha_{2}\right)$ glued together along a common fibre Y.

Corollary 4.3. $\theta\left(J_{*} \alpha\right)=\theta(-\alpha)=-\theta(\alpha)$.
For α and β as in Theorem 4.1, recall the map

$$
\beta \times \alpha: S^{j} \times S^{i} \rightarrow F_{1},(t, s) \rightarrow \beta(t) \alpha(s)
$$

introduced in Section 2.
Lemma 4.4.

$$
\beta \theta(\alpha)=\delta^{n}\left(p_{1}, \operatorname{ad}(\beta \times \alpha)\right) / s_{j} \times s_{i} .
$$

Proof. Let $s^{j} \in H^{j}\left(S^{j} ; \mathbf{Z}\right)$ be the dual generator of $s_{j} \in H_{j}\left(S^{j} ; \mathbf{Z}\right)$. Considering β as an element of $H^{n-j}(Y ; G)$, we have

$$
\beta \times s^{j}=\delta^{n}\left(p_{1}, \operatorname{ad}(\beta)\right) \in H^{n}\left(Y \times S^{j}\right) .
$$

The diagram

which commutes up to the sign indicated [4], shows that

$$
\beta \theta(\alpha)=(-1)^{i j} \delta^{n}(\alpha(s) y, \beta(t) \alpha(s) y) / s_{i} \times s_{j},
$$

where the primary difference is between the two maps

$$
(y, s, t) \rightarrow \alpha(s) y \quad \text { and } \quad(y, s, t) \rightarrow \beta(t) \alpha(s)(y)
$$

of $Y \times S^{i} \times S^{j}$ into Y. Moreover,

$$
\delta^{n}(y, \beta(t) \alpha(s) y) / s_{i} \times s_{j}=\delta^{n}(\alpha(s) y, \beta(t) \alpha(s) y) / s_{i} \times s_{j}
$$

since $\delta^{n}(y, \alpha(s) y) / s_{i} \times s_{j}=0$. Thus

$$
\begin{aligned}
\beta \theta(\alpha) & =(-1)^{i j} \delta^{n}(y, \beta(t) \alpha(s) y) / s_{i} \times s_{j} \\
& =\delta^{n}(y, \beta(t) \alpha(s) y) / \tau_{*}\left(s_{j} \times s_{i}\right) \\
& =\left((1 \times \tau)^{*} \delta^{n}(y, \beta(t) \alpha(s) y)\right) / s_{j} \times s_{i} \\
& =\delta^{n}\left(p_{1}, \operatorname{ad}(\beta \times \alpha)\right) / s_{j} \times s_{i}
\end{aligned}
$$

by naturality of the slant product. Here, $\tau: S^{j} \times S^{i} \rightarrow S^{i} \times S^{j}$ is the map that interchanges the two factors.

As in Section 2, consider the diagonal map $\Delta: S^{i} \times S^{j} \rightarrow S$ of $S^{i} \times S^{j}$ into $S=S^{i} \times S^{j} \times S^{i} \times S^{i}$. Construct the map

$$
\{\alpha, \beta\}: Y \times S \rightarrow Y,\left(y, s_{1}, t_{1}, s_{2}, t_{2}\right) \rightarrow \alpha\left(s_{1}\right) \circ \beta\left(t_{1}\right) \circ(J \alpha)\left(s_{2}\right) \circ(J \beta)\left(t_{2}\right)
$$

and let also

$$
\{\alpha, \beta\}=\delta^{n}\left(p_{1},\{\alpha, \beta\}\right) \in H^{n}(Y \times S ; G)
$$

denote the primary difference of p_{1} and $\{\alpha, \beta\}$. Then

$$
\langle\alpha, \beta\rangle=\left((1 \times \Delta)^{*}\{\alpha, \beta\}\right) / s_{i} \times s_{j}
$$

I use this formula for the

Proof of Theorem 4.1. For any $s \in H^{*}(S ; \mathbf{Z})$,

$$
\Delta^{*}(s) / s_{i} \times s_{j}=\Delta^{*}\left(\sum_{\gamma} p_{\gamma}^{*} j_{\gamma}^{*}(s)\right) / s_{i} \times s_{j}
$$

where

$$
p_{\gamma} \leftrightarrow S_{\gamma(1)} \times S_{\gamma(2)}: j_{\gamma}
$$

are the maps introduced in Section 3, and γ belongs to the set $\{(1,2),(1,4)$, $(2,3),(3,4)\} \subset \Gamma$. Since

$$
H^{*}(Y \times S ; G) \cong H^{*}(Y ; G) \otimes H^{*}(S ; \mathbf{Z})
$$

it follows that

$$
\left((1 \times \Delta)^{*}\{\alpha, \beta\}\right) / s_{i} \times s_{j}=\left(\sum_{\gamma}(1 \times \Delta)^{*}\left(1 \times j_{\gamma} p_{\gamma}\right)^{*}\{\alpha, \beta\}\right) / s_{i} \times s_{j}
$$

is the sum of the four terms

$$
\begin{aligned}
\delta^{n}\left(p_{1}, \operatorname{ad}(\alpha \times \beta)\right) / s_{i} \times s_{j} & =\alpha \theta(\beta) \\
\delta^{n}\left(p_{1}, \operatorname{ad}(\alpha \times J \beta)\right) / s_{i} \times s_{j} & =\alpha \theta\left(J_{*} \beta\right)=-\alpha \theta(\beta) \\
\delta^{n}(y, \beta(t)(J \alpha)(s) y) / s_{i} \times s_{j} & =-(-1)^{i j} \beta \theta(\alpha) \\
\delta^{n}\left(p_{1}, \operatorname{ad}(J \alpha \times J \beta)\right) / s_{i} \times s_{j} & =\left(J_{*} \alpha\right) \theta\left(J_{*} \beta\right)=\alpha \theta(\beta)
\end{aligned}
$$

according to Corollary 4.3 and Lemma 4.4. These four terms add up to

$$
\langle\alpha, \beta\rangle=\alpha \theta(\beta)-(-1)^{i j} \theta(\alpha)
$$

References

1. P. Hilton, Homotopy theory and duality (Gordon and Breach, New York, 1965).
2. J. M. Møller, Spaces of sections of Eilenberg-MacLane fibrations, Pacific J. Math. 130 (1987), 171-186.
3. H. Samelson, A connection between the Whitehead and the Pontryagin product, Amer. J. Math 75 (1953), 744-752.
4. R. M. Switzer, Counting elements in homotopy sets, Math. Z. 178 (1981), 527-554.
5. - Algebraic topology — homotopy and homology, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 212 (Springer-Verlag, Berlin-Heidelberg-New York, 1975).
6. G. W. Whitehead, On mappings into group-like spaces, Comment. Math. Helv. 28 (1954), 320-328.
7. Elements of homotopy theory, Graduate Texts in Mathematics 61 (Springer-Verlag, Berlin-Heidelberg-New York, 1978).

Københavns Universitet, København, Denmark

[^0]: Received April 8, 1989.

