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1. Introduction 

We are now carrying out the project to investigate how the primodial solar disk is formed and 
evolves. One of the central problems of this project is to study the angular momentum transfer in 
the nebula caused by the magnetic braking or the turbulent mixing in the boundary layer between 
the surface of the disk and its high temperature corona envelope. 

Here, we summarize the result of analysis for the magnetic braking in 1-dimensional approx-
imation, which will make the basis to interpret the full numerical calculations which we are now 
carrying out. 

2. Angular Momentum Transport in the Radial Direction 

As pointed out by Hayashi (1981), when seed magnetic fields which are generated by turbulences 
have radial component, azimuthal component grows by rotation and decays by Joule loss. For this 
process, the basic equation is given by 

The azimuthal component Ηφ takes the maximum value at / ~ / d e c a y * Ηφ**χ
 ~ ( * d e c a y / < K e p i e r ) # r ( 0 ) > 

where / d e c a y is the decay time / d e c a y = 4 x < 7 e Z o / c 2 , ZQ is the scale height of the disk, and / K e p l e r is 
the Kepler time. The amplification factor / d e c a y / / K e p l e r takes the value about 10"*1 - 10 1 at Jupiter. 
The angular momentum is transferred by the r-φ component of the Maxwell stress tensor along the 
r-direction. The dynamical viscosity coefficient in this case is given by ν ~ ( / d e c a y / / K e p i e r ) c f 2 o -

3. Angular Momentum Transport by Alfvén Wave 

Recently, Terasawa et al. (unpublished) has pointed out the following mechanism: When the mag-
netic fields are uniform in the z-direction, the ^-component of magnetic fields which are generated 
by rotation is transmitted as the Alfvén wave in the ^-direction and the the angular momentum 
escapes along the ̂ -direction. 

r 9 _ t 3 , d c 
{Tt+no[ro--(r-ro)]— - - (1) 
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In 1-dimensional approximation, it is assumed that d/dr = 0, vz = 0, Hz = const. , where vz is 
the z-component of the fluid velocity. The basic equation in this approximation is given by 

dh d . n d h . θνφ « dh 

where h = Ηφ/Η2 is the ^-component of magnetic fields normalized by the uniform fields, D = 
ο 2 /4τσ β is the magnetic diffusion coefficient, σ β is the electric conductivity, and vA = y/Hj/ίτρ is 
the Alfvén velocity. The boundary conditions are given as, at ζ = 0, h = 0, θυφ/dz = 0, and at 
ζ —• oo, where the Alfvén velocity is constant and the diffusion coefficient vanishes, νφ/νΑ = —h 
(out-going wave condition). 

The Alfvén velocity ν A and the diffusion coefficient D are different in the disk and in the envelope. 
In the case of thin transition layer, i.e., D = Do, v\ = VA,DISK for ζ < ZQ, and D = 0, vA = VA,EXT 

for ζ > zo, we can easily find a solution implicitly which has the functional form (compare with the 
solution by Mouschovias and Paleologou) of h = — Λ<)β~λ<3Ϊηη(Α:2), νφ = — voe~Xtcosh.(kz) in the 
disk. From the differential equation, we get X/k2 = νΑά±Λ/Χ ~~ a-nd ho/vo = k/X. From the 
boundary condition, we get tanh(fczo) = *>o//ioi,A,EXT = V^ VA ,diek- If the density contrast between 
disk and envelope is very large, so that VA,disk/VA,EXT < < 1, the solution becomes 

Λ _ ^A,DISK k2 _ ^ D I S K νφ{ζ = ̂ Q + C) = 1 _ XD _ ZOVA^XX 

~ 20VA,EXT + D ' 20Î>A,EXT(20*>A,EXT + D) ' νφ(ζ - Ζ - t) v\ D I G K Z0 V^EXT + D ' 

(3) 
The solution for ζ > z0 is given by h = h0kz0e~X^~Z^VA^~Z^VA'"X)E(-z + vAt + 27), νφ = 
Voe-

x(t-z/vA,txt-zo/vA,ext)0(_z _|_ yAt _|_ z ^ where 0 is the step function and Zf is the position of a 
wave front at t = 0. From these results, we can express the in-fall velocity of the gas in Kepler disks 
as 

t r _ D + T/A,EXT*0 ^ 

vr 2vA,disk 

Narita et al. (in preparation) has studied the characteristic features of this mechanism in the 
proto-solar disk. In actual disks, the surface part is ionized by cosmic rays but the inner part is 
less ionized, so that the electric conductivity σ β depends on z. The density ρ in a gravi tat ion ally 
equilibrium disk varies exponentially, so that the Alfvén velocity depends on z. In this case, it is 
not clear how we can modify eq.(4), nor it dose not depend on time. Narita et al. studied these 
problems numerically. 

Numerical results show that 
«(*)=,, 1 D ' (5) 

which describes a velocity gap v^EXT /^o» varies timely. If the magnetic fields are scarcely frozen 
(or << 1), the damping time scale for νφ(ζ) is given locally by 

r W " ^ W * ( 6 ) 

This means that when a « 1, not only the magnetic braking dose not depend on the external 
density, but also it does not depend global structure of the disk. From this equation, it is expected 
that the magnetic braking is effective in the transition region between disk and envelope. This 
means that the in-fall flow of the gas is fast at the surface region of the disk. 
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