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LIMIT THEORY FOR HIGH FREQUENCY
SAMPLED MCARMA MODELS
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Abstract

We consider a multivariate continuous-time ARMA (MCARMA) process sampled at a
high-frequency time grid {hn, 2hn, . . . , nhn}, where hn ↓ 0 and nhn → ∞ as n → ∞,
or at a constant time grid where hn = h. For this model, we present the asymptotic
behavior of the properly normalized partial sum to a multivariate stable or a multivariate
normal random vector depending on the domain of attraction of the driving Lévy process.
Furthermore, we derive the asymptotic behavior of the sample variance. In the case of
finite second moments of the driving Lévy process the sample variance is a consistent
estimator. Moreover, we embed the MCARMA process in a cointegrated model. For
this model, we propose a parameter estimator and derive its asymptotic behavior. The
results are given for more general processes than MCARMA processes and contain some
asymptotic properties of stochastic integrals.
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1. Introduction

Multivariate continuous-time ARMA (MCARMA) processes V = (V (t))t≥0 are the contin-
uous-time versions of the well-known multivariate ARMA processes in discrete time having
short memory. They are important for stochastic modeling in many areas of applications,
such as, e.g. signal processing and control (cf. [17] and [24]), econometrics (cf. [2]), high-
frequency financial econometrics (cf. [41]), and financial mathematics (cf. [1]). Starting at least
with Doob [10] in 1944, Gaussian CARMA processes, under the name Gaussian processes
with rational spectral density, appeared, where the driving force is a Brownian motion. To
obtain more flexible marginal distributions and dynamics, Brockwell [4] analyzed Lévy-driven
CARMA models, which were extended by Marquardt and Stelzer [25] to the multivariate
setting; see [5] for an overview and a comprehensive list of references.

Lévy processes are defined to have independent and stationary increments, and are charac-
terized by their Lévy–Khintchine representation. An R

m-valued Lévy process (L(t))t≥0 has
the Lévy–Khintchine representation E(ei��L(t)) = exp(−t�(�)) for � ∈ R

m, where �� is
the transpose of � and

�(�) = −iγ �
L � + 1

2
���L � +

∫
Rm

(1 − eix�� + ix��1{‖x‖2≤1})νL(dx)
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Limit theory for MCARMA models 847

with γL ∈ R
m, �L a positive semidefinite matrix in R

m×m, and νL a measure on (Rm, B(Rm)),
called the Lévy measure, which satisfies

∫
Rm min{‖x‖2, 1} νL(dx) < ∞ and νL({0m}) = 0.

The triplet (γL, �L, νL) is called the characteristic triplet, because it characterizes com-
pletely the distribution of the Lévy process. A two-sided Lévy process (L(t))t∈R is then a
composition of two independent and identically distributed Lévy processes, (L(1)(t))t≥0 and
(L(2)(t))t≥0, in L(t) = L(1)(t)1[0,∞)(t) + L(2)(−t)1(−∞,0)(t). We refer the reader to the
excellent monograph [38] for more details on Lévy processes. In this paper the driving Lévy
process is very general. It is allowed to have either a finite variance, E‖L(1)‖2 < ∞, or an
infinite variance, E‖L(1)‖2 = ∞, which is modeled by a multivariate regularly varying Lévy
process. CARMA processes driven by infinite variance Lévy processes are particularly relevant
in modeling energy markets; see [16] for instance. We will investigate MCARMA processes
(see Definition 2.1) observed not only at a constant frequency h but also, and especially, for
high frequencies, as found in finance (cf. [41]) and turbulence (cf. [6]). Then the observation
grid is {hn, 2hn, . . . , nhn}, where hn ↓ 0 and limn→∞ nhn = ∞. For the statistical inference
of a MCARMA process, e.g. parameter estimation and hypothesis testing, it is crucial to know
the asymptotic behavior of the partial sum (cf. [14] and [15]). We will show the convergence
of the properly normalized partial sum to an α-stable random vector, α ∈ (0, 2], where α = 2
reflects the multivariate normal distribution. In the high-frequency setting the limit distribution
includes a random factor independent of the MCARMA parameters and a deterministic factor,
which is determined by the model parameters (the integral over the kernel function). This
is the same pattern as for multivariate ARMA models. However, the normalization differs
in the continuous-time and discrete-time cases. The grid distance hn has an influence on
the convergence rate and, hence, determines the normalization in the continuous-time model.
Furthermore, we study the asymptotic behavior of the sample variance. The results show that
in the finite second moment case the sample variance is a consistent estimator for the variance.
In the infinite second moment case it converges to an α/2-stable random matrix. Again, the
convergence rate depends on the sampling distance hn.

Another aim of this paper is to provide an estimation of a cointegrated model in continuous
time, where the MCARMA process is embedded. Cointegration plays an important role in
financial econometrics, see, e.g. [11], and is well understood in discrete time if second moments
exist (cf. the monograph [21]). Most of the literature on cointegrated models in continuous
time is restricted to Gaussian processes; see, e.g. [7], [23], and [40]. First approaches to drop
the Gaussian assumption go back to Phillips [30]; see also [12], [13] and the references therein.
Let L1 = (L1(t))t∈R be the R

m-valued driving Lévy process of the R
d -valued MCARMA

process V , and let L2 = (L2(t))t∈R be an R
v-valued Lévy process independent of L1. Then,

for A ∈ R
d×v , we investigate the multivariate cointegrated model

Y (t) = AX(t) + V (t), t ≥ 0, in R
d ,

X(t) = L2(t), t ≥ 0, in R
v.

(1.1)

The observation scheme is

Y
�
n = (Y (hn), . . . ,Y (nhn)) ∈ R

d×n, X
�
n = (X(hn), . . . , X(nhn)) ∈ R

v×n. (1.2)

However, in this paper we investigate a more general model. Let (ξn,k)k∈Z and (εn,k)k∈Z be
independent sequences of independently and identically distributed (i.i.d.) random vectors in
R

m and R
v , respectively, for any n ∈ N, and let (Cn,k)k∈N be a sequence of deterministic

matrices in R
d×m satisfying some general constraints. Then we may define, for any n ∈ N, the
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R
d -valued stationary moving average process

Zn,k =
∞∑

j=0

Cn,j ξn,k−j for k ∈ N0, (1.3)

and the cointegrated model as

Yn,k = AXn,k + Zn,k for n, k ∈ N, in R
d ,

Xn,k = Xn,k−1 + εn,k for n, k ∈ N, in R
v.

(1.4)

In this case the observation scheme is

Y
�
n = (Yn,1, . . . ,Yn,n) ∈ R

d×n, X
�
n = (Xn,1, . . . ,Xn,n) ∈ R

v×n. (1.5)

Since the high-frequency sampled MCARMA process (V (khn))k∈Z has a representation as in
(1.3) and

L2(khn) = L2((k − 1)hn) + [L2(khn) − L2((k − 1)hn)],
where (L2(khn) − L2((k − 1)hn))k∈N is an i.i.d. sequence by the independent and stationary
increment property of a Lévy process, (1.2) can be interpreted as a special case of (1.5). As an
estimator for A, we use the least-squares estimator

Ân = Y
�
n Xn(X

�
n Xn)

−1. (1.6)

The paper is organized as follows. In Section 2 we present some preliminaries on MCARMA
processes, regular variation, and the model assumptions. The main results of this paper on limit
theory for high-frequency sampled MCARMA processes and equidistant sampled MCARMA
processes are the topic of Section 3. We show that the properly normalized partial sum∑n

k=1 V (khn) and the sample variance
∑n

k=1 V (khn)V (khn)
� of the MCARMA process with

either hn ↓ 0 and nhn → ∞ as n → ∞ or hn = h (but with different normalization) converge
weakly, and we completely characterize their limit distributions. Moreover, we investigate
the cointegrated model (1.1)–(1.2). All results are compared to multivariate ARMA models
in discrete time. The proofs of this section are based on some general limit theorems as
constituted in Section 4. There we present, under some general assumptions, the asymptotic
behavior of Ân for the multivariate cointegrated model (1.4)–(1.5). Finally, in Section 5 we
present the proofs of the stated results, and in Appendix A we examine the asymptotic behavior
of stochastic integrals where the driving Lévy process has either a finite second moment or is
multivariate regularly varying. These results are interesting in their own right, but they also act
as preliminaries to the results in this paper.

We use the notation ‘⇒’ for weak convergence, ‘
p−→’ for convergence in probability, and ‘

v⇒’
for vague convergence. Let R = R ∪ {−∞, ∞} be the compactification of R, and let B(·) be
the Borel σ -algebra. For two random vectors X and Y , the notation X

d= Y means equality in
distribution. We use as norms the Euclidean norm ‖·‖ in R

d and the corresponding operator
norm ‖·‖ for matrices, which is submultiplicative. Recall that two norms on a finite-dimensional
linear space are always equivalent and, hence, our results remain true if we replace the Euclidean
norm by any other norm. For a measurable function f : (0, ∞) → (0, ∞) and α ∈ R, we say
that f is regularly varying of index −α if limx→∞ f (xu)/f (x) = u−α for any u > 0, and we
write f ∈ R−α . The set of d ×m matrices over R is denoted by Md×m(R). The matrix 0d×m is
the zero matrix in Md×m(R) and Id×d is the identity matrix in Md×d(R). For a vector x ∈ R

d ,
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we write x� for its transpose, and, for x ∈ R, we write x� = sup{k ∈ Z : k ≤ x}. The space
(D[0, 1], R

d) denotes the space of all càdlàg (right continuous with left limits) functions on
[0, 1] with values in R

d equipped with the Skorokhod J1 topology. Finally, for a semimartingale
W = (W1(t), . . . ,Wd(t))t≥0 in R

d , we denote by [W , W ]t = ([Wi , Wj ]t )i,j=1,...,d for t ≥ 0
the quadratic variation process.

2. Preliminaries

2.1. MCARMA process

Let L1 = (L1(t))t∈R be a two-sided R
m-valued Lévy process, and let p > q be positive

integers. Then the d-dimensional MCARMA(p, q) model can be interpreted as the solution to
the stochastic differential equation

P (D)V (t) = Q(D)DL1(t) for t ∈ R,

where D is the differential operator,

P (z) := Id×dzp + P1z
p−1 + · · · + Pp−1z + Pp (2.1)

with P1, . . . ,Pp ∈ Md×d(R) the autoregressive polynomial, and

Q(z) := Q0z
q + Q1z

q−1 + · · · + Qq−1z + Qq (2.2)

with Q0, . . . ,Qq ∈ Md×m(R) the moving average polynomial. Since a Lévy process is not
differentiable, this definition cannot be used; however, it can be interpreted to be equivalent to
the following definition.

Definition 2.1. Let (L1(t))t∈R be an R
m-valued Lévy process, and let the polynomials P (z)

and Q(z) be defined as in (2.1) and (2.2) with p, q ∈ N0, q < p, and Q0 �= 0d×m. Moreover,
define

� = −

⎛
⎜⎜⎜⎜⎜⎜⎝

0d×d Id×d 0d×d · · · 0d×d

0d×d 0d×d Id×d

. . .
...

...
...

. . .
. . . 0d×d

0d×d · · · · · · 0d×d Id×d

−Pp −Pp−1 · · · · · · −P1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Mpd×pd(R),

E = (Id×d , 0d×d , . . . , 0d×d) ∈ Md×pd(R), and B = (B�
1 · · · B�

p )� ∈ Mpd×m(R) with

B1 := · · · := Bp−q−1 := 0d×m

and Bp−j := −
p−j−1∑

i=1

PiBp−j−i + Qq−j , j = 0, . . . , q.

Assume that N (P ) = {z ∈ C : det(P (z)) = 0} ⊆ (−∞, 0) + iR. Furthermore, the
Lévy measure νL1 of L1 satisfies

∫
‖x‖>1 log ‖x‖ νL1(dx) < ∞. Then the R

d -valued causal
MCARMA(p, q) process (V (t))t∈R is defined by the state space equation

V (t) = EZ(t) for t ∈ R, (2.3)
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where

Z(t) =
∫ t

−∞
e−�(t−s)B dL1(s) for t ∈ R (2.4)

is the stationary unique solution to the pd-dimensional stochastic differential equation dZ(t) =
−�Z(t) dt + B dL(t). The function f (t) = Ee−�tB1(0,∞)(t) for t ∈ R is called the kernel
function.

In particular, the MCARMA(1, 0) process and Z in (2.4) are multivariate Ornstein–Uhlen-
beck processes. To see that the MCARMA(p, q) process is well defined, we refer the reader
to [25]. Moreover, [25, Lemma 3.8] says that the set N (P ) is equal to the set of eigenvalues
of −�, which means that, for an MCARMA(p, q) process, the eigenvalues of � have strictly
positive real parts. The class of MCARMA processes is huge. Schlemm and Stelzer [39,
Corollary 3.4] showed that the class of state space models of the form

dZ̃(t) = −�̃Z̃(t) dt + B̃ dL(t) and Ṽ (t) = C̃Z̃(t),

where �̃ ∈ R
N×N has only eigenvalues with strictly positive real parts, B̃ ∈ R

N×m, and
C̃ ∈ R

d×N , and the class of causal MCARMA processes are equivalent if E‖L(1)‖2 < ∞
and E(L(1)) = 0m.

2.2. Multivariate regular variation and assumptions

Multivariate regular variation plays a basic part in our model assumptions. First, we recall
the definition.

Definition 2.2. A random vector U ∈ R
d is multivariate regularly varying with index −α < 0

if and only if there exists a nonzero Radon measure μ on (R
d \ {0d}, B(R

d \ {0d})) with
μ(R

d \ R
d) = 0 and a sequence (an)n∈N of positive numbers increasing to ∞ such that

nP(a−1
n U ∈ ·) v⇒ μ(·) as n → ∞ on B(R

d \ {0d}),
where the limit measure μ is homogeneous of order −α, i.e. μ(uB) = u−αμ(B) for u > 0 and
B ∈ B(R

d \ {0d}). We write U ∈ R−α(an, μ).

If the representation of the limit measure μ or the norming sequence (an)n∈N does not matter,
we also write R−α(an) and R−α , respectively. For further information regarding multivariate
regular variation of random vectors, we refer the reader to [36].

Definition 2.3. Let U be an R
d -valued random vector, α ∈ (0, 2], (an)n∈N be an increasing seq-

uence of positive constants tending to ∞, μ be a Radon measure on (R
d \ {0d}, B(R

d \ {0d}))
with μ(R

d \ R
d) = 0, and let � ∈ Md×d(R) be a positive semidefinite matrix. We write

U ∈ DA(α, an, �, μ) if either

(a) α < 2, � = 0d×d , μ is nonzero, and U ∈ R−α(an, μ); or

(b) α = 2, an = n1/2, μ = 0, and E‖U‖2 < ∞ with E(UU�) = �.

The abbreviation DA stands for domain of attraction because of the following argument.
Let (Uk)k∈N be a sequence of i.i.d. R

d -valued random vectors with U1 ∈ DA(α, an, μ, �),
α �= 1, and S = (S(t))t≥0 an R

d -valued α-stable Lévy process with characteristic triplet
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(
∫
‖x‖≤1 xμ(dx), �, μ) if α ∈ (0, 1) and (−∫

‖x‖>1 xμ(dx), �, μ) if α > 1. Assume that
E(U1) = 0d if α > 1. Then

a−1
n

nt�∑
k=1

Uk ⇒ S as n → ∞ in D([0, 1], R
d).

This means that the triplet (α, μ, �) characterizes completely the limit distribution and (an)n∈N

the convergence rate. For α = 1, we additionally need a deterministic shift factor to obtain
the convergence, which we can neglect if U1 is symmetric. In general, the only possible limit
of a normalized partial sum of i.i.d. random vectors is an α-stable distribution with α ∈ (0, 2]
(cf. [27, Theorem 8.2.1.8] and [37]). The limit distribution is an α-stable random vector with
α < 2 if and only if U1 is multivariate regularly varying of index −α. Then E‖U1‖2 = ∞
also. On the other hand, E‖U1‖2 < ∞ is only a sufficient assumption to be in the domain of
attraction of a normal distribution.

3. Main results

We start with a central limit theorem for MCARMA processes.

Theorem 3.1. Let (V (t))t∈R be an R
d -valued causal MCARMA(p, q) process as given in Def-

inition 2.1 driven by the R
m-valued Lévy process (L1(t))t∈R with L1(1) ∈ DA(α, an, μ1, �1)

and E(L1(1)) = 0m if α > 1. Set at := at� for t ≥ 0. If α = 1, we additionally assume that
L1(1) is symmetric.

(a) Let (S1(t))t≥0 be an R
m-valued α-stable Lévy process with characteristic triplet

(
∫
‖x‖≤1 xμ1(dx), �1, μ1) if α ∈ (0, 1] and (−∫

‖x‖>1 xμ1(dx), �1, μ1) if α > 1.
Suppose that the sequence of positive constants (hn)n∈N satisfies hn ↓ 0 as n → ∞
and limn→∞ nhn = ∞. Then, as n → ∞,

hna
−1
nhn

n∑
k=1

V (khn) ⇒
(∫ ∞

0
f (s) ds

)
S1(1).

(b) Let h > 0, and let (Sf ,h(t))t≥0 be an R
d -valued α-stable Lévy process with characteristic

triplet (
∫
‖x‖≤1 xμf ,h(dx), �f ,h, μf ,h) if α ∈ (0, 1] and (−∫

‖x‖>1xμf ,h(dx), �f ,h,

μf ,h) if α > 1, where

μf ,h(B) =
∫ h

0

∫
Rm

1B

( ∞∑
k=0

f (kh + s)x

)
μ1(dx) ds for B ∈ B(Rd \ {0d}), (3.1)

�f ,h =
∫ h

0

( ∞∑
k=0

f (kh + s)

)
�1

( ∞∑
k=0

f (kh + s)

)�
ds. (3.2)

Suppose that E‖L1(1)‖r < ∞ for some r > 2 if α = 2. Then, as n → ∞,

a−1
n

n∑
k=1

V (kh) ⇒ Sf ,h(1).

We will compare this result to the limit results for ARMA models and present a motivation
for the normalization.
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Remarks 3.1. (a) Let (ξk)k∈Z be a sequence of i.i.d. random vectors in R
m with ξ1 ∈ R−α(an,

μ1) for some 0 < α < 2. If α > 1 then suppose that E(ξ1) = 0m, and if α = 1 then suppose
that ξ1 is symmetric. Furthermore, let (Ck)k∈N be a sequence of matrices in Md×m(R) with∑∞

k=0 k‖Ck‖θ < ∞ for some 0 < θ < α, θ ≤ 1. The R
d -valued stationary moving average

(MA) process (Xk)k∈Z is defined as Xk = ∑∞
j=0 Cj ξk−j for k ∈ Z. Then a special case of

Theorem 4.1 (from below) is that, as n → ∞,

a−1
n

n∑
k=1

Xk ⇒
( ∞∑

k=0

Ck

)
S1(1).

On the one hand, we observe similar structures for the limit distributions (
∫ ∞

0 f (s) ds)S1(1)

and (
∑∞

k=0 Ck)S1(1) in the continuous-time high-frequency and discrete-time models. On
the other hand, the normings are different. To explain the different normings, we consider an
α-stable Lévy process (L1(t))t≥0 and an α-stable random variable ξ1. Then the idea in the
continuous-time model is that, as n → ∞,

hna
−1
nhn

n∑
k=1

V (khn) =
( ∞∑

j=0

f (jhn)hn

)(
a−1
nhn

n∑
k=1

[L1(khn) − L1((k − 1)hn)]
)

+ oP(1)

d=
(∫ ∞

0
f (s) ds

)
S1(1) + oP(1), (3.3)

and in the discrete-time model that, as n → ∞,

a−1
n

n∑
k=1

Xk =
( ∞∑

j=0

Cj

)(
a−1
n

n∑
k=1

ξk

)
+ oP(1)

d=
( ∞∑

j=0

Cj

)
ξ1 + oP(1). (3.4)

In (3.3) and (3.4) we see where the different normings have their origin. In the continuous-time
model, the hn of the norming hna

−1
nhn

goes into the first factor of (3.3), which converges to

(
∫ ∞

0 f (s) ds), and the norming a−1
nhn

goes into the second, random factor.

(b) Representation (3.3) also justifies the fact that the classical techniques of Davis and Resnick
[8] used to prove the asymptotic behavior of one-dimensional MA processes by using truncated
MA processes will not work for the high-frequency case, because limn→∞

∑M
j=0 f (jhn)hn =

0d×m for M > 0.

Remark 3.2. A straightforward extension is the convergence of the finite-dimensional distri-
bution for any l ∈ N as n → ∞:

hna
−1
nhn

( n∑
k=1

V (khn), . . . ,

n∑
k=1

V ((k + l)hn)

)
⇒

(∫ ∞

0
f (s) ds

)
(S1(1), . . . , S1(1)).

Next we investigate the cointegrated model (1.1)–(1.2).

Theorem 3.2. Let model (1.1)–(1.2) be given where Xn has full rank, and let the assumptions
of Theorem 3.1 hold. Furthermore, let (L2(t))t∈R be an R

v-valued Lévy process independent of
(L1(t))t∈R, where L2(1) ∈ DA(β, bn, μ2, �2) and E(L2(1)) = 0v if β > 1. If β = 1, assume
additionally that L2(1) is symmetric. Set at := at� and bt = bt� for t ≥ 0. Moreover, let
(S2(t))t≥0 be an R

v-valued β-stable Lévy process independent of (S1(t))t≥0 with characteristic
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triplet (
∫
‖x‖≤1 xμ2(dx), �2, μ2) if β ∈ (0, 1] and (−∫

‖x‖>1 xμ2(dx), �2, μ2) if β > 1, and
suppose that

P

(
det

(∫ 1

0
S2(s)S2(s)

� ds

)
= 0

)
= 0.

(a) Suppose that the sequence of positive constants (hn)n∈N satisfies hn ↓ 0 as n → ∞ and
limn→∞ nhn = ∞. If min(α, β) < 2 and either νL2(R

v) = ∞ or �L2 �= 0v×v , we
additionally assume that, for some ε > 0,

lim
n→∞ n1/min(α,β)+εh

1/2
n a−1

nhn
b−1
nhn

= 0 if min(α, β) ≤ 1,

lim
n→∞ nh

1/2
n a−1

nhn
b−1
nhn

= 0 if 1 < min(α, β) < 2.
(3.5)

Then Ân as given in (1.6) satisfies, as n → ∞,

nhna
−1
nhn

bnhn(Ân − A)

⇒
(∫ ∞

0
f (s) ds

)(
S1(1)S2(1)� −

∫ 1

0
S1(s−) dS2(s)

�
)(∫ 1

0
S2(s)S2(s)

� ds

)−1

.

In particular, Ân
p−→ A as n → ∞ if α > β/(β + 1), i.e. Ân is a consistent estimator.

(b) Let h > 0 and hn = h for any n ∈ N. Suppose that E‖L1(1)‖r < ∞ for some r > 2
if α = 2. Then Ân as given in (1.6) satisfies, as n → ∞,

na−1
n bn(Ân − A) ⇒

(
Sf ,h(1)S2(1)� −

∫ 1

0
Sf ,h(s−) dS2(s)

�
)

×
(∫ 1

0
S2(s)S2(s)

� ds

)−1

.

In particular, Ân
p−→ A as n → ∞ if α > β/(β + 1), i.e. Ân is a consistent estimator.

Remark 3.3. If α = β < 2, sufficient conditions for (3.5) are that, for some ε > 0,

lim
n→∞ nh

2−α/2+ε
n = ∞ if α ≤ 1,

lim
n→∞ nh

1/2+1/(2−α)+ε
n = ∞ if 1 < α < 2

hold. A conjecture is that assumption (3.5) is not necessary.

Finally, we investigate the asymptotic behavior of the sample variance. Both Theorem 3.1
and Theorem 3.3 are used in [14] and [15] to derive the asymptotic behavior of the normalized,
the self-normalized, and the smoothed periodogram as well as for statistical inference of
CARMA processes.

Theorem 3.3. Let (V (t))t≥0 be an R
d -valued MCARMA(p, q) process as given in Defini-

tion 2.1 driven by the R
m-valued Lévy process (L1(t))t∈R with L1(1) ∈ DA(α, an, μ1, �1).

Set at := at� for t ≥ 0.

(a) Let (S1(t))t≥0 be an R
m-valued α-stable Lévy process with characteristic triplet (0m, �1,

μ1). Suppose that the sequence of positive constants (hn)n∈N satisfies hn ↓ 0 as n → ∞
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and limn→∞ nhn = ∞. Then, as n → ∞,

hna
−2
nhn

n∑
k=1

V (khn)V (khn)
� ⇒

∫ ∞

0
f (s)[S1, S1]1f (s)� ds,

which is equal to E(V (0)V (0)�) if α = 2.

(b) Let h > 0, and let (Sf ,h(t))t≥0 be an R
d -valued α-stable Lévy process with characteristic

triplet (0d , �f ,h, μf ,h), where μf ,h and �f ,h are given as in (3.1) and (3.2), respectively.
Then, as n → ∞,

a−2
n

n∑
k=1

V (kh)V (kh)� ⇒ [Sf ,h, Sf ,h]1,

which is equal to �f ,h if α = 2.

Thus, if E‖L1(1)‖2 < ∞, the sample variance is a consistent estimator. Furthermore, we
want to point out that in contrast to Theorem 3.1, Theorem 3.3 does not require E(L1(1)) = 0d

if 1 < α < 2 and the symmetry of L1(1) if α = 1. Also, the drift term of S1 can be chosen
arbitrarily since it does not have any influence on [S1, S1]1. Using the Kronecker product ‘⊗’
and the vec operator‘vec’, which transforms a matrix into a vector by stacking the columns, the
representation vec(

∫ ∞
0 f (s)[S1, S1]1f (s)� ds) = [∫ ∞

0 f (s) ⊗ f (s) ds]vec([S1, S1]1) holds.
This representation shows that the limiting distribution again decomposes into a parametric and
a random part.

As in Remark 3.1, we will make a comparison to the discrete-time case.

Remark 3.4. Let a discrete-time MA process as in Remark 3.1 be given. Then, by [9,
Theorem 2.1] for the two-dimensional case (see also [26, Equation (4.7)]), as n → ∞,

a−2
n

n∑
k=1

XkX
�
k ⇒

∞∑
k=0

Ck[S1, S1]1C
�
k .

Again, we see the similarity between the continuous-time high-frequency and discrete-time
models. Considering an α-stable Lévy process (L1(t))t≥0 and an α-stable random variable ξ1,
the normings can be understood in the continuous-time high-frequency model by

hna
−2
nhn

n∑
k=1

V (khn)V (khn)
�

=
∞∑

j=0

f (jhn)

(
a−2
nhn

n∑
k=1

[L1(khn) − L1((k − 1)hn)]

× [L1(khn) − L1((k − 1)hn)]�
)

f (jhn)
�hn + oP(1)

d=
∞∑

j=0

f (jhn)[L1, L1]�1 f (jhn)
�hn + oP(1)

=
∫ ∞

0
f (s)[S1, S1]1f (s)� ds + oP(1).
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The first factor hn of hna
−2
nhn

is required for the convergence of the integral and a−2
nhn

for the
random part. In the discrete-time model we have

a−2
n

n∑
k=1

XkX
�
k =

∞∑
j=0

Cj

(
a−2
n

n∑
k=1

ξkξ
�
k

)
C�

j + oP(1)
d=

∞∑
j=0

Cj [S1, S1]1C
�
j + oP(1).

Remark 3.5. An obvious extension is that the finite-dimensional distribution of the sample
autocovariance function has, for any l ∈ N, the asymptotic behavior

hna
−2
nhn

( n∑
k=1

V (khn)V (khn)
�, . . . ,

n∑
k=1

V (khn)V ((k + l)hn)
�
)

⇒
(∫ ∞

0
f (s)[S1, S1]1f (s)� ds, . . . ,

∫ ∞

0
f (s)[S1, S1]1f (s)� ds

)
as n → ∞.

4. Multivariate high-frequency model

In this section we derive the properties of the least-squares estimator given in (1.6) for
model (1.4)–(1.5). As mentioned in the introduction and used in the proof of Theorem 3.1, the
cointegrated MCARMA model can be seen as a special case of this more general model.

Assumption 4.1. Let model (1.4)–(1.5) be given.

(a) Suppose that there exist sequences of positive constants ãn, b̃n ↑ ∞ as n → ∞ such
that, as n → ∞,

(
ã−1
n

nt�∑
k=1

ξ�
n,k, b̃

−1
n

nt�∑
k=1

ε�
n,k

)
t≥0

⇒ (S1(t)
�, S2(t)

�)t≥0 in D([0, 1], R
m+v),

where S1 = (S1(t))t≥0 is a càdlàg stochastic process in R
m and S2 = (S2(t))t≥0 is a

càdlàg stochastic process in R
v . Furthermore, suppose that

P

(
det

(∫ 1

0
S2(s)S2(s)

� ds

)
= 0

)
= 0. (4.1)

(b) Define

Z̃n,k :=
∞∑

j=0

( ∞∑
l=j+1

Cn,l

)
ξn,k−j for k ∈ N0, n ∈ N.

Suppose that there exist a sequence of positive constants (hn)n∈N and a positive bounded
decreasing function g with either g ∈ R−α , α ∈ (0, 2), or

∫ ∞
0 xg(x) dx < ∞ and

α := 2, such that

P(hn‖Z̃n,0‖ > x) ≤ g(x) for x ≥ 0, n ∈ N.

(c) Let
∑∞

k=0 k‖Cn,k‖θ < ∞ for some 0 < θ < α and θ ≤ 1. Furthermore, there exists a
matrix C ∈ Md×m(R) for (hn)n∈N in (b) such that

lim
n→∞ hn

∞∑
k=0

Cn,k = C.
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(d) There exist constants K1, K2, K3 < ∞ and some 0 < δ < α with δ ≤ 1 such that the
following assertions hold:

(i) nb̃−2
n E(‖εn,1‖21{‖εn,1‖≤b̃n}) ≤ K1 for all n ∈ N;

(ii) nb̃−1
n ‖E(εn,11{‖εn,1‖≤b̃n})‖ ≤ K2 for all n ∈ N;

(iii) nb̃−δ
n E(‖εn,1‖δ1{‖εn,1‖>b̃n}) ≤ K3 for all n ∈ N.

Furthermore, one of the following conditions is satisfied for g in (b):

(iv.1) g ∈ R−α with α ∈ (0, 2) and limn→∞ ña−δ
n b̃−δ

n E‖εn,1‖δ = 0;

(iv.2)
∫ ∞

0 xg(x) dx < ∞ and limn→∞ ña−2
n b̃−2

n E‖εn,1‖2 = 0.

Note that if g is a positive bounded decreasing function with g ∈ R−α, α ∈ (0, 2), then∫ ∞
0 xγ−1g(x) dx < ∞ for any 0 < γ < α (apply Karamata’s theorem (cf. [36, Theorem 2.1])).

Moreover, limn→∞ g(̃an) = 0.
We state the first limit result.

Theorem 4.1. Let model (1.4)–(1.5) be given where Xn has full rank, and let Assumption 4.1
hold. Define

S1,n(t) := hnã
−1
n

nt�∑
k=1

Zn,k and S2,n(t) := b̃−1
n

nt�∑
k=1

εn,k for t ≥ 0, n ∈ N.

Then, as n → ∞,(
S1,n(1), S2,n(1),

∫ 1

0
S2,n(s)S2,n(s)

�ds,

∫ 1

0
S1,n(s−) dS2,n(s)

�
)

⇒
(

CS1(1), S2(1),

∫ 1

0
S2(s)S2(s)

� ds, C

∫ 1

0
S1(s−) dS2(s)

�
)

in R
d × R

v × R
v×v × R

d×v .

Based on this theorem we are able to derive the asymptotic behavior of the least-squares
estimator in the cointegrated model.

Theorem 4.2. Let model (1.4)–(1.5) be given, and let Assumption 4.1 hold. Then Ân as given
in (1.6) satisfies, as n → ∞,

nhnã
−1
n b̃n(Ân − A) ⇒ C

(
S1(1)S2(1)� −

∫ 1

0
S1(s−) dS2(s)

�
)(∫ 1

0
S2(s)S2(s)

� ds

)−1

.

In particular, Ân
p−→ A as n → ∞ if limn→∞ nhnã

−1
n b̃n = ∞, i.e. Ân is a consistent estimator.

5. Proofs

5.1. Proofs of Section 4

The proofs of this section are very similar to [13]. However, we mimic them to show where
the different assumptions hold. An essential piece of the proof will be that, as n → ∞,

hnã
−1
n

n∑
k=1

Zn,k =
(

hn

∞∑
j=0

Cn,j

)(
ã−1
n

n∑
k=1

ξn,k

)
+ oP(1). (5.1)
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We require the next lemma for the proofs of Theorem 3.3 and Theorem 4.1.

Lemma 5.1. Let (εn,k)k∈N be an i.i.d. sequence of random vectors in R
v , and let (Wn,k)k∈N be

a sequence of random vectors in R
d for any n ∈ N, where (Wn,k−j )j=1,...,k−1 is independent

of (εn,k+j )j∈N for any n, k ∈ N. Suppose that there exists a positive, bounded, decreasing
function g such that

P(‖Wn,k‖ > x) ≤ g(x) for any x ≥ 0, n ∈ N, k ∈ N.

Assume that one of the following conditions is satisfied:

(a) g ∈ R−α, 0 < α < 2, and, for some 0 < δ ≤ 1, δ < α, limn→∞ ña−δ
n b̃−δ

n E‖εn,1‖δ = 0
holds;

(b)
∫ ∞

0 xg(x) dx < ∞, E(εn,1) = 0v for n ∈ N, and limn→∞ ña−2
n b̃−2

n E‖εn,1‖2 = 0. Then,
as n → ∞,

ã−1
n b̃−1

n

n∑
k=1

Wn,k−1ε
�
n,k

p−→ 0d×v.

Proof. Case (a). Taking δ ≤ 1 into account we have

ã−δ
n b̃−δ

n E

∥∥∥∥
n∑

k=1

Wn,k−1ε
�
n,k

∥∥∥∥δ

≤ ña−δ
n b̃−δ

n

(
δ

∫ ∞

0
xδ−1g(x) dx

)
E‖εn,1‖δ → 0

as n → ∞.
Case (b). We investigate the sequence of random matrices componentwise, and denote

by (l, m) the component in the lth row and mth column. Since ((Wn,k−1ε
�
n,k)(l,m))k∈N is an

uncorrelated sequence,

ã−2
n b̃−2

n E

(( n∑
k=1

Wn,k−1ε
�
n,k

)2

(l,m)

)
≤ C1ã

−2
n b̃−2

n

n∑
k=1

E‖Wn,k−1‖2
E‖εn,k‖2

≤ C2ña−2
n b̃−2

n E‖εn,1‖2.

The last expression tends to 0 as n → ∞ by assumption.

We will prove Theorem 4.1 by an application of [20, Theorem VI.6.22]. Therefore, we need
the definition of predictably uniformly tightness (P-UT) given in [20, Section VI.6a, p. 377]
and the next lemma.

Lemma 5.2. Let Assumptions 4.1(d) hold. Then the sequence of stochastic processes (S2,n)n∈N

as given in Theorem 4.1 is P -UT on (�, F , ((F n
t )t≥0)n∈N, P) with F n

t = σ(εn,k : k ≤ nt�),
t ≥ 0, n ∈ N.

Proof. We define, for t ≥ 0 and n ∈ N,

Mn(t) := b̃−1
n

nt�∑
k=1

(εn,k1{‖εn,k‖≤b̃n} − E(εn,11{‖εn,1‖≤b̃n})),

D(1)
n (t) := nt�b̃−1

n E(εn,11{‖εn,1‖≤b̃n}), D(2)
n (t) := b̃−1

n

nt�∑
k=1

εn,k1{‖εn,k‖>b̃n}.
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It is obvious that (Mn(t))t≥0 is a martingale with respect to (F n
t )t≥0 and, in particular, a

local martingale. All three processes are adapted with respect to (F n
t )t≥0 and we have the

semimartingale decomposition

S2,n(t) = Mn(t) + D(1)
n (t) + D(2)

n (t).

If (Mn)n∈N, (D(1)
n )n∈N, and (D

(2)
n )n∈N are P-UT, then it follows from [20, Property VI.6.4] that

(S2,n)n∈N is P-UT as well.
Let VTs(W ) = supi=1,...,v VTs(Wi ) for s ≥ 0 denote the variation process of the càdlàg

stochastic process (W (s))s≥0 = (W1(s), . . . ,Wv(s))s≥0. To prove the ‘P-UTness’of (D
(1)
n )n∈N

and (D
(2)
n )n∈N, it is sufficient to show that (VTt (D

(1)
n ))n∈N and (VTt (D

(2)
n ))n∈N are tight for

any t ≥ 0; see [20, Property VI.6.6]. Let t ≥ 0 be fixed. We start with the verification of the
tightness of (VTt (D

(1)
n ))n∈N by showing that it is uniformly bounded. Assumption 4.1(d)(ii)

gives the uniform bound

sup
n∈N

VTt (D
(1)
n ) ≤ C1 sup

n∈N

ntb̃−1
n ‖E(εn,11{‖εn,1‖≤b̃n})‖ ≤ C2t,

which results in the tightness of (VTt (D
(1)
n ))n∈N.

For the proof of the tightness of (VTt (D
(2)
n ))n∈N, we use the fact that (VTt (D

(2)
n ))δ ≤

C3b̃
−δ
n

∑nt�
k=1‖εn,k‖δ1{‖εn,k‖>b̃n} for δ ≤ 1. Then, using Assumption 4.1(d)(iii) and Markov’s

inequality, we conclude that

sup
n∈N

P(VTt (D
(2)
n ) > η) ≤ C4η

−δ sup
n∈N

b̃−δ
n

nt�∑
k=1

E(‖εn,k‖δ1{‖εn,k‖>b̃n}) ≤ C5η
−δt,

which tends to 0 as η → ∞. Hence, (VTt (D
(2)
n ))n∈N is also tight. If we show that ([Mn,

Mn]t )n∈N is tight for any t ≥ 0, then the ‘P-UTness’ of (Mn)n∈N follows by [20, Proposi-
tion VI.6.13]. Here, we use Assumption 4.1(d)(i) to conclude that

sup
n∈N

P(‖[Mn, Mn]t‖ > η) ≤ η−1 sup
n∈N

nb̃−2
n E(‖εn,1‖21{‖εn,1‖≤b̃n}) ≤ C6η

−1 → 0

as η → ∞. Finally, ([Mn, Mn]t )n∈N is tight as well.

Proof of Theorem 4.1. The Beveridge–Nelson decomposition (cf. [3]) has the representation

Zn,k =
( ∞∑

j=0

Cn,j

)
ξn,k + Z̃n,k−1 − Z̃n,k for k, n ∈ N.

Thus,

S1,n(t) = hnã
−1
n

( ∞∑
j=0

Cn,j

) nt�∑
k=1

ξn,k + hnã
−1
n [Z̃n,0 − Z̃n,nt�] for t ≥ 0. (5.2)

Therefore, we define

S̃1,n(t) :=
(

hn

∞∑
j=0

Cn,j

)
ã−1
n

nt�∑
k=1

ξn,k for t ≥ 0.
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By Assumption 4.1(a) and (c) we have, as n → ∞,

(S̃1,n(t)
�, S2,n(t)

�)�t≥0 ⇒ ((CS1(t))
�, S2(t)

�)�t≥0 in D([0, 1], R
d+v).

A straightforward conclusion of the continuous mapping theorem is then, as n → ∞,(
S̃1,n(1), S2,n(1),

∫ 1

0
S2,n(s)S2,n(s)

� ds, (S̃1,n(t)
�, S2,n(t)

�)�t≥0

)

⇒
(

CS1(1), S2(1),

∫ 1

0
S2(s)S2(s)

� ds, ((CS1(t))
�, S2(t)

�)�t≥0

)

in R
d ×R

v ×R
v×v × (D[0, 1], R

d+v). Since (S2,n)n∈N is P-UT by Lemma 5.2, a result of [20,
Theorem VI.6.22] is that, as n → ∞,(

S̃1,n(1), S2,n(1),

∫ 1

0
S2,n(s)S2,n(s)

� ds,

∫ 1

0
S̃1,n(s−) dS2,n(s)

�
)

⇒
(

CS1(1), S2(1),

∫ 1

0
S2(s)S2(s)

� ds, C

∫ 1

0
S1(s−) dS2(s)

�
)

(5.3)

in R
d × R

v × R
v×v × R

d×v . On the one hand, by (5.2) we have∫ 1

0
S1,n(s−) dS2,n(s)

�

=
∫ 1

0
S̃1,n(s−) dS2,n(s)

� +
[
hnã

−1
n Z̃n,0S2,n(1) − hnã

−1
n b̃−1

n

n∑
k=1

Z̃n,k−1ε
�
n,k

]
. (5.4)

Applying Lemma 5.1, hnã
−1
n Z̃n,0

p−→ 0d as n → ∞ (by Assumption 4.1(b)), and S2,n(1) ⇒
S2(1) as n → ∞ gives, on the other hand,

hnã
−1
n b̃−1

n Z̃n,0S2,n(1) − hnã
−1
n b̃−1

n

n∑
k=1

Z̃n,k−1ε
�
n,k

p−→ 0d×v as n → ∞. (5.5)

Finally, the statement follows from (5.3)–(5.5).

Proof of Theorem 4.2. (a) Since Y
�
n = AX

�
n + Z

�
n with Xn and Yn as given in (1.5), and

Z
�
n = (Zn,1, . . . ,Zn,n), we have

nhnã
−1
n b̃n(Ân − A) = (hnã

−1
n Z

�
n Xnb̃

−1
n )(n−1b̃−1

n X
�
n Xnb̃

−1
n )−1. (5.6)

Now
(hnã

−1
n b̃−1

n Z
�
n Xn, n

−1b̃−2
n X

�
n Xn)

=
(

S1,n(1)S2,n(1)� −
∫ 1

0
S1,n(s−) dS2,n(s)

�,

∫ 1

0
S2,n(s)S2,n(s)

� ds

)

⇒
(

CS1(1)S2(1)� − C

∫ 1

0
S1(s−) dS2(s)

�,

∫ 1

0
S2(s)S2(s)

� ds

)
(5.7)

in R
d×v × R

v×v as n → ∞ by Theorem 4.1. Finally, (5.6)–(5.7) yield the claim by the
continuous mapping theorem, since (4.1) holds.
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5.2. Proof of Theorem 3.1

It is well known that the stationary Ornstein–Uhlenbeck process Z given in (2.4) observed
at the time grid hnZ has the MA process representation

Z(khn) =
∞∑

j=0

e−�hnj ξn,k−j for k ∈ Z,

where

ξn,k =
∫ khn

(k−1)hn

e−�(khn−s) B dL1(s) for k ∈ Z, n ∈ N. (5.8)

As already suggested in (5.1), as n → ∞,

hna
−1
nhn

n∑
k=1

V (khn) =
(

hn

∞∑
j=0

Ee−�hnj

)(
a−1
nhn

n∑
k=1

ξn,k

)
+ oP(1).

The convergence of a−1
nhn

∑n
k=1 ξn,k is based on central limit results for arrays and the properties

of the sequence of i.i.d. random vectors (ξn,k)k∈Z as presented in Appendix A.
Before we state the proof of Theorem 3.1, we present the analogous result for the state

process Z which is essential for the proof of Theorem 3.1.

Lemma 5.3. Let the assumptions of Theorem 3.1 hold. Then hna
−1
nhn

∑n
k=1Z(khn) ⇒

�−1BS1(1) as n → ∞.

Proof. First, we define ãn := anhn , Cn,k := e−�hnk , and (ξn,k) as given in (5.8). Then

Zn,k := Z(khn) =
∞∑

j=0

Cn,j ξn,k−j for k ∈ Z, n ∈ N.

We will show that Assumption 4.1(a)–(d) with εn,k := 0 are satisfied because then the result
follows from Theorem 4.1 (it does not matter that (4.1) is not satisfied for εn,k = 0).

(a) Consider the 0 < α < 2 case. By Proposition A.2(a), (c), and (d), E(ξn,0) = 0pd if
α > 1, ξn,0 symmetric for α = 1, and [36, Theorem 7.1], we have

(
ã−1
n

nt�∑
k=1

ξn,k

)
t≥0

⇒ (BS1(t))t≥0 as n → ∞ in D([0, 1], R
pd). (5.9)

Consider α = 2. Then Proposition A.1(c)–(g) and [22, Corollary 15.16] give (5.9).
(b) Since

Z̃n,k =
∞∑

j=0

( ∞∑
l=j+1

e−�hnl

)
ξn,k−j = (Id×d − e−�hn)−1e−�hnZ(khn),

the inequality

P(hn‖Z̃n,0‖ > x) ≤ P(2‖�−1‖‖Z(0)‖ > x) =: g(x) for x ≥ 0

holds, where, for α < 2, the function g ∈ R−α due to [28, Theorem 3.2], such that, by
Karamata’s theorem,

∫ ∞
0 xγ−1g(x) dx < ∞ for any 0 < γ < α, and, for α = 2, we have

2
∫ ∞

0 xg(x) dx = 8‖�−1‖2
E‖Z(0)‖2 < ∞.
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(c) We have
∑∞

k=0 k‖e−�hnk‖θ < ∞ for any θ > 0, n ∈ N, and limn→∞ hn

∑∞
k=0 Cn,k =

�−1.
Part (d) is obviously satisfied since εn,k = 0.

Proof of Theorem 3.1. (a) Owing to Lemma 5.3, hna
−1
nhn

∑n
k=1 Z(khn) ⇒ �−1BS1(1) as

n → ∞. Hence, by (2.3) as n → ∞,

hna
−1
nhn

n∑
k=1

V (khn) = hna
−1
nhn

n∑
k=1

EZ(khn) ⇒ E�−1BS1(1) =
(∫ ∞

0
f (s) ds

)
S1(1).

(b) Define g(s) := e−�sB1(0,∞)(s). It follows from [13, Proposition 2.1] that

a−1
n

n∑
k=1

Z(kh) ⇒ Sg,h(1) as n → ∞.

Thus, a−1
n

∑n
k=1 V (kh) ⇒ ESg,h

d= Sf ,h(1) as n → ∞.

5.3. Proof of Theorem 3.2

Again, for the proof of Theorem 3.2, we use the following similar result for the state
process Z.

Lemma 5.4. Let model (1.1)–(1.2) be given with V = Z and A ∈ R
pd×v , and let the

assumptions of Theorem 3.2 hold. Then Ân as given in (1.6) satisfies, as n → ∞,

nhna
−1
nhn

bnhn(Ân − A)

⇒ �−1B

(
S1(1)S2(1)� −

∫ 1

0
S1(s−) dS2(s)

�
)(∫ 1

0
S2(s)S2(s)

� ds

)−1

.

In particular, Ân
p−→ A as n → ∞ if α > β/(β + 1), i.e. Ân is a consistent estimator.

Proof. We use the same notation as in the proof of Lemma 5.3, only we define b̃n := bnhn

and εn,k := L2(khn) − L2((k − 1)hn). Again, we will show that Assumption 4.1(a)–(d) are
satisfied because then the result follows from Theorem 4.2.

(a) If α < 2 due to the independence of (ξn,k) and (εn,k), Proposition A.2 and [36,
Theorem 7.1], the limit result(

ã−1
n

nt�∑
k=1

ξ�
n,k, b̃

−1
n

nt�∑
k=1

ε�
n,k

)
t≥0

⇒ (S1(t)
�, S2(t)

�)t≥0 as n → ∞ in D([0, 1], R
pd+v) (5.10)

holds; see also [29]. If α = 2, (5.10) follows from Proposition A.1 and [22, Corollary 15.15].
Parts (b) and (c) are satisfied by the proof of Lemma 5.3.
(d) Part (i) follows from Proposition A.2(c) and Proposition A.1(e). Part (ii) follows from

Proposition A.2(e) and Proposition A.1(f). Only for α = 1 does it follow by symmetry. We
obtain (iii) by Proposition A.2(d) and Proposition A.1(d).

Let min(α, β) < 2. Then using E‖L2(hn)‖δ ≤ C1h
δ/2
n and (3.5) gives (iv.1). In the case of a

compound Poisson process, Lemma A.2 says that E‖L2(hn)‖δ ≤ C2hn, such that no additional
assumption is necessary.

If α = β = 2 then limn→∞ n(nhn)
−2

E‖L2(hn)‖2 = limn→∞ n(nhn)
−2hnE‖L2(1)‖2 = 0;

therefore, (iv.2) holds.
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Proof of Theorem 3.2. The proof follows the same lines as that of Theorem 3.1 using only
Lemma 5.4 and [13, Theorem 3.4].

5.4. Proof of Theorem 3.3

The main idea of the proof is to show that, as n → ∞,

hna
−2
nhn

n∑
k=1

V (khn)V (khn)
� = E

∞∑
j=0

e−�hnj

(
a−2
nhn

n∑
k=1

ξn,kξ
�
n,k

)
e−��hnjE�hn + oP(1).

The convergence of a−2
nhn

∑n
k=1 ξn,kξ

�
n,k follows by the limit results of [36, Theorem 7.1] for the

heavy-tailed case, and by the law of large numbers for arrays of independent random vectors
and the properties of (ξn,k)k∈Z as given in Appendix A in the light-tailed case. In the same
spirit as before we start with the result for Z.

Lemma 5.5. Let the assumptions of Theorem 3.3 hold. Then, as n → ∞,

hna
−2
nhn

n∑
k=1

Z(khn)Z(khn)
� ⇒

∫ ∞

0
e−�s[BS1, BS1]1e−��s ds.

Proof. A multivariate version of the second-order Beveridge–Nelson decomposition given
in [31, Equation (28)] gives the representation

Z(khn)Z(khn)
� =

∞∑
j=0

e−�hnj ξn,kξ
�
n,ke−��hnj + (F

(1)
n,k−1 − F

(1)
n,k ) +

∞∑
r=1

(F
(2)
n,k,r + F

(2)
n,k,−r )

+
∞∑

r=1

(F
(3)
n,k−1,r + F

(3)
n,k−1,−r − F

(3)
n,k,r − F

(3)
n,k,−r ),

where

F
(1)
n,k =

∞∑
j=0

∞∑
s=j+1

e−�hnsξn,k−j ξ
�
n,k−j e−��hns,

F
(2)
n,k,r =

∞∑
j=max(0,−r)

e−�hnj ξn,kξ
�
n,k−re−��hn(j+r),

F
(3)
n,k,r =

∞∑
j=0

∞∑
s=max(j+1,−r)

e−�hnsξn,k−j ξ
�
n,k−j−re−��hn(s+r).

Then
n∑

k=1

Z(khn)Z(khn)
� =

∞∑
j=0

e−�hnj

( n∑
k=1

ξn,kξ
�
n,k

)
e−��hnj + (F

(1)
n,0 − F (1)

n,n)

+
n∑

k=1

∞∑
r=1

(F
(2)
n,k,r + F

(2)
n,k,−r )

+
∞∑

r=1

(F
(3)
n,0,r + F

(3)
n,0,−r − F (3)

n,n,r − F
(3)
n,n,−r )

=: Jn,1 + Jn,2 + Jn,3 + Jn,4. (5.11)
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Step 1. Let α ∈ (0, 2), and assume that L1 is a compound Poisson process as given in (A.5)
with characteristic triplet (0m, 0m×m, νL1). On the one hand, by Lemma 5.6 below we have,
for i = 2, 3, 4,

hna
−2
nhn

Jn,i
p−→ 0pd×pd as n → ∞. (5.12)

On the other hand, by Proposition A.2(a), (c) and [36, Theorem 7.1], we have

Sn := a−2
nhn

n∑
k=1

ξn,kξ
�
n,k ⇒ [BS1, BS1]1 as n → ∞.

We denote by gn and g maps from Mpd×pd(R) → Mpd×pd(R) with

gn(C) = hn

∞∑
j=0

e−�hnjCe−��hnj and g(C) =
∫ ∞

0
e−�sCe−��s ds. (5.13)

Since gn and g are continuous with limn→∞ gn(Cn) = g(C) for any sequence Cn, C ∈
Mpd×pd(R) with limn→∞ ‖Cn−C‖ = 0, we can apply a generalized version of the continuous
mapping theorem (cf. [36, Theorem 3.1]) to obtain gn(Sn) ⇒ g([BS1, BS1]1) as n → ∞,
which means that, as n → ∞,

hna
−2
nhn

Jn,1 = gn(Sn) ⇒ g([BS1, BS1]1) =
∫ ∞

0
e−�s[BS1, BS1]1e−��s ds. (5.14)

Then the result follows by (5.11)–(5.14).
Step 2. Let α ∈ (0, 2), and let L1 be some Lévy process. We use the decompositions

L1 = L
(1)
1 + L

(2)
1 and ξn,k = ξ

(1)
n,k + ξ

(2)
n,k as given in (A.3) and (A.4) such that

Z(t) =
∫ t

−∞
e−�(t−s) B dL(1)(s) +

∫ t

−∞
e−�(t−s) B dL(2)(s)

=: Z1(t) + Z2(t) for t ≥ 0

and
n∑

k=1

Z(khn)Z(khn)
� =

n∑
k=1

Z1(khn)Z1(khn)
� +

n∑
k=1

Z1(khn)Z2(khn)
�

+
n∑

k=1

Z2(khn)Z1(khn)
� +

n∑
k=1

Z2(khn)Z2(khn)
�

=: In,1 + In,2 + In,3 + In,4. (5.15)

Applying step 1 we obtain, as n → ∞,

hna
−2
nhn

n∑
k=1

Z1(khn)Z1(khn)
� ⇒

∫ ∞

0
e−�s[BS1, BS1]1e−��s ds. (5.16)

Furthermore, Hölder’s inequality results in the decomposition

hna
−2
nhn

max(‖In,2‖, ‖In,3‖)

≤
(

hna
−2
nhn

n∑
k=1

‖Z1(khn)‖2
)1/2(

hna
−2
nhn

n∑
k=1

‖Z2(khn)‖2
)1/2

(5.17)
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of independent factors. Now we use the fact that L
(1)
1 has representation (A.5) and we define

L∗(t) := ‖B‖
N(t)∑
k=1

‖Jk‖, ξ∗
n,k :=

∫ khn

(k−1)hn

e−λ(khn−s) dL∗(s),

Z∗(t) :=
∫ t

−∞
e−λ(t−s) dL∗(s).

(5.18)

Hence, ‖BL
(1)
1 (t)‖ ≤ L∗(t), ‖ξ (1)

n,k‖ ≤ ξ∗
n,k , and ‖Z1(t)‖ ≤ Z∗(t). Then a consequence of

step 1 is

hna
−2
nhn

n∑
k=1

‖Z1(khn)‖2 ≤ hna
−2
nhn

n∑
k=1

Z∗(khn)
2 ⇒ 1

2λ
[S, S]1 as n → ∞, (5.19)

whereS is anα-stable Lévy process. Since limn→∞ hna
−2
nhn

∑n
k=1 E‖Z2(khn)‖2 = 0, we obtain

(
hna

−2
nhn

n∑
k=1

‖Z2(khn)‖2
)1/2

p−→ 0 as n → ∞. (5.20)

Hence, (5.17)–(5.20) give hna
−2
nhn

‖In,2‖ p−→ and hna
−2
nhn

‖In,3‖ p−→ 0 as n → ∞. It follows from

(5.20) that hna
−2
nhn

‖In,4‖ p−→ 0 as n → ∞ as well. Finally, the result follows by (5.15) and
(5.16).

Step 3. Let α = 2. On the one hand, by Lemma 5.7 below we have, for i = 2, 3, 4, as
n → ∞,

hna
−2
nhn

Jn,i
p−→ 0pd×pd .

On the other hand, by Proposition A.1(g), as n → ∞,

Sn := a−2
nhn

n∑
k=1

ξn,kξ
�
n,k

p−→ B�1B
� = [BS1, BS1]1.

The same arguments as in step 1 complete the proof.

Lemma 5.6. Let the assumptions of Lemma 5.5 hold with α ∈ (0, 2), and suppose that L1 is a
compound Poisson process as given in (A.5) with characteristic triplet (0m, 0m×m, νL1).

(a) F
(1)
n,0

d= F
(1)
n,n and hna

−2
nhn

F
(1)
n,0

p−→ 0pd×pd as n → ∞.

(b) hna
−2
nhn

∑n
k=1

∑∞
r=1(F

(2)
n,k,r + F

(2)
n,k,−r )

p−→ 0pd×pd as n → ∞.

(c) hna
−2
nhn

∑∞
r=1(F

(3)
n,0,r + F

(3)
n,0,−r − F

(3)
n,n,r − F

(3)
n,n,−r )

p−→ 0pd×pd as n → ∞.

Proof. (a) We use the notation given in (5.18). Then

‖F (1)
n,0‖ ≤ (1 − e−2λhn)−1

∞∑
j=0

e−2λhnj ξ∗ 2
n,−j ≤ (1 − e−2λhn)−1Z∗(0)2.

Hence, P(‖F (1)
n,0‖ > a2

nhn
h−1

n ) ≤ P(Z∗(0)2 > C1a
2
nhn

) → 0 as n → ∞.
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(b) The upper bound

∥∥∥∥
n∑

k=1

∞∑
r=1

F
(2)
n,k,r

∥∥∥∥ ≤
n∑

k=1

∞∑
j=0

e−λhn(2j+1)ξ∗
n,k

( ∞∑
r=0

ξ∗
n,k−1−re−λhnr

)
(5.21)

holds. Applying Lemma 5.1 (here we require that, for a compound Poisson process, E‖ξ∗
n,0‖δ ≤

C2hn by Lemma A.2, which is used to show Lemma 5.1(a) for some 0 < δ < 1, δ < α, and
2δ > α) gives

∥∥∥∥
n∑

k=1

∞∑
r=1

F
(2)
n,k,r

∥∥∥∥ ≤ hn(1 − e−2λhn)−1a−2
nhn

n∑
k=1

ξ∗
n,kZ

∗((k − 1)hn)

p−→ 0 as n → ∞. (5.22)

On the other hand, if we defineW ∗(khn) := ∑∞
r=0 e−λhnrξ∗

n,k+r then W ∗(khn)
d= Z∗(0) and

∥∥∥∥
n∑

k=1

∞∑
r=1

F
(2)
n,k,−r

∥∥∥∥ ≤ (1 − e−2λhn)−1
n∑

k=1

ξ∗
n,kW

∗((k + 1)hn). (5.23)

Again, using Lemma 5.1 yields

hn(1 − e−2λhn)−1a−2
nhn

n∑
k=1

ξ∗
n,kW

∗((k + 1)hn)
p−→ 0 as n → ∞. (5.24)

Hence, (5.21)–(5.24) give the statement.
(c) We will show that, as n → ∞,

hna
−2
nhn

∞∑
r=1

F
(3)
n,0,r

p−→ 0pd×pd and hna
−2
nhn

∞∑
r=1

F
(3)
n,0,−r

p−→ 0pd×pd .

Since
∑∞

r=1 F
(3)
n,0,r

d= ∑∞
r=1 F

(3)
n,n,r and

∑∞
r=1 F

(3)
n,0,−r

d= ∑∞
r=1 F

(3)
n,n,−r , the proof will then be

finished. Again, we use the notation given in (5.18). For the first term, we derive the upper
bound ∥∥∥∥

∞∑
r=1

F
(3)
n,0,r

∥∥∥∥ ≤ (1 − e−2λhn)−1
∞∑

j=0

e−2λhnj ξ∗
n,−jZ

∗((−j − 1)hn).

Applying, for 0 < δ < α, δ ≤ 1,

E

(( ∞∑
j=0

e−2λhnj ξ∗
n,−jZ

∗((−j − 1)hn)

)δ)
≤

∞∑
j=0

e−2δλhnj
E(ξ∗ δ

n,0)E(Z∗(0)δ),

where we have used the independence of ξ∗
n,−j and Z∗((−j −1)hn), and Lemma A.2 results in

hδ
na

−2δ
nhn

E

∥∥∥∥
∞∑

r=1

F
(3)
n,0,r

∥∥∥∥δ

≤ C3a
−2δ
nhn

→ 0 as n → ∞.
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For the second term, we have the upper bound

∥∥∥∥
∞∑

r=1

F
(3)
n,0,−r

∥∥∥∥ ≤ (1 − e−2λhn)−1
∞∑

j=0

j∑
r=1

e−2λhn(j+1)ξ∗
n,−j ξ

∗
n,−j+reλhnr

+ (1 − e−2λhn)−1
∞∑

j=0

∞∑
r=j+1

e−2λhnrξ∗
n,−j ξ

∗
n,−j+reλhnr

=: In,1 + In,2. (5.25)

Moreover,

In,1 ≤ (1 − e−2λhn)−1Z∗(0)2 (5.26)

and

In,2
d= (1 − e−2λhn)−1e−λhnZ∗(0)Z̃(0), (5.27)

where Z̃(0) is an independent copy of Z∗(0). We conclude from (5.25)–(5.27) that, for any
ε > 0,

P

(
hna

−2
nhn

∥∥∥∥
∞∑

r=1

F
(3)
n,0,r

∥∥∥∥ > ε

)
≤ P(Z∗(0)2 + Z∗(0)Z̃(0) > C4a

2
nhn

) → 0 as n → ∞,

as required.

Lemma 5.7. Suppose that the assumptions of Lemma 5.5 hold with α = 2.

(a) F
(1)
n,0

d= F
(1)
n,n and hna

−2
nhn

F
(1)
n,0

p−→ 0pd×pd as n → ∞.

(b) hna
−2
nhn

∑n
k=1

∑∞
r=1(F

(2)
n,k,r + F

(2)
n,k,−r )

p−→ 0pd×pd as n → ∞.

(c) hna
−2
nhn

∑∞
r=1(F

(3)
n,0,r + F

(3)
n,0,−r − F

(3)
n,n,r − F

(3)
n,n,−r )

p−→ 0pd×pd as n → ∞.

Proof. (a) Rewrite

F
(1)
n,0 =

∞∑
s=0

e−�hn(s+1)

( ∞∑
j=0

e−�hnj ξn,−j ξ
�
n,−j e−��hnj

)
e−��hn(s+1).

With gn and g as defined in (5.13) and Sn := a−2
nhn

∑∞
j=0 e−�hnj ξn,−j ξ

�
n,−j e−��hnj , the equal-

ity hna
−2
nhn

F
(1)
n,0 = e−�hngn(Sn)e−��hn holds. If we are able to prove that Sn

p−→ 0pd×pd as
n → ∞ then, using a generalized continuous mapping theorem (the same arguments as in the

proof of Lemma 5.5), we can conclude that hna
−2
nhn

F
(1)
n,0

p−→ 0pd×pd as n → ∞. Finally, due to
Proposition A.1(a),

E‖Sn‖ ≤ a−2
nhn

∞∑
j=0

e−2λhnj
E‖ξn,0‖2 ≤ C1a

−2
nhn

→ 0 as n → ∞,

and, hence, Sn
p−→ 0pd×pd as n → ∞.
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(b) The representation

hna
−2
nhn

n∑
k=1

∞∑
r=1

F
(2)
n,k,r =

∞∑
j=0

e−�hnj

(
a−2
nhn

n∑
k=1

ξn,kZ((k − 1)hn)
�
)

e−��hn(j+1)hn

holds. Using the same arguments as in (a), it is sufficient to prove that, as n → ∞,

a−2
nhn

n∑
k=1

ξn,kZ((k − 1)hn)
� p−→ 0pd×pd .

However, this follows from Proposition A.1 and Lemma 5.1. Similarly,

hna
−2
nhn

n∑
k=1

∞∑
r=1

F
(2)
n,k,−r =

∞∑
j=0

e−��hnj

(
a−2
nhn

n∑
k=1

∞∑
r=1

e−�hnrξn,kξ
�
n,k+r

)
e−��hnjhn

and, hence, it is sufficient to show that

a−2
nhn

n∑
k=1

∞∑
r=1

e−�hnrξn,kξ
�
n,k+r

p−→ 0pd×pd . (5.28)

We prove the convergence of (5.28) componentwise. The sequence of (l, m)-components
((e−�hnrξn,kξ

�
n,k+r )(l,m))k,r∈N is uncorrelated, giving

E

(( n∑
k=1

∞∑
r=1

e−�hnrξn,kξ
�
n,k+r

)2

(l,m)

)
≤ C2

n∑
k=1

∞∑
r=1

e−2λhnr (E‖ξn,0‖2)2 ≤ C3nhn.

Thus, (5.28) holds.
(c) Let us start with

hna
−2
nhn

∞∑
r=1

F
(3)
n,0,r

=
∞∑

s=0

e−�hn(s+1)

(
a−2
nhn

∞∑
j=0

e−�hnj ξn,−jZ((−j − 1)hn)
�e−��hnj

)
e−��hn(s+2)hn.

As before, it is sufficient to show that

a−2
nhn

∞∑
j=0

e−�hnj ξn,−jZ((−j − 1)hn)
�e−��hnj p−→ 0pd×pd as n → ∞,

which we prove componentwise using the uncorrelation of the sequence of the (l, m)-compon-
ents ((ξn,−jZ((−j − 1)hn)

�)(l,m))j∈N. For the (l, m)-component, we have

a−4
nhn

E

(( ∞∑
j=0

e−�hnj ξn,−jZ((−j − 1)hn)
�e−��hnj

)2

(l,m)

)

≤ a−4
nhn

C4

∞∑
j=0

e−4λhnj
E‖ξn,0‖2

E‖Z(0)‖2

≤ C5a
−4
nhn

→ 0 as n → ∞.
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We now investigate

∞∑
r=1

F
(3)
n,0,−r =

∞∑
j=0

j∑
r=1

∞∑
s=j+1

e−�hnsξn,−j ξ
�
n,−j+re−��hn(s−r)

+
∞∑

j=0

∞∑
r=j+1

∞∑
s=r

e−�hnsξn,−j ξ
�
n,−j+re−��hn(s−r)

=: In,1 + In,2.

Then

In,1 =
∞∑

s=0

e−�hn(s+1)

( ∞∑
j=0

e−�hnj ξn,−j

( j∑
r=1

ξ�
n,−j+re−��hn(j−r)

))
e−��hn(s+1).

For the convergence hna
−2
nhn

In,1
p−→ 0pd×pd as n → ∞, it is again sufficient to show that

a−2
nhn

∞∑
j=0

e−�hnj ξn,−j

(j−1∑
u=0

ξ�
n,−ue−��hnu

)
p−→ 0pd×pd as n → ∞, (5.29)

which we will prove componentwise. By uncorrelation we obtain

E

( ∞∑
j=0

e−�hnj ξn,−j

(j−1∑
u=0

ξ�
n,−ue−��hnu

)
(l,m)

)2

=
∞∑

j=0

E

(
e−�hnj ξn,−j

(j−1∑
u=0

ξ�
n,−ue−��hnu

)
(l,m)

)2

. (5.30)

Furthermore, by Proposition A.1(a) we obtain

E‖e−�hnj ξn,−j‖2 ≤ C6e−2λhnj
E‖ξn,0‖2 ≤ C7hne−2λhnj (5.31)

and

E

∥∥∥∥
j−1∑
u=0

ξ�
n,−ue−��hnu

∥∥∥∥2

≤ C8

j−1∑
u=0

e−2λhnu
E‖ξn,0‖2 ≤ C9. (5.32)

Hence, (5.30)–(5.32) and the independence of e−�hnj ξn,−j and
∑j−1

u=0 ξ�
n,−ue−��hnu give

E

( ∞∑
j=0

e−�hnj ξn,−j

(j−1∑
u=0

ξ�
n,−ue−��hnu

)
(l,m)

)2

≤ C10hn

∞∑
j=0

e−2λhnj ≤ C11,

which results in (5.29).
Next we have to show that hna

−2
nhn

In,2
p−→ 0pd×pd as n → ∞. Therefore, we use the

representation

In,2 =
∞∑

s=0

e−�hns

( ∞∑
j=0

∞∑
r=j+1

e−�hnrξn,−j ξ
�
n,−j+r

)
e−��hns
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and prove that, as n → ∞,

a−2
nhn

∞∑
j=0

∞∑
r=j+1

e−�hnrξn,−j ξ
�
n,−j+r = a−2

nhn

∞∑
j=0

e−�hnj
∞∑

u=1

e−�hnuξn,−j ξ
�
n,u

p−→ 0pd×pd . (5.33)

By the uncorrelation of the components of ((e−�hnj e−�hnuξn,−j ξ
�
n,u)(l,m))j,u∈N we obtain

similarly as above

E

(( ∞∑
j=0

e−�hnj
∞∑

u=1

e−�hnuξn,−j ξ
�
n,u

)2

(l,m)

)

≤ C12

∞∑
j=0

e−2λhnj
∞∑

u=0

e−2λhnu
E‖ξn,−j‖2

E‖ξn,u‖2

≤ C13.

Putting all these elements together we obtain (5.33) andhna
−2
nhn

In,2
p−→ 0pd×pd as n → ∞.

Finally, we are able to prove the main statement in Theorem 3.3.

Proof of Theorem 3.3. (a) The observation equation (2.3) and Lemma 5.5 yield

hna
−2
nhn

n∑
k=1

V (khn)V (khn)
� ⇒

∫ ∞

0
Ee−�sB[S1, S1]1B

�e−��sE� ds

=
∫ ∞

0
f (s)[S1, S1]1f (s)� ds as n → ∞.

(b) An application of [13, Proposition 2.1] gives, with g(s) = e−�sB1(0,∞)(s),

a−2
n

n∑
k=1

Z(kh)Z(kh)� ⇒ [Sg,h, Sg,h]1 as n → ∞,

resulting in

a−2
n

n∑
k=1

V (kh)V (kh)� ⇒ E[Sg,h, Sg,h]1E
� = [ESg,h, ESg,h]1

d= [Sf ,h, Sf ,h]1.

Appendix A. Asymptotic behavior of stochastic integrals

In this appendix we present the tail behavior and extensions of Karamata’s theorem to
stochastic integrals of the form

∫ hn

0 f (s) dL(s) where hn ↓ 0 as n → ∞. First, we start with
a driving Lévy process which has a finite second moment. In the subsequent subsection the
driving Lévy process has a regularly varying tail.

A.1. Finite second moments

Proposition A.1. Let (L(t))t≥0 be an R
d -valued Lévy process with E‖L(1)‖2 < ∞ and

E(L(1)L(1)�) = �. Suppose that (hn)n∈N is a sequence of positive constants such that hn ↓ 0
and limn→∞ nhn = ∞. Moreover, let f : R → R

m×d be a measurable and bounded function
with limx→0 f (x) = f (0). Define ξn = ∫ hn

0 f (s) dL(s) for n ∈ N. Finally, let δ ∈ (0, 2] and
x > 0.

(a) There exists a finite positive constant K such that h−1
n E‖ξn‖2 ≤ K for all n ∈ N. If

E(L(1)) = 0d then limn→∞ h−1
n E‖ξn‖2 = E‖f (0)L(1)‖2.
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(b) If E‖L(1)‖4 < ∞ then there exists a finite positive constant K such that E‖ξn‖4 ≤ Khn

for all n ∈ N.

(c) nP((nhn)
−1/2ξn ∈ ·) v⇒ 0 as n → ∞ on B(R

m \ {0m}).
(d) limn→∞ n(nhn)

−δ/2
E(‖ξn‖δ1{‖ξn‖>√

nhnx}) = 0.

(e) There exists a finite positive constant K such that

h−1
n E(‖ξn‖21{‖ξn‖≤√

nhnx}) ≤ K for all n ∈ N.

If E(L(1)) = 0d then limn→∞ h−1
n E(‖ξn‖21{‖ξn‖≤√

nhnx}) = E‖f (0)L(1)‖2.

(f) Let E(L(1)) = 0d . Then limn→∞ n(nhn)
−1/2

E(ξn1{‖ξn‖≤√
nhnx}) = 0m×m.

(g) Let (ξn,k)k∈N be an i.i.d. sequence with ξn,1
d= ξn for any n ∈ N and E(L(1)) = 0d .

Then

(nhn)
−1

n∑
k=1

ξn,kξ
�
n,k

P−→ f (0)�f (0)� as n → ∞.

Proof. (a) Suppose that E(L(1)) = 0d . Owing to Equation (2.10) of [25], the covariance
matrix of ξn is

∫ hn

0 f (s)�f (s)� ds. Hence, we obtain, as n → ∞,

E‖ξn‖2 =
∫ hn

0
‖diag(f (s)�f (s)�)‖2 ds

∼ hn‖diag(f (0)�f (0)�)‖2

= hnE‖f (0)L(1)‖2, (A.1)

where diag(B) denotes the vector containing the diagonal elements of B.
Suppose that E(L(1)) �= 0d . Then E‖ξn‖2 = Var(‖ξn‖) + (E‖ξn‖)2. The proof of (a) then

follows from (A.1).
(b) Suppose that E(L(1)) = 0d . The characteristic function of ξ(t) = ∫ t

0 f (s) dL(s) =:
(ξ1(t), . . . , ξm(t))� is E(ei��ξ(t)) = exp(−�f ,t (�)) for � ∈ R

m, where �f ,t (�) =∫ t

0 �(��f (s)) ds (cf. [33, Proposition 2.6]). Hence, for k = 1, . . . , m and ek = (0, . . . , 0, 1,

0, . . . , 0)� ∈ R
m,

E|ξk(t)|4 = d

d4θk

E(eiθe�
k ξ(t))

∣∣∣∣
θk=0

= 3

(
d

d2θk

�f ,t (θek)

∣∣∣∣
θk=0

)2

−
(

d

d4θk

�f ,t (θek)

∣∣∣∣
θk=0

)

= 3

(∫ t

0

(
d

d2θk

�(θe�
k f (s))

)∣∣∣∣
θk=0

ds

)2

−
∫ t

0

(
d

d4θk

�(θe�
k f (s))

)∣∣∣∣
θk=0

ds

∼ 3t2C2 + tC3 as t → 0.

Finally,

E‖ξn‖4 ≤ C4

m∑
k=1

E|ξk(hn)|4 ≤ C5hn for all n ∈ N. (A.2)

Suppose that E(L(1)) �= 0d . Then, by (A.2), E‖ξn‖4 ≤ 8E‖∫ hn

0 f (s) dL̃(s)‖4 + C6h
4
n ≤

C7hn where L̃(t) := L(t) − tE(L(t)) for t ≥ 0.
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(c) In the following f ∗ := sups∈R ‖f (s)‖. Let (γL, �L, νL) be the characteristic triplet
of (L(t))t≥0 and B

d−1 = {x ∈ R
d : ‖x‖ ≤ 1} be the unit ball in R

d . We factorize the Lévy
measure νL into the two Lévy measures

νL1(A) := νL(A \ B
d−1) and νL2(A) := νL(A ∩ B

d−1) for A ∈ B(Rd \ {0d})
such that νL = νL1 + νL2 . Then we can decompose (L(t))t≥0 into two independent Lévy
processes,

L(t) = L(1)(t) + L(2)(t) for t ≥ 0, (A.3)

where L(1) = (L(1)(t))t≥0 has the characteristic triplet (0d , 0d×d , νL1) and L(2) = (L(2)(t))t≥0
has the characteristic triplet (γL, �L, νL2). Then

ξn =
∫ hn

0
f (s) dL(1)(s) +

∫ hn

0
f (s) dL(2)(s) =: ξ (1)

n + ξ (2)
n , (A.4)

and ξ
(1)
n and ξ

(2)
n are independent. Since the Lévy measure of L(1) is finite and L(1) is without

Gaussian part and drift, L(1) has the compound Poisson process representation

L(1)(t) =
N(t)∑
k=1

Jk, t ≥ 0, and ξ (1)
n =

N(hn)∑
k=1

f (�k)Jk, (A.5)

where (Jk)k∈N is a sequence of i.i.d. random vectors independent of the Poisson process
(N(t))t≥0 with intensity λ = νL1(R

d) and jump times (�k)k∈N. Now, let B be a relatively
compact set in B(R

m \ {0m}) with μ(∂B) = 0 and γB = infx∈B ‖x‖, which is larger than 0.
Then

nP((nhn)
−1/2ξn ∈ B) ≤ nP

(
‖ξ (1)

n ‖ >
γB

√
nhn

2

)
+ nP

(
‖ξ (2)

n ‖ >
γB

√
nhn

2

)
.

First, we will show that the first summand with ξ
(1)
n converges to 0, using the following

conclusions. On the one hand, for l ≥ 1,

P(N(hn) = l)

hn

= e−λhn
(λhn)

l

hnl! ≤ C8P(N(1) = l). (A.6)

On the other hand,

lim
n→∞

P(N(hn) = l)

hn

=

⎧⎪⎨
⎪⎩

lim
n→∞ e−λhnλ = λ for l = 1,

lim
n→∞ e−λhn

λlhl−1
n

l! = 0 for l ≥ 2.
(A.7)

If Ul,1 < Ul,2 < · · · < Ul,l denotes the order statistic of l i.i.d. uniform random variables on
(0, 1) then

nP

(
‖ξ (1)

n ‖ >
γB

√
nhn

2

)
= n

∞∑
l=1

P

(∥∥∥∥
l∑

k=1

f (hnUl,k)Jk

∥∥∥∥ >
γB

√
nhn

2

)
P(N(hn) = l)

(see [34, Theorem 4.5.2]). On the one hand, by (A.6),

nP

(
‖ξ (1)

n ‖ >
γB

√
nhn

2

)
≤ nhnC9P

(
f ∗

N(1)∑
k=1

‖Jk‖ >
γB

√
nhn

2

)
→ 0 as n → ∞,
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since E((
∑N(1)

k=1 ‖Jk‖)2) < ∞ by [38, Corollary 25.8]. On the other hand, since the Lévy
measure of L(2) has compact support, all moments of L(2)(1) are finite (cf. [38, Corollary 25.8]).
We conclude from (b) that

nP

(
‖ξ (2)

n ‖ >
γB

√
nhn

2

)
≤ n

(
γB

√
nhn

2

)−4

E‖ξ (2)
n ‖4 ≤ C10n(nhn)

−2hn → 0 as n → ∞.

(d) Note that, for any random variable X with E|X|2 < ∞, the limits limy→∞ y2
P(|X| >

y) = 0 and limy→∞ y2−δ
E(|X|δ1{|X|>y}) = 0 (apply Hölder inequality) hold. Then

n(nhn)
−δ/2

E(‖ξ (1)
n ‖δ1{‖ξ (1)

n ‖>√
nhnx})

≤ C11(nhn)
(2−δ)/2

E

((
f ∗

N(1)∑
k=1

‖Jk‖
)δ

1{f ∗ ∑N(1)
k=1 ‖Jk‖>√

nhnx}

)

→ 0 as n → ∞. (A.8)

Moreover, by Markov’s inequality,

n(nhn)
−δ/2

E(‖ξ (2)
n ‖δ1{‖ξ (2)

n ‖>√
nhnx}) ≤ C12(nhn)

−1 → 0 as n → ∞. (A.9)

Taking E‖ξn‖δ ≤ (E‖ξn‖2)δ/2 ≤ C13h
δ/2
n into account, the inequality

n(nhn)
−δ/2

E‖ξ (2)
n ‖δ

P

(
‖ξ (1)

n ‖ >

√
nhnx

2

)
+ n(nhn)

−δ/2
E‖ξ (1)

n ‖δ
P

(
‖ξ (2)

n ‖ >

√
nhnx

2

)
≤ C14n(nhn)

−δ/2h
δ/2
n hn(nhn)

−1 → 0 as n → ∞ (A.10)

is valid. Finally, applying (A.8)–(A.10) yields n(nhn)
−δ/2

E(‖ξn‖δ1{‖ξn‖>√
nhnx}) → 0 as n →

∞.
(f) Since E(ξn) = 0m, an application of (d) results in

lim
n→∞ n(nhn)

−1/2‖E(ξn1{‖ξn‖≤√
nhnx})‖ = lim

n→∞ n(nhn)
−1/2‖E(ξn1{‖ξn‖>√

nhnx})‖ = 0.

(g) [18, Theorem 3.1] and limn→∞ h−1
n E(ξnξ

�
n ) = limn→∞ h−1

n

∫ hn

0 f (s)�f (s)� ds =
f (0)�f (0)� gives (nhn)

−1 ∑n
k=1 ξn,kξ

�
n,k

P−→ f (0)�f (0)� as n → ∞.

A.2. Infinite second moments

Here we present some asymptotic results for the integral if L(1) ∈ R−α(an, μ), α ∈ (0, 2).

Proposition A.2. Let (L(t))t≥0 be an R
d -valued Lévy process with L(1) ∈ R−α(an, μ), 0 <

α < 2. Suppose that (hn)n∈N is a sequence of positive constants such that hn ↓ 0 and
limn→∞ nhn = ∞. Set at := at� for t ≥ 0. Let f : R → R

m×d be a measurable and
bounded function with limx→0 f (x) = f (0). Define ξn = ∫ hn

0 f (s) dL(s) for n ∈ N.

(a) nP(a−1
nhn

ξn ∈ ·) v⇒ μ ◦ f (0)−1(·) on B(R
m \ {0m}).

(b) There exists a finite positive constant K such that

lim
n→∞ nP(‖ξn‖ > anhnx) = Kx−α for x > 0.
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(c) Let either δ ≥ 2 or δ > α, and let (L(t))t≥0 be a compound Poisson process. Then, for
any x > 0, there exists a finite positive constant Kδ such that

na−δ
nhn

E(‖ξn‖δ1{‖ξn‖≤anhnx}) ≤ Kδx
δ−α for all n ∈ N.

(d) Let δ ∈ (0, α). Then, for any x > 0, there exists a finite positive constant Kδ such that

na−δ
nhn

E(‖ξn‖δ1{‖ξn‖>anhnx}) ≤ Kδx
δ−α for all n ∈ N.

(e) Suppose that α �= 1 and E(L(1)) = 0d if 1 < α < 2. Then for any x > 0, there exists a
finite positive constant K such that

na−1
nhn

‖E(ξn1{‖ξn‖≤anhnx})‖ ≤ Kx|1−α| for all n ∈ N.

The proof of PropositionA.2 uses the next two lemmas, which can be derived using arguments
similar to those given in Section A.1.

Lemma A.1. Let (L(t))t≥0 be an R
d -valued Lévy process with E‖L(1)‖2 < ∞, let (at )t≥0

be an increasing sequence of positive constants in R1/α, 0 < α < 2, and let (hn)n∈N be a
sequence of positive constants such that hn ↓ 0 as n → ∞ and limn→∞ nhn = ∞. Moreover,
let f : R → R

m×d be a measurable and bounded function with limx→0 f (x) = f (0). Define
ξn = ∫ hn

0 f (s) dL(s) for n ∈ N. Finally, let (α − 1)+ < δ < 2.

(a) limn→∞ nP(a−1
nhn

ξn ∈ B) = 0 for any relatively compact set B ∈ B(R
m \ {0m}).

(b) limn→∞ na−δ
nhn

E(‖ξn‖δ1{‖ξn‖>anhnx}) = 0 for x > 0.

Lemma A.2. Let L1 = (
∑N(t)

k=1 Jk)t≥0 be an R
d -valued compound Poisson process, and let

f : R → R
m×d be a measurable and bounded function with limx→0 f (x) = f (0). Define

ξn = ∫ hn

0 f (s) dL1(s) for n ∈ N. Then, for any 0 < δ ≤ 1 with E‖L(1)‖δ < ∞, there exists a
finite positive constant K such that

E‖ξn‖δ ≤ Khn.

Note that, for an arbitrary driving Lévy process, the result is not valid, e.g. Brownian motion.
In general, we only have E‖ξn‖δ ≤ Ch

δ/2
n .

Proof of Proposition A.2. (a) We use the decomposition ξn = ξ
(1)
n + ξ

(2)
n as given in the

proof of Proposition A.1 and the notation there. Moreover, f (0)J1 ∈ R−α(an, λ
−1μ ◦

f (0)−1(·)) due to [19, Lemma 2.1] and ‖J1‖ ∈ R−α(an) as well. First, we will show that ξ
(1)
n

satisfies the statement. Now, let B be a relatively compact set in B(R
m \ {0m}) with μ(∂B) = 0

and γB = infx∈B ‖x‖, which is larger than 0. We define

nP(a−1
nhn

ξ (1)
n ∈ B) =

∞∑
l=1

nP

(
a−1
nhn

l∑
k=1

f (hnUl,k)Jk ∈ B

)
P(N(hn) = l)

=:
∞∑
l=1

a∗
n,l . (A.11)

Furthermore, (A.6) gives, for any l ≥ 1,

0 ≤ a∗
n,l ≤ C1nhnP

(
a−1
nhn

f ∗
l∑

k=1

‖Jk‖ > γB

)
P(N(1) = l) =: b∗

n,l,
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and, for some finite constants C2, C3, C4 > 0,

lim
n→∞ b∗

n,l = C2lf
∗ αγ −α

B P(N(1) = l),

lim
n→∞

∞∑
l=1

b∗
n,l = C3 lim

n→∞ nhnP

(
a−1
nhn

N(1)∑
k=1

‖Jk‖ > f ∗ −1γB

)
= C4f

∗ αγ −α
B ,

where we have used the fact that
∑l

k=1 ‖Jk‖ and
∑N(1)

k=1 ‖Jk‖ are in R−α(an) by [36, The-
orem 6.1 and Proposition 7.4] and [19, Lemma 2.1], respectively. Since (A.7), (A.11), and
limn→∞ f (hnU1,1) = f (0), P-almost surely yield

lim
n→∞ a∗

n,1 = lim
n→∞ nhnP(a−1

nhn
f (0)J1 ∈ B)λ = μ ◦ f (0)−1(B),

and, moreover, (A.7) results in limn→∞ a∗
n,l = 0 for l ≥ 2, we conclude from Pratt’s theorem

(see [32]) that

lim
n→∞ nP(a−1

nhn
ξ (1)
n ∈ B) =

∞∑
l=1

lim
n→∞ a∗

n,l = μ ◦ f (0)−1(B). (A.12)

Furthermore, the Lévy measure of L(2) has compact support. Thus, it follows from [38, Corol-
lary 25.8] that all moments of ‖L(2)(1)‖ exist. The statement then follows from Lemma A.1(a),
(A.4), and (A.12).

Part (b) follows from (a) and [35, Proposition 3.12].
(c) Step 1. Let (L(t))t≥0 be a compound Poisson process as given in (A.5), let f (s) =

Id×d 1[0,∞)(s), and let δ > α (if δ ≥ 2 then, in particular, δ > α). Keep in mind that
L(1) ∈ R−α(an, μ) and J1 ∈ R−α(an, μ/λ) by [19, Lemma 2.1]. Then

E(‖L(hn)‖δ1{‖L(hn)‖≤anhnx})

= hnE(‖J1‖δ1{‖J1‖≤anhnx})
P(N(hn) = 1)

hn

+
∞∑
l=2

hnE

(∥∥∥∥
l∑

k=1

Jk

∥∥∥∥δ

1{‖∑l
k=1 Jk‖≤anhnx}

)
P(N(hn) = l)

hn

. (A.13)

By [36, Theorem 6.1 and Proposition 7.4] and ‖∑l
k=1 Jk‖ ∈ R−α(an), it follows from Kara-

mata’s theorem that, for any l ≥ 1,

lim
n→∞ nhna

−δ
nhn

E

(∥∥∥∥
l∑

k=1

Jk

∥∥∥∥δ

1{‖∑l
k=1 Jk‖≤anhnx}

)
= lC5x

δ−α. (A.14)

As in (a), we apply Pratt’s theorem such that (A.7), (A.13), and (A.14) result in

lim
n→∞ na−δ

nhn
E(‖L(hn)‖δ1{‖L(hn)‖≤anhnx}) = λC5x

δ−α.

Step 2. Let (L(t))t≥0 be the compound Poisson process given in (A.5), let f be arbitrary,
and let δ > α. Since

P(‖ξn‖ > y) ≤ P

(
f ∗

N(hn)∑
k=1

‖Jk‖ > y

)
for any y > 0
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and L∗(t) := f ∗ ∑N(t)
k=1 ‖Jk‖ for t ≥ 0 is a compound Poisson process with L∗(1) ∈ R−α(an),

we have
na−δ

nhn
E(‖ξn‖δ1{‖ξn‖≤anhnx})

≤ nxδ
P(L∗(hn) > anhnx) + na−δ

nhn
E(L∗(hn)

δ1{L∗(hn)≤anhnx}),

which converges to C6x
δ−α due to (b) and step 1.

Step 3. Let (L(t))t≥0 be a Lévy process, let f be arbitrary and δ ≥ 2, and let ξn = ξ
(1)
n + ξ

(2)
n

as given in (A.4). Furthermore, let ε > 0. Then the decomposition

na−δ
nhn

E(‖ξn‖δ1{‖ξn‖≤anhnx}) = na−δ
nhn

E(‖ξn‖δ1{‖ξn‖≤anhnx}1{‖ξ (1)
n ‖≤anhn (x+ε)})

+ na−δ
nhn

E(‖ξn‖δ1{‖ξn‖≤anhnx}1{‖ξ (1)
n ‖>anhn (x+ε)})

=: In,1 + In,2

holds. Furthermore,

In,1 ≤ na−δ
nhn

2δ
E(‖ξ (1)

n ‖δ1{‖ξ (1)
n ‖≤anhn (x+ε)})

+ n2δ(2x + ε)δE

(∥∥∥∥ ξ
(2)
n

an(2x + ε)

∥∥∥∥δ

1{‖ξ (2)
n ‖≤an(2x+ε)}

)
≤ na−δ

nhn
2δ

E(‖ξ (1)
n ‖δ1{‖ξ (1)

n ‖≤anhn (x+ε)}) + nC7a
−2
nhn

E‖ξ (2)
n ‖2

→ C8(x + ε)δ−α as n → ∞
by step 2 and Proposition A.1(a). In the last inequality we required that δ ≥ 2. Moreover,
applying (b) and Proposition A.1(a) results in

In,2 ≤ nP(‖ξ (2)
n ‖ > anhnε)P(‖ξ (1)

n ‖ > anhn(x + ε))

≤ C9ε
−2hna

−2
nhn

nP(‖ξ (1)
n ‖ > anhn(x + ε)),

which tends to 0 as n → ∞. Thus, (c) follows.
(d) Follows with Karamata’s and Pratt’s theorem and similar arguments as in (c).
(e) Step 1. Let 1 < α < 2. Then E(ξn) = 0m. Hence,

na−1
nhn

‖E(ξn1{‖ξn‖≤anhnx})‖ = na−1
nhn

‖E(ξn1{‖ξn‖>anhnx})‖
≤ na−1

nhn
E(‖ξn‖1{‖ξn‖>anhnx}),

such that we can apply (d).
Step 2. Let α ∈ (0, 1). Again, we use the decomposition ξn = ξ

(1)
n + ξ

(2)
n given in (A.4).

Thus,

E(ξn1{‖ξn‖≤anhnx}) = E(ξ (1)
n 1{‖ξn‖≤anhnx}) + E(ξ (2)

n 1{‖ξn‖≤anhnx}) =: In,1 + In,2.

On the one hand, let, for some ε > 0,

‖In,1‖ ≤
[∫ anhn (x+ε)

0
+

∫ ∞

anhn (x+ε)

]
P(‖ξ (1)

n ‖ > y, ‖ξn‖ ≤ anhnx) dy =: In,1,1 + In,1,2.

Then
In,1,1 ≤ E(‖ξ (1)

n ‖1{‖ξ (1)
n ‖≤anhn (x+ε)}).
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Hence, by (c) and Proposition A.1(a)

lim sup
n→∞

na−1
nhn

In,1,1 ≤ C13x
1−α.

Furthermore,
In,1,2 ≤ P(‖ξ (1)

n ‖ > anhn(x + ε))E‖ξ (2)
n ‖,

such that, by (b) and Proposition A.1(a),

lim sup
n→∞

na−1
nhn

In,1,2 = 0.

To conclude, na−1
nhn

In,1 ≤ C14x
1−α for all n ∈ N. On the other hand, we have

‖In,2‖ ≤ ‖E((ξ (2)
n − E(ξ (2)

n ))1{‖ξn‖>anhnx})‖ + ‖E(E(ξ (2)
n )1{‖ξn‖≤anhnx})‖

≤ E(‖ξ (2)
n ‖1{‖ξ (1)

n ‖>anhnx/2}) + E(‖ξ (2)
n ‖1{‖ξ (2)

n ‖>anhnx/2}) + 2‖E(ξ (2)
n )‖

=: In,2,1 + In,2,2 + In,2,3.

Then, by (b), Proposition A.1(a), and the facts that ‖E(ξ
(2)
n )‖ ≤ C15hn and α ∈ (0, 1),

na−1
nhn

In,2,1 = a−1
nhn

E‖ξ (2)
n ‖nP(‖ξ (1)

n ‖ > anhnx/2) → 0 as n → ∞,

na−1
nhn

In,2,3 ≤ C16nhna
−1
nhn

→ 0 as n → ∞.

Finally, by Markov’s inequality,

na−1
nhn

In,2,2 = nx

2P(‖ξ (2)
n ‖ > anhnx/2)

+ na−1
nhn

∫ ∞

anhnx/2
P(‖ξ (2)

n ‖ > y) dy ≤ C17nhna
−2
nhn

→ 0 as n → ∞;
thus, limn→∞ na−1

nhn
In,2 = 0.
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