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Introduction. A map wil be called k-chromatic or said to have chromatic 
number k if k is the least positive integer having the property that the countries 
of the map can be divided into k mutually disjoint (colour) classes in such a 
way that no two countries which have a common frontier line are in the same 
(colour) class. Heawood [4] proved that for h > 1 the chromatic number of a 
map on a surface of connectivity h is at most nhj where 

«»= [i(7+V24A-23)]. 

([x] denotes the integral part of x.) It is known also [5] that for 2 < h < 15, 
nh different colours are sometimes needed, because maps consisting of nh mutu
ally adjacent countries can be drawn on the surfaces concerned. 

The main purpose of this paper is to establish the following: 

THEOREM I. For h = 3 and for /& > 5 a map on a surface of connectivity h 
with chromatic number nh always contains nn mutually adjacent countries. • 

It follows from this theorem that for h = 3 and for h > 5 every /^-chromatic 
map on a surface of connectivity h consists essentially (in a sense which will 
become clear later) of nh mutually adjacent countries; all maps drawn on such a 
surface which do not contain nh mutually adjacent countries can be coloured 
with less than the full nh colours. 

On the other hand, it is possible that for some values of h the surfaces of 
connectivity h are such that all maps on them can be coloured using less than nh 

colours. The theorem furnishes a procedure for deciding this. For any given 
surface of connectivity h > l,nh colours are needed only if a map consisting of 
nh mutually adjacent countries can be drawn on the surface. (For h = 2 and 4 
this follows not from Theorem I but from Theorems II and III.) For h = 1 
(nh = 4) the theorem is clearly not true, and it has of course never been proved, 
or disproved, that four colours are always sufficient to colour a map on the sphere 
or in the plane. 

For the cases h = 2 and h = 4, Theorems II and III respectively will be 
proved; they are somewhat weaker than Theorem I. 

The following table shows the values of nh corresponding to values of h up 
to 16. 

h: 1,2,3,4,5,6,7, 8, 9,10,11,12,13,14,15,16 

nh: 4,6,7,7,8,9,9,10,10,10,11,11,12,12,12,13. 
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1. Combinatorial basis. It is convenient to consider graphs rather than 
maps, the graphs being the duals of maps and therefore such that no node is 
joined to itself by an edge, two nodes are joined by at most one edge, two edges 
meet in a node or not at all, and there is no crossing of edges. A graph will be 
called ^-chromatic, or said to have chromatic number k, if k colours are just 
sufficient to colour the nodes in such away that two nodes which are joined by an 
edge are never coloured the same. Theorem I, which concerns maps, is equivalent 
to the following theorem concerning graphs : 

THEOREM I'. For h = 3 and for h > 5, a graph of chromatic number nh on a 
surface of connectivity h always contains nh mutually adjacent nodes. 

To prove this theorem some combinatorial notations and results are necessary. 
If T is a graph, its chromatic number will be denoted by K(T). A graph will 

be called critical if it has no subgraph of smaller order with the same chromatic 
number. Clearly, if Y is critical the degree of every node of Y is at least K(Y) — 1. 
De Bruijn proved [2] that an infinite ^-chromatic graph always contains a 
finite ^-chromatic subgraph. It follows that a k-chromatic graph always contains 
a critical k-chromatic subgraph, and a critical graph is finite and connected. UN 
denotes the number of nodes and E denotes the number of edges of a critical 
^-chromatic graph, since the degree of every node is at least k-1, the following 
simple inequality holds: 

1.1 - # > * - ! • 

This inequality was improved by Brooks [1] who proved that if k > 4 a It-
chromatic graph either contains k nodes such that every pair are joined by an edge, 
or it contains a node of degree > k. Hence 

2E 
1.2 if k > 4 and N > k then — > k - 1. 

(A graph which consists of n nodes, every pair of distinct nodes being joined 
by an edge, is usually called a complete n-graph. This terminology will be adopt
ed.) 

It is necessary for the purpose of this paper to strengthen 1.2 considerably 
for N < k + 3, and the following will be now established: 

1.3 A k-chromatic graph which does not contain a complete k-graph as a sub
graph contains at least k + 2 nodes. 

1.4 In the notation of 1.2, if k > 5 and N = k + 2 for a critical graph, then 

IE _^2_ 
N > * + 1 k + 2-

1.5 In the same notation, if k > 5 and N = k + 3 for a critical graph, then 

24>k + 2 24 

N " ' k + 3* 
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In a previous paper [3] I proved the following result: 

1.6 //* 0 < ft < fe — 1, a k-chromatic graph either contains a complete (k — n) -graph 
as a subgraph or it has at least k + n -\- 2 nodes. 

1.3 follows from this on substituting n = 0. 

Proof of 1.4. It also follows that a critical ^-chromatic graph of order k + 2 
contains a complete (k — 1)-graph as a subgraph. Let k > 5 and let the nodes 
of such a graph be denoted by ah a2, . . . , aft_i, &i, &2, 63; where every pair of 
ai, a2, . . . , a&-i, is joined by an edge. Because the graph is critical, &i, 62, and b% 
are each joined to at least k — 1 nodes. The number of edges in the graph, 
consistent with this requirement, is least (i.e., the most economical distribution 
of edges is obtained) if each of bh b2} and &3 is joined to the other two and to 
k — 3 of the nodes &i, a2, . . . , ak-i. In this case the graph contains 

\{k - 1)(* - 2) + 3(& - 3) + 3 

edges; with any other distribution of edges it contains more. Hence for such a 
graph, 

2E>k + i - u 

N ^ ' k + 2' 

But with the distribution described above, it is easy to see that unless b\, b2, 
and 63 are all joined to the same k — 3 nodes from among a\, a2, . . . , ak-u 
the chromatic number of the graph is k — 1 (k > 5 was assumed). If 61, 62, 
and £3 are all joined to the same k — 3 nodes from among au a2, • • • , ^ - 1 , then 
these nodes together with bi} b2, and 63 form a set of & nodes of which each 
pair is joined by an edge, so that the graph contains a complete &-graph as a 
subgraph and is therefore not critical. This most economical distribution is 
therefore not permissible, and so for a critical ^-chromatic graph of order k + 2, 

2E>k + i u 

N ' ' k + 2' 
and this proves 1.4. 

Proof of 1.5. By 1.6 a critical ^-chromatic graph of order k + 3 contains a 
complete (k — 2)-graph as a subgraph. It is easiest to prove 1.5 by considering 
two alternatives: the graph contains a complete (k — 1)-graph as a subgraph or 
it does not. 

(i) The graph contains a complete (k — 1)-graph as a subgraph. Let the nodes 
of the graph be denoted by #i, a2, . . . , afc_i, 61, b2, 63, 64; where every pair of 
ai, a2, . . . , a^-i is joined by an edge. Because the graph is critical, b\, b2, 63> 
and 64 are each joined to at least k — 1 nodes. The number of edges in the graph, 
consistent with this requirement, is least (i.e., the most economical distribution 
of edges is obtained) if each of 61, b2, 63, and &4 is joined to the other three and 
to k — 4 of the nodes ah a2} . . . , afc_i. In this case the graph contains 

i(jfe- l)(k- 2) + 4(& - 4 ) + 6 
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edges; with any other distribution of edges it contains more. Hence for such a 
graph, 

2E>k + 2 U 

N ^ ' k + 3* 
But with the distribution described above it is easy to see that unless blf b2, 
bz, and £4 are all joined to the same k — 4 nodes from among ai, a2, . . ., a*_i, 
the chromatic number of the graph is k — 1 (k > 5 was assumed). If blf b2, £3, 
and 64 are all joined to the same k — 4 nodes from among a±, a2l . . . , ak-i then 
these nodes together with bh b2, b3, and Z>4 form a set of k nodes of which each 
pair is joined by an edge, so that the graph contains a complete &-graph as a 
subgraph and is therefore not critical. This most economical distribution is 
therefore not permissible, and so, for a critical ^-chromatic graph of order k + 3 
containing a complete (k — 1)-graph as a subgraph, 

2l>k + 2 24 

N l k + 3' 
(ii) The graph does not contain a complete {k — 1)-graph as a subgraph. Let F 

denote the graph. It contains a complete (k — 2)-graph as a subgraph and is 
critical (by 1.6 with n = 2). Let a be any node of T which does not belong to 
this complete (k — 2)-graph and let V denote the graph obtained from T by 
deleting a and all edges incident in a. V is (k — 1)-chromatic and it is not 
critical. For if V were critical, then a would have to be joined to every node of 
r r , since V is ^-chromatic ; and as V contains a complete (k — 2)-graph as a 
subgraph, V would contain a complete (k — 1)-graph as a subgraph, contrary 
to hypothesis. Therefore, V contains a node b such that the graph obtained 
from T; by deleting b and all edges incident in b, sayT", is (k — 1)-chromatic. 

Now r " is (k — 1)-chromatic and of order k + 1 and does not contain a 
complete (k — l)-graph as a subgraph. It is therefore critical: if it were not, it 
would contain a (k — 1)-chromatic subgraph of order k without a complete 
(k — l)-graph, whereas, by 1.6 with k — 1 in place of k, and n = 0, a (k — 1)-
chromatic graph either contains a complete (k — 1)-graph as a subgraph or it 
has at least k + 1 nodes. Since T" is critical, by 1.4 with k — 1 in place of k, 
the number of its edges is at least \k{k + 1) — 5. 

The nodes a and b in Y are each of degree > k — 1, since T is critical, and so 
contribute at least 2 (k — 1) — 1 edges to T. The number of edges in T is 
therefore at least 

\k(k + 1) - 5 + 2(k - 1) - 1 = \k2 + Ik - 8. 
Hence, for V: 

24>k + 2 22 

N ' ' k + 3' 

Under assumption (i) it was shown that 

2E>k + 2- 2 4 

N ' ' k + 3' 
so that 1.5 is now proved. 
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Theorems 1.2, 1.3, 1.4, and 1.5 form the combinatorial basis for Theorem I. 

2. Topological basis and the proof of Heawood's formula. Let a graph be 
drawn on a surface of connectivity h which divides the surface into polygonal 
regions. If N denotes the number of nodes, E the number of edges, and F the 
number of polygonal regions into which the surface is divided, then Euler's 
Theorem states that 

N+F-E = 3-h. 

If there are regions on the surface which are bounded by more than three 
edges, it is possible to add new edges until a graph is obtained which divides 
the surface into polygons bounded by three edges, i.e., triangles. (It is to be 
understood of course that we speak of polygons and triangles drawn on the 
surface in question, whose vertices are nodes and whose sides are edges of the 
graph.) The number of nodes of the new graph is still N. Let the number of 
edges be Ef and the number of triangular regions be F'} then E' > E and Fr > F. 
Now every triangle is bounded by three edges and every edge separates two 
triangles, hence 

3F' = 2E'. 

By Euler's Theorem, 
3N+3F' - 3Ef = 9 - 3h; 

hence 
3N - E' = 9 - 3A, 

and so 
IE J.,h- 3\ 

Since E' > E, for the original graph, 

2.i •N«\1 + - F 7 -
A graph drawn on the surface which does not divide it into polygonal regions 

can be drawn on a surface with smaller connectivity, or can be made to divide 
the surface into polygonal regions by the addition of edges. Thus 2.1 holds for 
all graphs drawn on a surface of connectivity h. 

Let k be the chromatic number of a graph drawn on a surface of connectivity h. 
Such a graph contains a critical ^-chromatic subgraph. Let this subgraph have 
N nodes and E edges. Then clearly N > k, and the degree of each node is at 
least k - 1, so that 2E/N > k - 1. Hence, from 2.1, if h > 3, 

It follows that: 

If h > 3, every graph drawn on a surface of connectivity h can be coloured using 
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at most nn colours, where nh is the greatest integer satisfying 

2.2 nh - 1 < ô(l + * -=A 

If h = 2 we have from 2.1 that k — 1 < 6, that is, & < 6. 
The value of nh from 2.2 explicitly is 

[* (7 + V24/* - 23)] 

and, when h = 2, gives the correct value 6. Thus we have a very simple proof of 
the well-known result quoted in the beginning of this paper. 

3. Proof of Theorem I. To prove Theorem I it is to be shown that for h = 3 
and h > 5 the only critical ^-chromatic graph which can be drawn on a surface 
of connectivity h is the complete w^-graph. To do this will first be proved that 
for h = 3 and h > 5 no critical ^-chromatic graph of order > nh + 4 can be 
drawn on a surface of connectivity h. Then it will be proved that no critical 
T^-chromatic graph of order nh + 2 or nh + 3 can be drawn on such a surface. 
Theorem I will then follow by 1.3. 

Suppose a critical w^-chromatic graph of order > nh + 4 is drawn on a surface 
of connectivity h.li E denotes the number of edges and N the number of nodes 
then by 1.2, 

~^->nn-U 
and by 2.1, since h > 3, 

2E 
i V < 6 U + 

Hence 
V + »» + 4/' 

3.1 W , _ 1 < 6 ( 1 + A ^ | ) , 

while nh satisfies the inequalities : 

3.2 nh- 1 <6[l+^-:z^), 

3.3 nh > 6 

From 3.1, 
\ nh + 1/ 

?^ — 3n^ < 6& + 9, 

and from 3.3, 
^ 2 — Snh > 6/̂  — 11; 

hence 2w>, < 20, that is, nh < 10. It remains to examine those cases where nh < 10. 

Case nh = 7. By the table on page 480, the case to be examined is h = 3. (The 
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case h = 4 is excluded from Theorem I.) By 1.2 with k = 7, 

2£ 

and by 2.1 with h = 3, 
T V > 6 ; 

This is a contradiction. Actually, 1.2 with k = 7 applies to all critical 7-chromatic 
graphs of order exceeding 7, and so we have completed the proof of Theorem I 
for the case h = 3. (The theorem with h — 3, was first established by P. Ungâr. 
His proof is different from this one.) 

Case nh = 8. From the table, if nh = 8 then h = 5. By 1.2 with & = 8, 

TV 

By 2.1 with A = 5 and N > nh + 4 = 12, 

2£ 
J V < S (>+f*)-'-

This is a contradiction. 

Case nh = 9. From the table, if nh = 9 then h = 6 or h = 7. Consider first 
the case h — 7. By 1.2 writh k = 9, 

TV > 8 -

By 2.1 with A = 7 and TV > «ft + 4 = 13, 

<" + é ) -f < 6(1+^1-7} ' 

This is a contradiction. 4̂ fortiori the case h = 6 would lead to a contradiction. 

Case nh = 10. From the table, if nh = 10 then h = 8 or h = 9 or A = 10. 
Consider first the case h — 10. By 1.2 with & = 10, 

TV 

By 2.1 with h = 10 and TV > wft + 4 = 14, 

f<6(1 +n) = 9-
This is a contradiction. A fortiori the cases h = 8 and & = 9 lead to a contra
diction. 

These contradictions prove that for h > 5 no critical ^-chromatic graph of 
order > #>, + 4 can be drawn on a surface of connectivity h, and that for & = 3 
the only critical w^-chromatic graphs which can be drawn on a surface of con
nectivity h are the complete ^-graphs. 
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It remains to see whether an ^-chromatic critical graph of order nh + 2 or 
nh + 3 can be drawn on a surface of connectivity h. These cases will be con
sidered in turn: 

Graphs of order nh + 2. Suppose a critical ^-chromatic graph of order nh + 2 
is drawn on a surface of connectivity h. By 1.4 for such a graph, 

2£ 12 
> nh + 1 -

By 2.1, 

hence 

N " "* ' WA + 2' 

A - 3 
% + 2 

nh + 2 \ 

that is, W/j2 — 3nh < 6/̂  + 3. But from the definition of nh, for h > 3, 

5(1 + A^f)> 
V «A + 1/ 

».>6H + j|> + 

that is, TẐ 2 — Snh > 6& — 11, and so 2?^ < 14, or nh < 7. But we have already 
disposed of the case nh — 7 (h = 3). 

Graphs of order nh + 3. Suppose a critical w^-chromatic graph of order nh + 3 
is drawn on a surface of connectivity h. By 1.5, for such a graph, 

By 2.1, 
2£ 
^ < 6 U + 

hence 

w* + 3 \ nh + 3> 

that is, w^2 — % < 6h + 17. But by the definition of nh, 

V + », + 3/' 

5(1 + J TT) -
\ nh + 1/ 

^ > 6 V 1 +
 WA + 

that is, W/,2 — 5 W/j > 6& — 11, and so 4 ^ < 28, or nh < 7. But we have already 
disposed of this case. This completes the proof of Theorem I. 

The cases h — 2 and h = 4 have not been included. If h — 2 then nh = 6, and 
the graphs drawn on these surfaces must be such that 

The theorem of Brooks (1.2 above) states only that for critical 6-chromatic 

2 E ^fA 
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graphs of order > 6, 2E/N > 5; it is not strong enough to settle the question. 
It is of course well known that a map consisting of six mutually adjacent 
countries can be drawn on the projective plane [5] (for which h = 2) ; but I do 
not know whether it is possible to draw a map on a surface of connectivity 2 
which does not contain six mutually adjacent countries and is nevertheless 
6-chromatic. If h = 4 then nh = 7 and the graphs drawn on these surfaces must 
be such that 

Theorem 1.2 states only that for critical 7-chromatic graphs of order exceeding 
7, 2E/N> 6; so that it fails to deal with this case also. I think that it is very 
unlikely that a 7-chromatic map which does not contain seven mutually adjacent 
countries can be drawn on a surface of connectivity 4. 

4. Weaker theorems for h = 2 and for h = 4. It is curious, but not unusual 
in this subject, that the surfaces of greater connectivity should be more easily 
amenable to treatment than the simpler surfaces with low connectivity. But 
instead in the cases h = 2 and h = 4, I will prove the following: 

THEOREM II. A 6-chromatic map on a surface of connectivity 2 either contains 6 
mutually adjacent countries, or a map containing 6 mutually adjacent countries can 
be obtained from it by deleting suitably chosen frontier lines and uniting those 
countries which they separate. 

THEOREM III. A 1-chromatic map on a surface of connectivity 4 either contains 7 
mutually adjacent countries, or a map containing 7 mutually adjacent countries 
can be obtained from it by deleting suitably chosen frontier lines and uniting those 
countries which they separate. 

The proof is based on the following simple 

LEMMA. If h > 2, a map on a surface of connectivity h contains a country with 
fewer than nh neighbours. 

A graph in which the degree of every node is at least nn has at least nh + 1 
nodes. If N denotes the number of nodes and E the number of edges of such a 
graph then 

On the other hand, if the graph can be drawn on a surface of connectivity h, 
by 2.1, 

Hence 

nh < 6[ 1 + & 7 ? ) if ^ > 2 and nh < 6 if h = 2. \ nh + 1/ 
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But from the definition of nh, 

nh > 61 1 + - ^ 4 ) if h > 2 and nh = 6 if A = 2. 
\ nh + 1/ 

So a graph on a surface of connectivity h contains a node with fewer than nh 

neighbours. The Lemma follows. 

Proof of Theorem II. The theorem is certainly true for maps containing 6 
countries. We shall assume it to be true for maps containing not more than 
C — \ countries (C > 7) and deduce that it is true for maps containing C 
countries. The truth of the theorem will then follow by the induction principle. 

Let M be a 6-chromatic map containing C countries, B frontier lines, and A 
frontier points common to three or more countries, and not having 6 mutually 
adjacent countries. If, on deleting a country from M, there remains a 6-chromatic 
map, then by the induction hypothesis the theorem is true for M. We may 
therefore suppose that on deleting any country from M there remains a 5-
chromatic map, and in this case every country has at least 5 neighbours having a 
common frontier line with it. 

By the Lemma, M therefore contains a country with fust 5 neighbours. 

Let X be such a country and let its neighbours be Y, Z, U, V, W. If each pair 
of Y, Z, U, V, W were neighbours then M would contain the 6 mutually adjacent 
countries X, Y, Z, U, V, W, contrary to hypothesis. So among Y, Z, U, V, W 
there are two countries which are not neighbours, say Y and Z. Let M' denote 
the map obtained from M by deleting the frontier line separating X and Y and 
the frontier line separating X and Z and uniting the three countries X, Y and Z 
into one country X'. 

Then M' is 6-chromatic; for the chromatic number of M' is at most 6. Suppose 
it could be coloured using five colours. Then the map M — X, obtained from 
M by deleting X, could be coloured with five colours in such a way that Y and Z 
receive the same colour. In this colouring the countries Y, Z, U, V, W between 
them receive at most four colours. If X is now re-introduced into M — X, it 
can be given the fifth colour, and this gives a colouring of M using five colours, 
which contradicts the datum that M is 6-chromatic. 

So M' is 6-chromatic and contains fewer countries than M, and therefore by 
the induction hypothesis it either contains 6 mutually adjacent countries, or a 
map containing 6 mutually adjacent countries can be obtained from it by 
deleting suitably chosen frontier lines, and uniting those countries which they 
separate. A fortiori the same is true of M, and so the theorem is proved. 

Proof of Theorem III. Similar to the proof of Theorem II, with nn = 7 instead 
of 6. 

It follows that a 7-chromatic map can be drawn on a surface of connectivity 
4 if and only if there is room for a complete 7-graph on the surface. 

NOTE. By a very similar method a short proof of the five-colour theorem of 
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Heawood [4] can be obtained. For a plane or spherical graph (h = 1), 2E/N < 6; 
hence a map on the plane or the sphere contains a country with not more than 
five neighbours, of which two have no common frontier line. If the map obtained 
by uniting the country and two non-adjacent neighbours can be coloured using 
five colours, so can the original map. The five-colour theorem now follows by 
induction. 
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