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Gauge-Invariant Ideals in the C
∗-Algebras

of Finitely Aligned Higher-Rank Graphs

Aidan Sims

Abstract. We produce a complete description of the lattice of gauge-invariant ideals in C∗(Λ) for a

finitely aligned k-graph Λ. We provide a condition on Λ under which every ideal is gauge-invariant.

We give conditions on Λ under which C∗(Λ) satisfies the hypotheses of the Kirchberg–Phillips classi-

fication theorem.

1 Introduction

Among the main reasons for the sustained interest in the C∗-algebras of directed
graphs and their analogues in recent years are the elementary graph-theoretic con-

ditions under which the associated C∗-algebra is simple and purely infinite, and the
relationship between the gauge-invariant ideals in a graph C∗-algebra and the con-
nectivity properties of the underlying graph.

A complete description of the lattice of gauge-invariant ideals of the C∗-algebra

C∗(E) of a directed graph E was given in [2], and conditions on E were described
under which C∗(E) is simple and purely infinite. Building upon these results, Hong
and Szymański [3] achieved a description of the primitive ideal space of C∗(E). The
results of [2] were obtained by a process which builds from a graph E and a gauge-

invariant ideal I in C∗(E), a new graph F = F(E, I) in such a way that the graph
C∗-algebra C∗(F) is canonically isomorphic to the quotient algebra C∗(E)/I. How-
ever, recent work of Muhly and Tomforde shows that the quotient algebra C∗(E) can
also be regarded as a relative graph algebra associated to a subgraph of E.

In this note, we turn our attention to the classification of the gauge-invariant ide-

als in the C∗-algebra of a finitely aligned higher-rank graph Λ, and to the formulation
of conditions under which these algebras are simple and purely infinite. Because of
the combinatorial peculiarities of higher-rank graphs, constructive methods such as
those employed in [2] are not readily available to us in this setting. However, the au-

thor has studied a class of relative Cuntz–Krieger algebras associated to a higher-rank
graph Λ [12], and we use these results to analyse the gauge-invariant ideal structure
of C∗(Λ). We use the results of [12] to give conditions on Λ under which C∗(Λ) is
simple and purely infinite; we also show that relative graph algebras C∗(Λ; E), and in

particular graph algebras C∗(Λ) always belong to the bootstrap class N of [11], and
hence are nuclear and satisfy the UCT.
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We begin in Section 2 by defining higher-rank graphs, and supplying the defini-
tions and notation we will need for the remainder of the paper. In Section 3, we

introduce the appropriate analogue in the setting of higher-rank graphs of a satu-

rated hereditary set of the vertices of Λ, and show that such sets H give rise to gauge-
invariant ideals IH in C∗(Λ). In Section 4, we use the gauge-invariant uniqueness
theorem of [12] to show that the quotient C∗(Λ)/IH of C∗(Λ) by the gauge-invariant

ideal associated to a saturated hereditary set H is canonically isomorphic to a relative
Cuntz–Krieger algebra C∗(Λ \ ΛH; EH) associated to a subgraph of Λ. Using this
result, we show in Section 5 that the gauge-invariant ideals of C∗(Λ) are in bijective
correspondence with pairs (H, B) where H is saturated and hereditary, and B ∪ EH

is satiated as in [12, Definition 4.1]. In Section 6, we describe the lattice order �
on pairs (H, B) which corresponds to the lattice order ⊂ on gauge-invariant ideals
of C∗(Λ). In Section 7, we prove that for a certain class of higher-rank graphs Λ, all
the ideals of C∗(Λ) are gauge-invariant; however, whilst this result does generalise

similar results of [1, 9], the condition (D) which we need to impose on Λ to guaran-
tee that all ideals are gauge-invariant is, in most instances, more or less uncheckable.
The situation is not particularly satisfactory in this regard. In Section 8 we show that
C∗(Λ) always falls into the bootstrap class N of [11], and provide graph-theoretic

conditions under which C∗(Λ) is simple and purely infinite.

NB: for consistency with [4], the author has continued to use terminology such as
“hereditary” and “cofinal” in this paper. Readers familiar with graph algebras should
be wary as to the meaning of these terms because of the change of edge-direction
conventions involved in going from directed graphs to k-graphs.

2 Higher-Rank Graphs and Their Representations

The definitions in this section are taken more or less wholesale from [12].

We regard N
k as an additive semigroup with identity 0. For m, n ∈ N

k, we write
m ∨ n for their coordinate-wise maximum and m ∧ n for their coordinate-wise min-
imum. We write ni for the i-th coordinate of n ∈ N

k and ei for the i-th generator of

N
k, so n =

∑k
i=1 ni · ei .

Definition 2.1 Let k ∈ N \ {0}. A k-graph is a pair (Λ, d) where Λ is a countable
category and d is a functor from Λ to N

k which satisfies the factorisation property:
for all λ ∈ Mor(Λ) and all m, n ∈ N

k such that d(λ) = m + n, there exist unique
morphisms µ and ν in Mor(Λ) such that d(µ) = m, d(ν) = n and λ = µν.

Since we are regarding k-graphs as generalised graphs, we refer to elements of
Mor(Λ) as paths and we write r and s for the codomain and domain maps.

The factorisation property implies that d(λ) = 0 if and only if λ = idv for some

v ∈ Obj(Λ). Hence we identify Obj(Λ) with {λ ∈ Mor(Λ) : d(λ) = 0}, and write
λ ∈ Λ in place of λ ∈ Mor(Λ).

Given λ ∈ Λ and E ⊂ Λ, we define λE := {λµ : µ ∈ E, r(µ) = s(λ)} and Eλ :=
{µλ : µ ∈ E, s(µ) = r(λ)}. In particular if d(v) = 0, then vE = {λ ∈ E : r(λ) = v}.
In analogy with the path-space notation for 1-graphs, we denote by Λn the collecton
{λ ∈ Λ : d(λ) = n} of paths of degree n in Λ.
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The factorisation property ensures that if l ≤ m ≤ n ∈ N
k and if d(λ) = n,

then there exist unique elements, denoted λ(0, l), λ(l, m) and λ(m, n), of Λ such

that d(λ(0, l)) = l, d(λ(l, m)) = m − l, and d(λ(m, n)) = n − m and such that
λ = λ(0, l)λ(l, m)λ(m, n).

Definition 2.2 Let (Λ, d) be a k-graph. For µ, ν ∈ Λ we denote the collection

{λ ∈ Λ : d(λ) = d(µ) ∨ d(ν), λ(0, d(µ)) = µ, λ(0, d(ν)) = ν}

of minimal common extensions of µ and ν by MCE(µ, ν). We write Λmin(µ, ν) for the
collection

Λ
min(µ, ν) := {(α, β) ∈ Λ × Λ : µα = νβ ∈ MCE(µ, ν)}.

If E ⊂ Λ and µ ∈ Λ, then we write ExtΛ(µ; E) for the set

ExtΛ(µ; E) := {β ∈ s(µ)Λ : there exists ν ∈ E such that µβ ∈ MCE(µ, ν)};

when the ambient k-graph Λ is clear from context, we write Ext(µ; E) in place of
ExtΛ(µ; E). We say that Λ is finitely aligned if |MCE(µ, ν)| < ∞ for all µ, ν ∈ Λ.

Let v ∈ Λ0 and E ⊂ vΛ. We say E is exhaustive if Ext(λ; E) 6= ∅ for all λ ∈ vΛ.

Notation 2.3 Let (Λ, d) be a finitely aligned k-graph. Define

FE(Λ) :=
⋃

v∈Λ0

{E ⊂ vΛ \ {v} : E is finite and exhaustive}.

For E ∈ FE(Λ) we write r(E) for the vertex v ∈ Λ0 such that E ⊂ vΛ.

Notice that whilst any finite subset of vΛ which contains v is automatically fi-
nite exhaustive, we do not include such sets in FE(Λ). Note also that since vΛ is
never empty (it always contains v), finite exhausitve sets, and in particular elements
of FE(Λ), are always nonempty.

Definition 2.4 Let (Λ, d) be a finitely aligned k-graph, and let E be a subset of FE(Λ).
A relative Cuntz–Krieger (Λ; E)-family is a collection {tλ : λ ∈ Λ} of partial isome-

tries in a C∗-algebra satisfying

(TCK1) {tv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(TCK2) tλtµ = δs(λ),r(µ)tλµ for all λ, µ ∈ Λ;
(TCK3) t∗λtµ =

∑

(α,β)∈Λmin(λ,µ) tαt∗β for all λ, µ ∈ Λ;
(CK)

∏

λ∈E(tr(E) − tλt∗λ) = 0 for all E ∈ E.

When E = FE(Λ), we call {tλ : λ ∈ Λ} a Cuntz–Krieger Λ-family.

For each pair (Λ, E) there exists a universal C∗-algebra C∗(Λ; E), generated by
a universal relative Cuntz–Krieger (Λ; E)-family {sE(λ) : λ ∈ Λ} which admits a
gauge-action γ of T

k satisfying γz(sE(λ)) = zd(λ)sE(λ). We write C∗(Λ) for
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C∗(Λ; FE(Λ)), and call it the Cuntz–Krieger algebra, and we denote the universal
Cuntz–Krieger family by {sλ : λ ∈ Λ}; this agrees with the definitions given in [10].

There is also a Toeplitz algebra TC∗(Λ) associated to each k-graph Λ. By defini-
tion, this is the universal C∗-algebra generated by a family {sT(λ) : λ ∈ Λ} which
satisfy (TCK1)–(TCK3), and hence is canonically isomorphic to C∗(Λ; ∅). Indeed,

each C∗(Λ; E) is a quotient of TC∗(Λ):

Lemma 2.5 Let (Λ, d) be a finitely aligned k-graph, and let E ⊂ FE(Λ). Let JE denote

the ideal of TC∗(Λ) generated by the projections

{
∏

λ∈E

(

sT(r(E)) − sT(λ)sT(λ)∗
)

: E ∈ E
}

.

Then C∗(Λ; E) is canonically isomorphic to TC∗(Λ)/ JE.

Proof The universal property of TC∗(Λ) gives a homomorphism π : TC∗(Λ) →
C∗(Λ; E) satisfying π(sT(λ)) = sE(λ) for all λ. Since {sE(λ) : λ ∈ Λ} satisfy (CK),
we have JE ⊂ ker π and hence π descends to a homomorphism π̃ : TC∗(Λ)/ JE →
C∗(Λ; E) such that π̃(sT(λ) + JE) = sE(λ) for all λ.

On the other hand, the family {sT(λ) + JE : λ ∈ Λ} ⊂ TC∗(Λ)/ JE satisfy (CK)
by definition of JE, so the universal property of C∗(Λ; E) gives a homomorphism

φ : C∗(Λ; E) → TC∗(Λ)/ JE such that φ(sE(λ)) = sT(λ) + JE for all λ. We have that
π̃ and φ are mutually inverse, and the result follows.

3 Hereditary Subsets and Associated Ideals

Definition 3.1 Let (Λ, d) be a finitely aligned k-graph. Define a relation ≤ on Λ0 by

v ≤ w if and only if vΛw 6= ∅.

(i) We say that a subset H of Λ0 is hereditary if v ∈ H and v ≤ w imply w ∈ H.
(ii) We say that H ⊂ Λ0 is saturated if, whenever v ∈ Λ0 and there exists a finite

exhaustive subset F ⊂ vΛ with s(F) ⊂ H, we also have v ∈ H.

For H ⊂ Λ0 we call the smallest saturated set containing H the saturation of H.

Lemma 3.2 Let (Λ, d) be a finitely aligned k-graph and let G ⊂ Λ0. Let ΣG := {v ∈
Λ0 : there exists a finite exhaustive set F ⊂ vΛG}. Then

(i) ΣG is equal to the saturation of G; and

(ii) if G is hereditary, then ΣG is hereditary.

Proof First note that if v ∈ G, then {v} ⊂ vΛG is finite and exhaustive so that G ⊂
ΣG. Note also that ΣG is a subset of the saturation of G by definition. To see that ΣG

is saturated, let v ∈ Λ0 and suppose F ∈ vΛ(ΣG) is finite and exhaustive. If v ∈ F,

then v ∈ ΣG by definition, so suppose that v 6∈ F. Let E := {λ ∈ F : s(λ) 6∈ G}. By
definition of ΣG, for each λ ∈ E, there exists Eλ ∈ s(λ) FE(Λ) with s(Eλ) ⊂ G. Then
[12, Lemma 5.3] shows that F ′ := (F \ E) ∪ (

⋃

λ∈E λEλ) belongs to FE(Λ). Since
F ′ ⊂ vΛG, it follows that v ∈ ΣG by definition. This establishes (i).
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To prove claim (ii), suppose G is hereditary, and suppose v, w ∈ Λ0 satisfy v ∈ ΣG

and v ≤ w; say λ ∈ Λ with r(Λ) = v, s(Λ) = w. If v ∈ G then w ∈ G because G is

hereditary, so suppose that v ∈ ΣG \ G. By definition of Σ there exists F ∈ v FE(Λ)
such that s(F) ⊂ G. By [12, Lemma 2.3], Ext(λ; F) is a finite exhaustive subset of wΛ.
Since s(F) ⊂ G, and since, for α ∈ Ext(λ; F), we have s(α) ≤ s(µ) for some µ ∈ F,
we have s(Ext(λ; F)) ⊂ G. It follows that w ∈ ΣG, completing the proof.

Lemma 3.3 Let (Λ, d) be a finitely aligned k-graph, and let I be an ideal of C∗(Λ). Then

HI := {v ∈ Λ0 : sv ∈ I} is saturated and hereditary.

To prove Lemma 3.3, we first need to recall some notation from [8].

Notation 3.4 Let (Λ, d) be a finitely aligned k-graph and let E be a finite subset of Λ.
As in [8], we denote by ∨E the smallest subset of Λ such that E ⊂ ∨E and such that if

λ, µ ∈ ∨E, then MCE(λ, µ) ⊂ ∨E. We have that ∨E is finite and that λ ∈ ∨E implies
λ = µµ ′ for some µ ∈ E by [8, Lemma 8.4].

Proof of Lemma 3.3 Suppose v ∈ HI and w ∈ Λ0 with v ≤ w. So there exists
λ ∈ vΛw. Since sv ∈ I, we have sw = s∗λsvsλ ∈ I, and then w ∈ HI ; consequently HI is
hereditary. Now suppose that v ∈ Λ0 and there is a finite exhaustive set F ⊂ vΛ with

s(F) ⊂ HI . By [10, Lemma 3.1], we have sv ∈ span{sλs∗λ : λ ∈ ∨F}. Since λ ∈ ∨F

implies λ = αα ′ for some α ∈ F, and since HI is hereditary, we have s(∨F) ⊂ HI .
Consequently, for λ ∈ ∨F, we have sλs∗λ = sλss(λ)s

∗
λ ∈ I, so sv ∈ I, giving v ∈ HI .

Notation 3.5 For H ⊂ Λ0, let IH be the ideal in C∗(Λ) generated by {sv : v ∈ H}.
Let HΛ denote the subcategory {λ ∈ Λ : r(λ) ∈ H} of Λ.

Lemma 3.6 Let (Λ, d) be a finitely aligned k-graph, and suppose that H ⊂ Λ0 is satu-

rated and hereditary. Then (HΛ, d|HΛ) is also a finitely aligned k-graph, and C∗(HΛ) ∼=
C∗({sλ : r(λ) ∈ H}) ⊂ C∗(Λ). Moreover this subalgebra is a full corner in IH .

Proof One checks that (HΛ, d|HΛ) is a k-graph just as in [9, Theorem 5.2], and it is
finitely aligned because (HΛ)min(λ, µ) ⊂ Λmin(λ, µ).

The universal property of C∗(HΛ) ensures that there exists a homomorphism
π : C∗(HΛ) → C∗({sλ : r(λ) ∈ H}). Write γH for gauge action on C∗(HΛ) and
γ| for the restriction of the gauge action on C∗(Λ) to C∗({sλ : r(λ) ∈ H}). Then

π ◦ (γH)z = (γ|)z ◦ π for all z ∈ T
k, and [10, Theorem 4.2] shows that π is injective.

For the final statement, just use the argument of [1, Theorem 4.1(c)] to see that
C∗({sλ : r(λ) ∈ H}) is the corner of IH determined by the projection PH :=
∑

v∈H sv ∈ M(IH), and that this projection is full.

4 Quotients of C∗(Λ) by IH

We now want to show that the quotients of Cuntz–Krieger algebras by the ideals IH

of Section 3 are relative Cuntz–Krieger algebras associated to Λ \ ΛH.
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Let (Λ, d) be a k-graph, and let H ⊂ Λ0 be a saturated hereditary set. Consider
the subcategory Λ \ ΛH = {λ ∈ Λ : s(λ) 6∈ H}.

Lemma 4.1 Let (Λ, d) be a finitely aligned k-graph, and let H ⊂ Λ0 be saturated and

hereditary. Then (Λ \ ΛH, d|Λ\ΛH) is also a finitely aligned k-graph.

Proof We first check the factorisation property for (Λ \ΛH, d|Λ\ΛH), and then that
(Λ \ ΛH, d|Λ\ΛH) is finitely aligned. For the factorisation property, let λ ∈ Λ \ ΛH,

and let m, n ∈ N
k, m + n = d(λ). By the factorisation property for Λ, there exist

unique µ, ν ∈ Λ such that d(µ) = m, d(ν) = n and λ = µν. Since s(ν) = s(λ) 6∈ H,
we have ν ∈ Λ \ ΛH. Since, by definition of ≤, we have r(ν) ≤ s(ν) it follows
that r(ν) 6∈ H because H is hereditary. But r(ν) = s(µ) so it follows that µ ∈
Λ\ΛH. Finite alignedness of the k-graph Λ\ΛH is trivial since (Λ\ΛH)min(λ, µ) ⊂
Λmin(λ, µ) for all λ, µ ∈ Λ \ ΛH.

Definition 4.2 Let (Λ, d) be a finitely aligned k-graph and let H be a saturated hered-
itary subset of Λ0. Define EH := {E \ EH : E ∈ FE(Λ)}.

Lemma 4.3 Let (Λ, d) be a finitely aligned k-graph, and suppose that H ⊂ Λ0 is satu-

rated and hereditary. Then EH ⊂ FE(Λ \ ΛH).

Proof Suppose that E ∈ EH and that µ ∈ r(E)(Λ \ΛH). Suppose for contradiction

that (Λ \ΛH)min(λ, µ) = ∅ for all λ ∈ E. Since E ∈ EH , there exists F ∈ FE(Λ) such
that F \ FH = E. We have

(4.1) ExtΛ(µ; F) = ExtΛ(µ; E) ∪ ExtΛ(µ; F \ E) = ExtΛ(µ; E) ∪ ExtΛ(µ; FH).

Now FH ⊂ ΛH by definition, and then Ext(µ; FH) ∈ ΛH because H is hereditary.
Since (Λ \ ΛH)min(λ, µ) = ∅ for all λ ∈ E, we must have Λmin(λ, µ) ⊂ ΛH × ΛH

for all λ ∈ E, and hence we also have ExtΛ(µ; E) ⊂ ΛH. Hence (4.1) shows that
ExtΛ(µ; F) ⊂ ΛH. But F is exhaustive in Λ, so Ext(µ; F) is also exhaustive by [12,
Lemma 2.3], and then since H is saturated, it follows that s(µ) ∈ H, contradicting
our choice of µ.

Theorem 4.4 Let (Λ, d) be a finitely aligned k-graph, and let H ⊂ Λ0 be saturated and

hereditary. Then C∗(Λ)/IH is canonically isomorphic to C∗((Λ \ ΛH); EH).

To prove Theorem 4.4, we need to collect some additional results. Recall from [12,
Definition 4.1] that a subset E of FE(Λ) is said to be satiated if it satisfies

(S1) if G ∈ E and E ∈ FE(Λ) with G ⊂ E, then E ∈ E;
(S2) if G ∈ E with r(G) = v and µ ∈ vΛ \ GΛ, then Ext(µ; G) ∈ E;
(S3) if G ∈ E and 0 < nλ ≤ d(λ) for λ ∈ G, then {λ(0, nλ) : λ ∈ G} ∈ E;

(S4) if G ∈ E, G ′ ⊂ G and for each λ ∈ G ′, G ′
λ is an element of E such that

r(G ′
λ) = s(λ), then ((G \ G ′) ∪ (

⋃

λ∈G ′ λG ′
λ)) ∈ E.
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Lemma 4.5 Let (Λ, d) be a finitely aligned k-graph, and let H ⊂ Λ0 be saturated and

hereditary. Then EH is satiated.

Proof For (S1), suppose that E ∈ EH and F ⊂ Λ \ ΛH is finite with E ⊂ F.
By definition of EH , there exists E ′ ∈ FE(Λ) such that E ′ \ E ′H = E. But then
F ′ := F ∪ E ′H ∈ FE(Λ) by [12, Lemma 5.3]. Since F = F ′ \ F ′H, it follows that

F ∈ EH .
For (S2), suppose that E ∈ EH , that µ ∈ r(E)(Λ \ ΛH) and that µ 6∈ EΛ. Since

E ∈ EH , there exists E ′ ∈ FE(Λ) such that E ′ \ E ′H = E. Since µ ∈ Λ \ΛH, we have
µ 6∈ E ′H, and hence ExtΛ(µ; E ′) ∈ FE(Λ) by [12, Lemma 2.3]. We also have

ExtΛ(µ; E ′) = ExtΛ(µ; E) ∪ ExtΛ(µ; E ′H)

= ExtΛ\ΛH(µ; E) ∪ ExtΛ(µ; E)H ∪ ExtΛ(µ; E ′H).

Since both Ext Λ(µ; E)H and ExtΛ(µ; E ′H) are subsets of ΛH, it follows that

ExtΛ\ΛH(µ; E) = ExtΛ(µ; E ′) \ ExtΛ(µ; E ′)H,

and hence belongs to EH .

For (S3), suppose that E ∈ EH , say E ′ ∈ FE(Λ) and E = E ′ \E ′H. For each λ ∈ E,
let nλ ∈ N

k with 0 < nλ ≤ d(λ). For µ ∈ E ′H, let nµ := d(µ). Since E ′ is exhaustive
in Λ, we have that {µ(0, nµ) : µ ∈ E ′} is also a finite exhaustive subset of Λ by [12,
Lemma 5.3], and since

{λ(0, nλ) : λ ∈ E} = {µ(0, nµ) : µ ∈ E ′} \ {µ(0, nµ) : µ ∈ E ′H},

it follows that {λ(0, nλ) : λ ∈ E} ∈ EH .

Finally, for (S4), suppose that E ∈ EH , say E ′ ∈ FE(Λ) and E = E ′ \ E ′H. Let
F ⊂ E, and for each λ ∈ F, suppose that Fλ ∈ EH with r(Fλ) = s(λ). We must show
that G := (E \ F) ∪

(
⋃

λ∈F λFλ

)

∈ EH . Since each Fλ ∈ EH , for each λ ∈ F, there
exists a set F ′

λ ∈ FE(Λ) with Fλ = F ′
λ \F ′

λH. Let G ′ := (E ′ \F)∪ (
⋃

λ∈F λF ′
λ). We will

show that G = G ′ \ G ′H, and that G ′ is finite and exhaustive in Λ; it follows from
the definition of EH that G ∈ EH , proving the result.

We have G ′ ∈ FE(Λ) by [12, Lemma 5.3], so it remains only to show that G =

G ′ \ G ′H. But since H is hereditary, we have

G ′H =
(

(E ′ \ F) ∪
(

⋃

λ∈F

λF ′
λ

))

H

= (E ′ \ F)H ∪
(

⋃

λ∈F

λ(F ′
λH)

)

= E ′H ∪
(

⋃

λ∈F

λF ′
λ

)

H

because F ⊂ E ⊂ Λ \ ΛH. Consequently

G ′ \ G ′H =
(

(E ′ \ F) ∪
(

⋃

λ∈F

λF ′
λ

))

\
(

E ′H ∪
(

⋃

λ∈F

λF ′
λH

))

= G

as required.
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Lemma 4.6 Let (Λ, d) be a finitely aligned k-graph, and let H ⊂ Λ0 be saturated and

hereditary. Let {tλ : λ ∈ Λ} be a Cuntz–Krieger Λ-family, and let It
H be the ideal in

C∗({tλ : λ ∈ Λ}) generated by {tv : v ∈ H}. Then {tλ + It
H : λ ∈ Λ\ΛH} is a relative

Cuntz–Krieger (Λ \ ΛH; EH)-family in C∗({tλ : λ ∈ Λ})/It
H .

Proof Relations (TCK1) and (TCK2) hold automatically since they also hold for the

Cuntz–Krieger Λ-family {tλ : λ ∈ Λ}. For (TCK3), let λ, µ ∈ Λ \ ΛH and notice
that since {tλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family, we have

(t∗λ + It
H)(tµ + It

H) =

∑

(α,β)∈Λmin(λ,µ)

tαt∗β + It
H .

To show that this is equal to
∑

(α,β)∈(Λ\ΛH)min(λ,µ) tαt∗β + It
H , we need to show that

(α, β) ∈ Λ
min(λ, µ) \ (Λ \ ΛH)min(λ, µ) implies tαt∗β ∈ It

H .

So fix (α, β) ∈ Λmin(λ, µ) \ (Λ \ ΛH)min(λ, µ). Then s(α) = s(β) ∈ H, and hence
sαs∗β = sαss(α)s

∗
β ∈ It

H .
It remains to check (CK). Let E ∈ EH , say E ′ ∈ FE(Λ) and E = E ′ \ E ′H, and

let v := r(E). We must show that
∏

λ∈E(tv − tλt∗λ) belongs to It
H . We know that

∏

λ∈E ′(tv − tλt∗λ) = 0, and it follows that

(4.2)
∏

λ∈E

(tv − tλt∗λ)
(

∏

µ∈E ′H

(tv − tµt∗µ)
)

= 0.

Since H is hereditary, Notation 3.4 gives ∨(E ′H) ⊂ ΛH, and
∏

µ∈∨(E ′H)(tv − tµt∗µ) ≤
∏

µ∈E ′H(tv − tµt∗µ). Furthermore by [10, Proposition 3.5] we have

tv =
∏

µ∈∨(E ′H)

(tv − tµt∗µ) +
∑

µ∈∨(E ′H)

Q(t)∨(E ′H)
µ

where Q(t)∨(E ′H)
µ :=

∏

µµ ′∈∨(E ′H)\{µ}(tµt∗µ − tµµ ′t∗µµ ′).

Hence we can calculate

∏

λ∈E

(tv − tλt∗λ) =
(

∏

λ∈E

(tv − tλt∗λ)
)

tv

=
(

∏

λ∈E

(tv − tλt∗λ)
)(

∏

µ∈∨(E ′H)

(tv − tµt∗µ) +
∑

µ∈∨(E ′H)

Q(t)∨(E ′H)
µ

)

.

Hence (4.2) gives
∏

λ∈E(tv − tλt∗λ) =
(

∏

λ∈E(tv − tλt∗λ)
)(

∑

µ∈∨(E ′H) Q(t)∨(E ′H)
µ

)

,

and hence belongs to IH because ∨(E ′H) ⊂ ΛH, so each Q(t)∨(E ′H)
µ ∈ IH .

Finally, before proving Theorem 4.4, we need to recall some notation and defini-
tions from [10, 12].

Let (Λ, d) be a finitely aligned k-graph, and let G ⊂ Λ. As in [10, Definition 3.3],
ΠG denotes the smallest subset of Λ which contains G and has the property that if

https://doi.org/10.4153/CJM-2006-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-045-2


1276 A. Sims

λ, µ and σ belong to G with d(λ) = d(µ) and s(λ) = s(µ) and if (α, β) ∈ Λmin(µ, σ),
then λα ∈ G. If follows from [10, Lemma 3.2] that ΠG is finite when G is. We denote

by ΠG ×d,s ΠG the set of pairs {(λ, µ) ∈ ΠG × ΠG : d(λ) = d(µ), s(λ) = s(µ)}.

Let {tλ : λ ∈ Λ} satisfy (TCK1)–(TCK3). As in [10, Proposition 3.5], for a finite
set G ⊂ Λ and a path λ ∈ ΠG, we write Q(t)ΠG

λ for the projection

(4.3) Q(t)ΠG
λ :=

∏

λλ ′∈(ΠG)\{λ}

(tλt∗λ − tλλ ′t∗λλ ′),

and for (λ, µ) ∈ ΠG ×d,s ΠG, we define

Θ(t)ΠG
λ,µ := tλ

(

∏

λλ ′∈(ΠG)\{λ}

(ts(λ) − tλ ′t∗λ ′)
)

t∗µ .

By [10, Lemma 3.10], we have

Q(t)ΠG
λ tλt∗µ = Θ(t)ΠG

λ,µ = tλt∗µQ(t)ΠG
µ .

As in [9], for m ∈ (N ∪ {∞})k, Ωk,m is the k-graph with vertices {p ∈ N
k :

p ∈ m}, morphisms {(p, q)} ∈ N
k : p ≤ q ≤ m} with r(p, q) = p, s(p, q) =

q and d(p, q) = q − p. Recall from [12, Definition 4.4] that a graph morphism
x : Ωk,m → Λ is a boundary path of Λ if, whenever n ≤ m and E ∈ x(n) FE(Λ), we
have x(n, n + d(λ)) = λ for some λ ∈ E. We write r(x) for x(0) and d(x) for m. The

collection ∂Λ := {x : x is a boundary path of Λ} is called the boundary-path space
of Λ. For λ ∈ Λ and x ∈ ∂Λ with r(x) = s(λ), there is a unique boundary path
λx such that (λx)(0, d(λ)) = λ and (λx)(d(λ), d(λ) + n) = x(0, n) for all n ∈ N

k.
Likewise, given x ∈ ∂Λ and n ≤ d(x), there is a unique boundary path x|d(x)

n such

that (x|d(x)
n )(0, m) = x(n, n + m) for all m ∈ N

k. As in [12, Definition 4.6], we define
partial isometries {Sλ : λ ∈ Λ} ⊂ B(ℓ2(∂Λ)) by

Sλex := δs(λ),r(x)eλx.

Lemma 4.7 of [12] shows that {Sλ : λ ∈ Λ} is a Cuntz–Krieger Λ-family called the

boundary-path representation and that

(4.4) S∗λex =

{

ex|d(x)

d(λ)

if x(0, d(λ)) = λ,

0 otherwise.

Proof of Theorem 4.4 Fix v ∈ Λ0 \ ΛH and fix E ∈ FE(Λ \ ΛH) \ EH .

Claim 4.7 For all a ∈ span{sλs∗µ : λ, µ ∈ ΛH}, we have

(i) ‖sv − a‖ ≥ 1;

(ii) ‖(
∏

λ∈E(sr(E) − sλs∗λ)) − a‖ ≥ 1.
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Proof of Claim: Express a =
∑

λ∈F aλ,µsλs∗µ where F is a finite subset of ΛH, and
{aλ,µ : λ, µ ∈ F} ⊂ C. Let πS be the boundary-path representation of C∗(Λ) and let

A := πS(a) =
∑

λ,µ∈F aλ,µSλS∗µ.

To check (i), note that since v 6∈ H and since H is saturated, we have that vF∩Λ0 =

∅ and that vF 6∈ FE(Λ). Hence there exists τ ∈ vΛ such that Λmin(τ , λ) = ∅ for all

λ ∈ F. By [12, Lemma 4.7(1)], there exists a boundary path x in s(τ )∂Λ. By choice
of τ , we have that τx ∈ v∂Λ \ F∂Λ. But now

(4.5) ‖Sv − A‖ ≥ ‖(Sv − A)eτx‖ = ‖Sveτx −
∑

λ,µ∈F

(aλ,µSλS∗µeτx)‖.

Since τx 6∈ F∂Λ by choice, (4.4) gives S∗µeτx = 0 for all µ ∈ F, and hence (4.5) gives
‖Sv − A‖ ≥ ‖Sveτx‖ = ‖eτx‖ = 1. Since πS is a C∗-homomorphism, and hence

norm-decreasing, this establishes (i).
For (ii), note that E 6∈ EH , and F ⊂ ΛH is finite, so we know that E ∪ F 6∈ FE(Λ).

Hence there exists τ ∈ Λ such that Λmin(σ, τ ) = ∅ for all σ ∈ E ∪ F. By [12,
Lemma 4.7(1)], there exists x ∈ ∂Λ such that r(x) = s(τ ). Set y := τx ∈ ∂Λ. By

choice of τ , we have that y(0, d(σ)) 6= σ for all σ ∈ E ∪ F. Hence S∗σey = 0 for all
σ ∈ E ∪ G by (4.4). In particular, σ ∈ F implies S∗σey = 0, so Aey = 0, and λ ∈ E

implies S∗λey = 0. It follows that (
∏

λ∈E(Sr(E) − SλS∗λ))ey = Sr(E)ey = ey . Hence

∥

∥

(
∏

λ∈E

(Sr(E) − SλS∗λ) − A
)∥

∥ ≥
∥

∥

(
∏

λ∈E

(Sr(E) − SλS∗λ) − A
)

ey

∥

∥ = ‖ey‖ = 1.

It follows that ‖
∏

λ∈E(Sr(E) − SλS∗λ) − A‖ ≥ 1. Again since πS is norm-decreasing,
this establishes (ii) and the Claim.

Since IH ⊂ C∗(Λ) is fixed under the gauge action, γ descends to a strongly con-
tinuous action θ of T

k on C∗(Λ)/IH such that θz ◦ πEH

s+IH
= πEH

s+IH
◦ γz fo all z ∈ T

k.

It is easy to check using (TCK3) that span{sλs∗µ : λ, µ ∈ ΛH} is a dense subset of
IH . Hence Claim 4.7 shows that neither sv nor

∏

λ∈E(sr(E) − sλs∗λ) belongs to IH . Since
v ∈ Λ0 \ H and E ∈ FE(Λ \ ΛH) \ EH were arbitrary, and since Lemma 4.5 shows
that EH is satiated, the gauge-invariant uniqueness theorem [12, Theorem 6.1] shows

that πEH

s+IH
is injective.

5 Gauge-Invariant Ideals in C∗(Λ)

Theorem 4.4 and [12, Theorem 6.1] combine to show that every nontrivial gauge-
invariant ideal in C∗(Λ \ ΛH; EH) which contains no vertex projection sEH

(v) must
contain some collection of projections

{
∏

λ∈E

(

sEH
(r(E)) − sEH

(λ)sEH
(λ)∗

)

: E ∈ B
}

where B is a subset of FE(Λ \ ΛH) \ EH .
Since C∗(Λ\ΛH; EH) itself is the quotient of C∗(Λ) by IH , it follows that the ideals

I of C∗(Λ) such that the set HI defined in Lemma 3.3 is equal to H should be indexed
by some collection of subsets of FE(Λ \ ΛH) \ EH .

https://doi.org/10.4153/CJM-2006-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-045-2


1278 A. Sims

In this section, we show that the gauge-invariant ideals of C∗(Λ) are indexed
by pairs (H, B) where H is a saturated hereditary subset of Λ0 and B is a subset of

FE(Λ \ ΛH) \ EH such that B ∪ EH is satiated.

Definition 5.1 Let (Λ, d) be a finitely aligned k-graph and let H ⊂ Λ0 be saturated
and hereditary. Let B be a subset of FE(Λ \ ΛH). We define JH,B to be the ideal of
C∗(Λ) generated by

{sv : v ∈ H} ∪
{

∏

λ∈E

(sr(E) − sλs∗λ) : E ∈ B
}

.

We define I(Λ \ ΛH)B to be the ideal of C∗(Λ \ ΛH; EH) generated by

{
∏

λ∈E

(sEH
(r(E)) − sEH

(λ)sEH
(λ)∗) : E ∈ B

}

.

If H ⊂ Λ0 is saturated and hereditary, and if B is a subset of FE(Λ\ΛH)\EH such
that EH ∪ B is satiated, then q( JH,B) ∼= I(Λ \ΛH)B where q is the quotient map from

C∗(Λ) to C∗(Λ)/IH
∼= C∗(Λ \ ΛH; EH).

We now investigate the structure of C∗(Λ)/ JH,B.

Lemma 5.2 Let (Λ, d) be a finitely aligned k-graph and let H ⊂ Λ0 be saturated and

hereditary. Let B be a subset of FE(Λ \ ΛH) \ EH such that EH ∪ B is satiated. Then

C∗(Λ \ ΛH; EH)/I(Λ \ ΛH)B = C∗(Λ \ ΛH; (EH ∪ B)).

Proof By Lemma 2.5, we have that C∗(Λ\ΛH; EH) ∼= TC∗(Λ\ΛH)/ JEH
and

C∗(Λ\ΛH; (EH ∪ B)) ∼= TC∗(Λ\ΛH)/ JEH∪B. Hence we just need to show that a ∈
TC∗(Λ\ΛH) belongs to JEH∪B if and only if q(a) ∈ I(Λ\ΛH)B, where q : TC∗(Λ\ΛH)
→ C∗(Λ\ΛH; EH) is the quotient map.

By definition of I(Λ\ΛH)B, the inverse image q−1(I(Λ\ΛH)B) under the quotient
map is precisely the ideal in TC∗(Λ \ ΛH) generated by

{
∏

λ∈E

(sT(r(E)) − sT(λ)sT(λ)∗) : E ∈ B
}

∪
{

∏

λ∈E

(sT(r(E)) − sT(λ)sT(λ)∗) : E ∈ EH

}

;

that is, q−1(I(Λ \ ΛH)B) = JEH∪B as required.

Corollary 5.3 Let (Λ, d) be a finitely aligned k-graph, let H ⊂ Λ0 be saturated and

hereditary, and let B ⊂ FE(Λ \ ΛH) \ EH . Then

C∗(Λ)/ JH,B
∼= C∗

(

Λ \ ΛH; (EH ∪ B)
)

.
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Proof We will show that C∗(Λ)/ JH,B = (C∗(Λ)/IH)/I(Λ \ ΛH)B; the result then
follows from Lemma 5.2. Let

qH,B : C∗(Λ) → C∗(Λ)/ JH,B, qH : C∗(Λ) → C∗(Λ)/IH ,

qB : C∗(Λ)/IH → (C∗(Λ)/IH)/I(Λ \ ΛH)B

be the quotient maps. The kernel of qH,B is contained in that of qB ◦ qH , giving a

canonical homomorphism π1 of C∗(Λ)/ JH,B onto (C∗(Λ)/IH)/I(Λ \ ΛH)B. On the
other hand, since IH ⊂ JH,B, there is a canonical homomorphism π2 of C∗(Λ)/IH

onto C∗(Λ)/ JH,B whose kernel contains I(Λ \ ΛH)B by definition. It follows that
π2 descends to a canonical homomorphism π̃2 of (C∗(Λ)/IH)/I(Λ \ ΛH)B onto

C∗(Λ)/ JH,B which is inverse to π1.

Definition 5.4 Let (Λ, d) be a finitely aligned k-graph. For each gauge-invariant ideal
I in C∗(Λ), recall that HI denotes {v ∈ Λ0 : sv ∈ I}, and define

BI :=
{

E ∈ FE(Λ \ ΛHI) \ EHI
:

∏

λ∈E

(sEHI
(r(E)) − sEHI

(λ)sEHI
(λ)∗) ∈ qHI

(I)
}

,

where qHI
is the quotient map from C∗(Λ) to C∗(Λ)/IHI

.

Theorem 5.5 Let (Λ, d) be a finitely aligned k-graph.

(i) Let I be a gauge-invariant ideal of C∗(Λ). Then HI ⊂ Λ0 is nonempty saturated

and hereditary, EHI
∪ BI is a satiated subset of FE(Λ \ ΛHI), and I = JHI ,BI

.

(ii) Let H ⊂ Λ0 be nonempty, saturated and hereditary, and let B be a subset of

FE(Λ\ΛH) \ EH such that EH ∪ B is satiated in Λ \ ΛH. Then H JH,B
= H

and B JH,B
= B.

Proof Theorem 6.1 of [12] shows that HI is nonempty, and Lemma 3.3 shows that it
is saturated and hereditary. That EH ∪BI is satiated follows from [12, Corollary 4.10].

Let I be a gauge-invariant ideal of C∗(Λ). We have JHI ,BI
⊂ I by definition, so there

is a canonical homomorphism π of C∗(Λ)/ JHI ,BI
onto C∗(Λ)/I. By Corollary 5.3, this

gives us a homomorphism, also denoted π, of C∗(Λ \ ΛHI ; EHI
∪ BI) onto C∗(Λ)/I.

Since I is gauge-invariant, the gauge action on C∗(Λ) descends to an action θ of T
k on

C∗(Λ)/I such that θz◦π = π◦γz, where γ is the gauge action on C∗(Λ\ΛHI ; EHI
∪BI).

Suppose that π(sEHI
∪BI

(v)) is equal to 0 in C∗(Λ)/I. Then sv ∈ I by definition, so

v ∈ HI . Hence π(sEHI
∪BI

(v)) 6= 0 for all v ∈ (Λ \ ΛHI)
0.

Now suppose that E ∈ FE(Λ \ ΛHI) satisfies

π
(

∏

λ∈E

(sEHI
∪BI

(r(E)) − sEHI
∪BI

(λ)sEHI
∪BI

(λ)∗)
)

= 0C∗(Λ)/I.

Then either E ∈ EHI
or else E ∈ BI by the definition of BI . But then

∏

λ∈E(sr(E) −
sλs∗λ) ∈ JHI ,BI

, so that

∏

λ∈E

(sEHI
∪BI

(r(E)) − sEHI
∪BI

(λ)sEHI
∪BI

(λ)∗) = 0C∗(Λ\ΛHI ;EHI
∪BI ).
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Hence π
(
∏

λ∈E(sEHI
∪BI

(r(E)) − sEHI
∪BI

(λ)sEHI
∪BI

(λ)∗)
)

6= 0 for all E ∈ FE(Λ) \
(EH ∪ B).

By the previous three paragraphs we can apply [12, Theorem 6.1] to see that π is
faithful, and hence that I = JHI ,BI

as required.

Now let H ⊂ Λ0 be saturated and hereditary, and let B be a subset of FE(Λ\ΛH)\
EH such that EH ∪ B is satiated.

We have H ⊂ H JH,B
and B ⊂ B JH,B

by definition. If v ∈ H JH,B
, then sv ∈ JH,B

and hence its image in C∗(Λ \ ΛH; EH ∪ B) is trivial. It follows that either v ∈ H or

sEH∪B(v) = 0. But sEH∪B(v) 6= 0 for all v ∈ (Λ \ ΛH)0 by [12, Theorem 4.3], giving
v ∈ H.

If E ∈ B JH,B
, then we have

∏

λ∈E

(sEH
(v) − sEH

(λ)sEH
(λ)∗) ∈ I(Λ \ ΛH)B ⊂ C∗(Λ \ ΛH; EH).

Hence
∏

λ∈E(sEH∪B(v) − sEH∪B(λ)sEH∪B(λ)∗) is equal to the zero element of

C∗(Λ \ ΛH; EH)/I(Λ \ ΛH)B = C∗(Λ \ ΛH; EH ∪ B).

Since EH ∪ B is satiated, it follows that either E ∈ EH or E ∈ B by [12, Theorem 4.3].
But B JH,B

∩ EH = ∅ by definition, and it follows that E ∈ B as required.

Remark 5.6 (i) Given a saturated hereditary H ⊂ Λ0, the ideal IH (see Notation 3.5)
is listed by Theorem 5.5 as JH,∅.

(ii) It seems difficult to establish an analogue of Lemma 3.6 for arbitrary JH,B. A
good strategy would be to aim to describe I(Λ \ ΛH)B = JH,B/IH as (Morita equiv-
alent to) a k-graph algebra. But this seems difficult even when B is “singly gener-
ated,” i.e., when EH ∪ B is the satiation (see [12, Definition 5.1]) of EH ∪ {E} where

E ∈ FE(Λ \ ΛH) \ EH .

6 The Lattice Structure

In this section we describe the lattice ordering of the gauge-invariant ideals of C∗(Λ)
in terms of a lattice order on the pairs (H, B) where H ⊂ Λ0 is saturated and heredi-

tary, and B is a subset of FE(Λ \ ΛH) \ EH such that EH ∪ B is satiated.

Definition 6.1 Let (Λ, d) be a finitely aligned k-graph. Define

SH×S(Λ) :=
{

(H, B) : ∅ 6= H ⊂ Λ
0, H is saturated and hereditary,

B ⊂ FE(Λ \ ΛH) \ EH and EH ∪ B is satiated
}

.

Define a relation � on SH×S(Λ) by (H1, B1) � (H2, B2) if and only if

(i) H1 ⊂ H2;
(ii) if E ∈ B1 and r(E) 6∈ H2, then E \ EH2 belongs to EH2

∪ B2.
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Theorem 6.2 Let (Λ, d) be a finitely aligned k-graph. The map (H, B) 7→ JH,B is a

lattice isomorphism between (SH×S(Λ),�) and (Iγ(Λ),⊂) where Iγ(Λ) denotes the

collection of gauge-invariant ideals of C∗(Λ).

Proof Theorem 5.5 implies that (H, B) 7→ JH,B is a bijection between SH×S(Λ) and
Iγ(C∗(Λ)). Hence, we need only establish that for (H1, B1), (H2, B2) ∈ SH×S(Λ),

(6.1) JH1,B1
⊂ JH2,B2

if and only if (H1, B1) � (H2, B2).

First suppose that JH1,B1
⊂ JH2,B2

. Theorem 5.5 shows immediately that H1 ⊂ H2,

so if we can show that F ∈ B1 with r(F) 6∈ H2 implies F \ FH2 ∈ EH2
∪ B2, it will

follow that (H1, B1) � (H2, B2).
Suppose that E = F \ FH2 for some F ∈ B1 with r(F) 6∈ H2. Suppose further

for contradiction that E 6∈ EH2
∪ B2. Let qi : C∗(Λ) → C∗(Λ)/ JHi ,Bi

where i = 1, 2

denote the quotient maps; by Corollary 5.3, we can regard qi as a homomorphism
of C∗(Λ) onto C∗(Λ \ ΛHi ; EHi

∪ Bi) for i = 1, 2. Since JH1,B1
⊂ JH2,B2

, there is
a homomorphism π : C∗(Λ \ ΛH1; EH1

∪ B1) → C∗(Λ \ ΛH2; EH2
∪ B2) such that

π ◦ q1 = q2. Since F ∈ B1, we have q1

(
∏

λ∈F(sr(F) − sλs∗λ)
)

= 0, and hence

(6.2) q2

(
∏

λ∈F

(sr(F) − sλs∗λ)
)

= π
(

q1

(
∏

λ∈F

(sr(F) − sλs∗λ)
))

= 0.

Since s(λ) ∈ H2 implies q2(sλs∗λ) = 0 by definition, we have that

(6.3) q2

(
∏

λ∈F

(sr(F) − sλs∗λ)
)

=
∏

λ∈E

(

sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗
)

,

We consider two cases: Case 1: E belongs to FE(Λ\ΛH2). Then since E 6∈ EH2
∪B2,

[12, Corollary 4.10] ensures that
∏

λ∈E

(

sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗
)

is

nonzero. Case 2: E 6∈ FE(Λ \ ΛH2). Then there exists µ ∈ r(E)Λ \ ΛH2 with

Ext(µ; E) = ∅; we then have

∏

λ∈E

(

sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗
)

sEH2
∪B2

(µ)sEH2
∪B2

(µ)∗

= sEH2
∪B2

(µ)sEH2
∪B2

(µ)∗

by (TCK3). Since sEH2
∪B2

(µ)sEH2
∪B2

(µ)∗ 6= 0 by [12, Corollary 4.10], it follows that

∏

λ∈E

(

sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗
)

sEH2
∪B2

(µ)sEH2
∪B2

(µ)∗ 6= 0.

In either case, (6.3) shows that q2

(
∏

λ∈F(sr(F) − sλs∗λ)
)

is nonzero, contradict-

ing (6.2). This establishes the “only if” assertion of (6.1).
Now suppose that (H1, B1) � (H2, B2) ∈ SH×S(Λ). Let v ∈ H1. Since (H1, B1) �

(H2, B2), we have that H1 ⊂ H2, and hence v ∈ H2 giving sv ∈ JH2,B2
by definition.

Now let E ∈ B1. If r(E) ∈ H2, then sr(E) ∈ JH2,B2
by definition, and hence

∏

λ∈E(sr(E)−
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sλs∗λ) =
(

∏

λ∈E(sr(E) − sλs∗λ)
)

sr(E) ∈ JH2,B2
. If r(E) 6∈ H2, then since (H1, B1) �

(H2, B2), we have that E \ EH2 ∈ EH2
∪ B2. For λ ∈ ΛH2, we have sλs∗λ = sλss(λ)s

∗
λ ∈

JH2,B2
and hence q2(sλs∗λ) = 0, so

(6.4) q2

(
∏

λ∈E

(sr(E) − sλs∗λ)
)

=
∏

λ∈E\EH2

(sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗).

Since E \ EH2 ∈ EH2
∪ B2, and since {sEH2

∪B2
(λ) : λ ∈ Λ \ ΛH2} is a relative

Cuntz–Krieger (Λ \ ΛH2; EH2
∪ B2)-family, relation (CK) gives

∏

λ∈E\EH2

(sEH2
∪B2

(r(E)) − sEH2
∪B2

(λ)sEH2
∪B2

(λ)∗) = 0.

Hence
∏

λ∈E(sr(E) − sλs∗λ) ∈ ker q2 = JH2,B2
by (6.4) and Corollary 5.3.

Since all the generating projections of JH1,B1
belong to JH2,B2

, it follows that JH1,B1
⊂

JH2,B2
, establishing the “if” assertion of (6.1).

7 k-Graphs in Which All Ideals Are Gauge-Invariant

In this section we use the Cuntz–Krieger uniqueness theorem of [12] to show that for

a certain class of k-graphs, the ideals JH,B identified in Section 5 are all the ideals in
C∗(Λ); that is, every ideal in C∗(Λ) is gauge-invariant.

Recall from [12, Definition 6.2] that if x : Ωk,d(x) → Λ and y : Ωk,d(y) → Λ are

graph morphisms, then MCE(x, y) is the collection of all graph morphisms z : Ωk,d(z)

→ Λ such that d(z)i = max d(x)i , d(y)i for 1 ≤ i ≤ k, and such that z|Ωk,d(x)
= x and

z|Ωk,d(y)
= y.

Recall also from [12, Theorem 6.3] that if (Λ, d) is a finitely aligned k-graph and
E is a subset of FE(Λ), then (Λ, E) is said to satisfy condition (C) if

(C)

(1) For all v ∈ Λ0 there exists x ∈ v∂(Λ; E) such that for distinct λ, µ in
Λr(x), we have MCE(λx, µx) = ∅;

(2) for each F ∈ v FE(Λ) \ E, there is a path x as in (1) such that x ∈
v∂(Λ; E) \ F∂(Λ; E).

Definition 7.1 Let (Λ, d) be a finitely aligned k-graph. We say that Λ satisfies condi-

tion (D) if

(D) (Λ \ ΛH, EH) satisfies condition (C) for each saturated, hereditary H ⊂ Λ
0.

Theorem 7.2 Let (Λ, d) be a finitely aligned k-graph which satisfies condition (D).

(i) Let I be an ideal of C∗(Λ). Then HI is nonempty, saturated and hereditary, BI∪EHI

is satiated in Λ \ ΛHI , and I = JHI ,BI
.

(ii) Let H ⊂ Λ0 be nonempty, saturated and hereditary, and let B ⊂ FE(Λ\ΛH)\EH

be such that B ∪ EH is satiated in Λ \ ΛH. Then H JH,B
= H and B JH,B

= B.
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Proof The proof of (i) is the same as the proof of of Theorem 5.5(i) except that,
since we do not know a priori that I is gauge-invariant, we do not automatically have

an action π on C∗(Λ)/I such that θz ◦ π = π ◦ γz. Consequently, we cannot apply
[12, Theorem 6.1] to deduce that π is faithful; instead, we use our assumption that
(Λ \ ΛH, EH) satisfies condition (C) to apply [12, Theorem 6.3].

The proof of (ii) is identical to the proof of part (ii) of Theorem 5.5.

8 Classifiability

We show that all relative k-graph algebras C∗(Λ; E) fall into the bootstrap class N of
[11]. We show that if Λ satisfies condition (C), then C∗(Λ) is simple if and only if Λ

is cofinal. Finally, we show that if in addition every vertex of Λ can be reached from a
loop with an entrance, then C∗(Λ) is purely infinite.

Our results in this section are informed by and generalise Theorem 5.5, Proposi-
tion 4.8 and Proposition 4.9 of [4], though our methods are more akin to those of

[1]. The author thanks D. Gwion Evans for drawing his attention to the results of [5]
which provide the basis for the proof of Proposition 8.1.

Proposition 8.1 Let (Λ, d) be a finitely aligned k-graph and let E be a subset of FE(Λ).

Then C∗(Λ; E) is stably isomorphic to a crossed product of an AF algebra by Z
k, and

hence falls into the bootstrap class N of [11]; in particular, C∗(Λ; E) is nuclear and

satisfies the Universal Coefficient Theorem.

The strategy for proving Proposition 8.1 comes from [4, §5], but the techniques
employed are drawn from [10, 5]. We first need to establish some preliminary lem-

mas.

Lemma 8.2 ([4, Lemma 5.4]) Let (Λ, d) be a finitely aligned k-graph and E ⊂ FE(Λ).

Suppose there is a function b : Λ0 → Z
k such that d(λ) = b(s(λ)) − b(r(λ)) for all

λ ∈ Λ. Then C∗(Λ; E) is AF.

Proof It suffices to show that for E ⊂ Λ finite, we have that C∗({sE(λ) : λ ∈ E})
is finite dimensional. Recalling the definition of ∨E from Notation 3.4, define a map
M on finite subsets of Λ by

(8.1) M(E) :=
{

(λ1(0, d(λ1))λ2(n2, d(λ2)) · · ·λl(nl, d(λl)) :

l ∈ N \ {0}, λi ∈ ∨E, ni ≤ d(λi)
}

.

We claim that

(a) M(E) is finite;

(b) E ⊂ ∨E ⊂ M(E);
(c)

∨

λ∈M(E) b(s(λ)) =
∨

µ∈E b(s(µ));
(d) λ, µ, σ, τ ∈ E implies sE(λ)sE(µ)∗sE(σ)sE(τ )∗ ∈ span{sE(η)sE(ζ)∗ : η, ζ ∈

M(E)};
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(e) if M2(E) 6= M(E), then min{
∑k

i=1 b(s(λ))i : λ ∈ M2(E) \ M(E)} is strictly

greater than min{
∑k

i=1 b(s(µ))i : µ ∈ M(E) \ E}.

For (a), note that each path in M(E) can be factorised as α1 · · ·α|d(λ)| where each

αi = µ(n, n + el) for some n ∈ N
k, 1 ≤ l ≤ k, and µ ∈ ∨E. Moreover, i < j =⇒

b(s(αi)) < (b(s(αi)) + d(α j)) ≤ b(s(α j )) =⇒ αi 6= α j . Since ∨E is finite, the
number of possible values for αi is finite, and it follows that M(E) is finite.

We have E ⊂ ∨E by definition, and ∨E ⊂ M(E) by taking l = 1 in (8.1), estab-
lishing (b).

For (c), first note that λ ∈ M(E) =⇒ s(λ) = s(µ) for some µ ∈ ∨E, so

(8.2)
∨

λ∈M(E)

b(s(λ)) ≤
∨

µ∈∨E

b(s(µ)).

Next recall from [8, Definition 8.3] that for finite F ⊂ Λ,

MCE(F) := {λ ∈ Λ : d(λ) =
∨

µ∈F

d(µ), λ(0, d(µ)) = µ for all µ ∈ F},

and that ∨E =
⋃

{MCE(F) : F ⊂ E}. So λ ∈ ∨E =⇒ λ ∈ MCE(F) for some
subset F of E. In particular, MCE(F) is nonempty, so we must have F ⊂ vΛ for some
v ∈ Λ0. Write n for b(v), and calculate:

b(s(λ)) = n +
∨

µ∈F

d(µ) = n +
∨

µ∈F

(b(s(µ)) − n) =
∨

µ∈F

b(s(µ)).

Hence
∨

λ∈∨E b(s(λ)) ≤
∨

µ∈E b(s(µ)), so
∨

λ∈M(E) b(s(λ)) ≤
∨

µ∈E b(s(µ)) by (8.2).
The reverse inequality follows from (b), establishing (c).

Claim (d) follows from (8.1) and (TCK3). Finally, (e) follows from an argument
identical to the proof of (e) in [10, Lemma 3.2] but with d(λ) replaced with b(λ)
throughout. This establishes the claim.

It now follows as in [10, Lemma 3.2] that M∞(E) :=
⋃∞

i=1 Mi(E) is finite and that

span{sE(λ)sE(µ)∗ : λ, µ ∈ M∞(E)} is a finite-dimensional subalgebra of C∗(Λ; E)
containing C∗({sE(λ) : λ ∈ E}).

Let Λ ×d Z
k be the skew-product k-graph which is equal, as a set, to Λ × Z

k and

has range, source and degree maps given by r(λ, n) := (r(λ), n − d(λ)), s(λ, n) :=
(s(λ), n), and d(λ, n) := d(λ) (see [4, Definition 5.1]). For E ∈ E and n ∈ Z

k, let
E ×d {n} := {(λ, n + d(λ)) : λ ∈ E}, and let E×d Z

k := {E ×d {n} : E ∈ E, n ∈ Z
k}.

Recall that a coaction δ of a group G on a C∗-algebra A is an injective unital homo-

morphism δ : A → A⊗C∗(G) satisfying the cocycle identity (id⊗δG)◦δ = (δ⊗id)◦δ.
The fixed point algebra is the subspace Aδ := {a ∈ A : δ(a) = a ⊗ e}. There is a
universal crossed product algebra A ×δ G associated to the triple (A, G, δ), and this
algebra admits a dual action δ̂ of G. Crossed product duality says that A ×δ G ×δ̂ G is

stable isomorphic to A.

Lemma 8.3 ([5, Theorem 7.1]) Let (Λ, d) be a finitely aligned k-graph, and let E be a

subset of FE(Λ). Then
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(i) E ×d Z
k is a subset of FE(Λ ×d Z

k);

(ii) C∗(Λ ×d Z
k; E ×d Z

k) is AF;

(iii) there is a unique coaction δ of Z
k on C∗(Λ; E) such that δ(sE(λ)) := sE(λ)⊗d(λ)

for all λ ∈ Λ;

(iv) the crossed product C∗(Λ; E) ×δ Z
k is isomorphic to C∗(Λ ×d Z

k; E ×d Z
k).

Proof For part (i), fix E×d {n} ∈ E×d Z
k, and suppose that r(λ, m) = r(E×d {n}).

Then m = n + d(λ) and r(λ) = r(E). Since E ∈ FE(Λ), there exists α ∈ Ext(λ; E). It
is straightforward to check that (α, m + d(α)) ∈ Ext((λ, m); E ×d {n}). Since (λ, m)
was arbitrary, it follows that E ×d {n} ∈ FE(Λ ×d Z

k), and since E ×d {n} was itself
arbitrary in E ×d Z

k, this establishes (i).

For (ii), define b : (Λ ×d Z
k)0 → Z

k by b(λ, n) := n. Then the pair (Λ ×d Z
k, b)

satisfies the hypotheses of Lemma 8.2, so C∗(Λ ×d Z
k; E ×d Z

k) is AF.

Parts (iii) and (iv) now follow exactly as (i) and (ii) of [5, Theorem 7.1].

Proof of Proposition 8.1 We have that C∗(Λ; E)×δ Z
k ∼= C∗(Λ×d Z

k; E×d Z
k) is AF.

But crossed product duality gives C∗(Λ; E) stably isomorphic to C∗(Λ; E)×δ Z
k×δ̂ Z

k,
so C∗(Λ; E) is stably isomorphic to a crossed product of an AF algebra by Z

k.

To give a simplicity condition for C∗(Λ) we adapt the methods of [1, Proposi-

tion 5.1] to our situation.

Definition 8.4 Let (Λ, d) be a finitely aligned k-graph. We say that Λ is cofinal if for

all v ∈ Λ0 and x ∈ ∂Λ, there exists n ≤ d(x) such that vΛx(n) 6= ∅.

Proposition 8.5 Let (Λ, d) be a finitely aligned k-graph, and suppose that Λ satisfies

condition (C). Then C∗(Λ) is simple if and only if Λ is cofinal.

Proof First suppose that Λ is cofinal, and suppose that I is an ideal in C∗(Λ). If
sv ∈ I for all v ∈ Λ0, then I = C∗(Λ) by (TCK2). Suppose that v ∈ Λ0 with sv 6∈ I.
We must show that HI is empty, for if so then [12, Theorem 6.3] shows that I is trivial.

Since HI is saturated, we have that

(8.3) if v ′ 6∈ HI and E ∈ v FE(Λ), then there exists λ ∈ E such that s(λ) 6∈ HI .

To prove the proposition, we first establish the following claim:

Claim 8.6 There exists a path x ∈ ∂Λ such that x(n) 6∈ HI for all n ≤ d(x).

Proof of Claim: The proof of the claim is very similar to the proof of [12, Lemma
4.7(1)], but with minor technical changes needed to establish that we can obtain
x(n) 6∈ HI for all n. Consequently, we give a proof sketch with frequent references to

the proof in [12].

As in the proof of [12, Lemma 4.7(1)], let P : N
2 → N be the position function

associated to the diagonal listing of N
2: P(0, 0) = 0, P(0, 1) = 1, P(1, 0) = 2,
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P(0, 2) = 3, P(1, 1) = 4 . . . . For l ∈ N, let (il, jl) be the unique element of N
2 such

that P(il, jl) = l.

We will show by induction that there exists a sequence {λl : l ≥ 0} ⊂ vΛ and
enumerations {El, j : j ≥ 0} of s(λl) FE(Λ) for all l ≥ 0 such that

(i) s(λl) 6∈ HI for all l;
(ii) λl+1(0, d(λl)) = λl for all l ≥ 1;
(iii) λl+1(d(λil

), d(λl+1)) ∈ Eil, jl
Λ for all l ≥ 0.

As in the proof of [12, Lemma 4.7(1)], we proceed by induction on l; for l = 0 we

take λ0 := v and fix {E0, j : j ≥ 0} to be any enumeration of {E ∈ FE(Λ) : r(E) = v}.
These satisfy (i) by definition of HI , and trivially satisfy (ii) and (iii).

Now as an inductive hypothesis, suppose that l ≥ 0 and that λ1, . . . , λl and
{E1, j : j ≥ 1}, . . . , {El, j : j ≥ 1} have been chosen and satisfy (i)–(iii). Just as

in the proof of [12, Lemma 4.7(1)], we have that l ≥ il so that Eil, jl
has already been

defined. If λl(d(λil+1
, d(λl))) ∈ Eil+1, jl+1

already, then l > 0 because E ∈ FE(Λ) im-
plies E ∩ Λ0 = ∅, so λl+1 := λl and El+1, j := El, j for all j satisfy (i)–(iii) by the
inductive hypothesis. On the other hand, if λl(d(λil+1

, d(λl))) 6∈ Eil+1, jl+1
, then E :=

Ext
(

λl(d(λil+1
, d(λl))); Eil+1 , jl+1

)

∈ FE(Λ) by [10, Lemma C.5]. By (8.3), there exists

νl+1 ∈ E such that s(ν) 6∈ Hi . But now λl+1 := λlνl+1 satisfies (i) by choice of νl+1,
and taking {El+1, j : j ≥ 1} to be any enumeration of {E ∈ FE(Λ) : r(E) = s(νl+1)}
we have (ii) and (iii) satisfied just as in the proof of [12, Lemma 4.7(1)].

The remainder of the proof of [12, Lemma 4.7(1)] shows that x(0, d(λl)) := λl for

all l defines an element of v∂Λ, and since HI is hereditary, condition (i) shows that
x(n) 6∈ HI for all n ≤ d(x). This proves the claim.

Now fix w ∈ Λ0. Let x ∈ v∂Λ with x(n) 6∈ HI for all n as in Claim 8.6. Since
Λ is cofinal, there exists n ≤ d(x) such that wΛx(n) 6= ∅. Since x(n) 6∈ HI by
construction of x, and since HI is hereditary, it follows that w 6∈ HI . Consequently
HI = ∅ as required.

Now suppose that C∗(Λ) is simple. Let x ∈ ∂Λ, and let

Hx := {w ∈ Λ
0 : wΛx(n) = ∅ for all n}.

It is clear that Hx is hereditary. We claim that Hx is saturated: suppose that E ∈
v FE(Λ) with s(E) ∈ Hx, and suppose for contradiction that λ ∈ vΛx(n). If λ = µµ ′

for µ ∈ E, then µ ′ ∈ s(µ)Λx(n), contradicting s(µ) ∈ Hx. On the other hand, if
λ 6∈ EΛ, then Ext(λ; E) is exhaustive by [12, Lemma 2.3]. Since x ∈ ∂(Λ; E), it

follows that x(n, n + d(α)) = α for some α ∈ Ext(λ; E); say (α, β) ∈ Λmin(λ, µ)
where µ ∈ E. Then β ∈ s(µ)Λx(n + d(α)), again contradicting s(µ) ∈ Hx. This
proves our claim.

Now Hx 6= Λ0 because, in particular, r(x) 6∈ Hx. It follows that if Hx is nonempty,

then it corresponds to a nontrivial ideal IHx
which is impossible since C∗(Λ) is simple

by assumption. Hence Λ is cofinal as required.

We now give a condition under which C∗(Λ) is purely infinite.
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Definition 8.7 Let (Λ, d) be a finitely aligned k-graph. We say that a path µ ∈ Λ is a
loop with an entrance if s(µ) = r(µ) and there exists α ∈ s(µ)Λ such that d(µ) ≥ d(α)

and µ(0, d(α)) 6= α. We say that a vertex v ∈ Λ0 can be reached from a loop with an

entrance if there exists a loop with an entrance µ ∈ Λ such that vΛs(µ) 6= ∅.

Proposition 8.8 Let (Λ, d) be a finitely aligned k-graph, and suppose that Λ satisfies

condition (C). Suppose also that every v ∈ Λ0 can be reached from a loop with an

entrance. Then every nontrivial hereditary subalgebra of C∗(Λ) contains an infinite

projection. In particular, if Λ is also cofinal, then C∗(Λ) is purely infinite.

The hypotheses of Propositon 8.8 are stronger than those of [4, Proposition 4.9].

There is actually a minor error in the latter, and the stronger condition presented here
is needed even in the setting of [4]. Our proof is based on [1, Proposition 5.3]. First
we need to recall some definitions and establish some technical results and notation.
Definitions 8.9 and 8.10 and the proof of Lemma 8.12 are based almost entirely on

the definitions and techniques used in [10] from [10, Notation 3.12] to the proof of
[10, Proposition 3.13]. We present them separately here because the conclusion of
Lemma 8.12 is not stated explicitly in [10].

Definition 8.9 Let (Λ, d) be a finitely aligned k-graph, and let E ⊂ Λ be finite. As
in [10, Notation 3.12], for all n and v such that (ΠE)v ∩ Λn is nonempty, we write
TΠE(n, v) for the set {ν ∈ vΛ \ {v} : λν ∈ ΠE for some λ ∈ (ΠE)v ∩ Λn}. By
the properties of ΠE, the set T(λ) := {ν ∈ s(λ)Λ \ {s(λ)} : λν ∈ ΠE} is equal to

TΠE(n, v) for all λ ∈ (ΠE)v ∩ Λn [10, Remark 3.4]. If, in addition to (ΠE)v ∩ Λn 6=
∅, we have TΠE(n, v) 6∈ FE(Λ), we fix, once and for all, an element ξΠE(n, v) of
vΛ such that Ext(ξΠE(n, v); TΠE(n, v)) = ∅, and for λ ∈ (ΠE)v ∩ Λn, we define
ξλ := ξΠE(n, v).

Notice that if λ, µ ∈ ΠE satisfy s(λ) = s(µ) and d(λ) = d(µ), then we also have

T(λ) = T(µ) and ξλ = ξµ.

Definition 8.10 Let (Λ, d) be a finitely aligned k-graph, let E ⊂ Λ be finite, and let
{tλ : λ ∈ Λ} be a Cuntz–Krieger Λ-family. For each n, v such that (ΠE)v ∩ Λn is

nonempty and TΠE(n, v) is not exhaustive, we define

Pn,v :=
∑

λ∈(ΠE)v∩Λn

sλξλ
s∗λξλ

∈ C∗(Λ).

Notation 8.11 Let (Λ, d) be a finitely aligned k-graph. We write Φ for the linear map
from C∗(Λ) to C∗(Λ)γ determined by Φ(a) :=

∫

T
γz(a) dz. We have that Φ is positive

and is faithful on positive elements.

Lemma 8.12 Let (Λ, d) be a finitely aligned k-graph, let E ⊂ Λ be finite, and let a =
∑

λ,µ∈ΠE aλ,µsλs∗µ with a 6= 0. For n ∈ N
k and v ∈ Λ0 such that (ΠE)v ∩ Λn is

nonempty and TΠE(n, v) is not exhaustive, let

FΠE(n, v) := span{sλξλ
s∗µξλ

: λ, µ ∈ (ΠE)v ∩ Λ
n}.
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Then for all n, v such that (ΠE)v ∩ Λn is nonempty and TΠE(n, v) is not exhaustive, we

have that Pn,vΦ(a) ∈ FΠE(n, v). Furthermore, there exist n0, v0 such that (ΠE)v0 ∩Λn0

is nonempty and TΠE(n0, v0) is not exhaustive, and such that ‖Pn0,v0
Φ(a)‖ = ‖Φ(a)‖.

Proof By [10, Lemma 3.15], we have that each sλξλ
s∗λξλ

≤ Q(s)ΠE
λ where Q(s)ΠE

λ is

defined by (4.3). Since the Q(s)ΠE
λ are mutually orthogonal projections, it follows that

sλξλ
s∗λξλ

Q(s)ΠE
µ = δλ,µsλξλ

s∗λξλ
. Hence, for (λ, µ) ∈ ΠE ×d,s ΠE, we have

(8.4) Pn,vΘ(s)ΠE
λ,µ = Pn,vQ(s)ΠE

λ sλs∗µ = sλξλ
s∗λξλ

sλs∗µ = sλξλ
s∗µξλ

,

and hence Pn,vΦ(a) ∈ FΠE(n, v). Moreover, taking adjoints in (8.4), shows that each
Pn,v commutes with each Θ(s)ΠE

λ,µ.

By definition of the Θ(s)ΠE
λ,µ, and by [12, Corollary 4.10], we have that Θ(s)ΠE

λ,µ is

nonzero if and only if T(λ) is not exhaustive. Moreover, since the Q(s)ΠE
λ are mutu-

ally orthogonal and dominate the sλξλ
s∗λξλ

, we have that the latter are also mutually
orthogonal. It follows from this and from (8.4) that

b 7→
∑

(ΠE)v∩Λ
n 6=∅

TΠE(n,v)6∈FE(Λ)

Pn,vb

is an injective homomorphism of span{Θ(s)ΠE
λ,µ : λ, µ ∈ ΠE×d,s ΠE}. Since injective

C∗-homomorphisms are isometric, it follows that
∥

∥

∑

Pn,vΦ(a)
∥

∥ = ‖Φ(a)‖.

Since the Pn,v are mutually orthogonal and commute with Φ(a), there therefore
exists a vertex v0 and a degree n0 such that ‖Φ(a)‖ = ‖Pn0,v0

Φ(a)‖. Clearly for
this n0, v0 we must have (ΠE)v0 ∩ Λn0 nonempty and T(λ) non-exhaustive for λ ∈
(ΠE)v0 ∩ Λn0 , for otherwise we have Pn0,v0

= 0, contradicting a 6= 0.

Lemma 8.13 Let (Λ, d) be a finitely aligned k-graph, and suppose that every v ∈ Λ0

can be reached from a loop with an entrance. Then for each v ∈ Λ0, the projection sv is

infinite, and hence for each λ ∈ Λ, the range projection sλs∗λ is also infinite.

Proof Fix v ∈ Λ0, and let µ be a loop with an entrance such that vΛs(µ) is non-

empty. Fix λ ∈ vΛs(µ), and fix α ∈ s(µ)Λ such that d(α) ≤ d(µ) and µ(0, d(α)) 6=
α. We have sv ≥ sλs∗λ ∼ s∗λsλ = ss(µ), so it suffices to show that ss(µ) is infinite.
But (TCK3) ensures that sµs∗µsαs∗α = 0, and it follows that ss(µ) = s∗µsµ ∼ sµs∗µ ≤
ss(µ) − sαs∗α < ss(µ).

For the last statement, notice that ss(λ) is infinite by the previous paragraph, and
sλs∗λ ∼ s∗λsλ = ss(λ).

Lemma 8.14 ([1, Lemma 5.4]) Let E ⊂ Λn, let w ∈ s(E), and let t be a positive element

of FE(w) := span{sλs∗µ : λ, µ ∈ Ew}. Then there is a projection r in C∗(t) ⊂ FE(w)
such that rtr = ‖t‖r.

Proof The proof is formally identical to that of [1, Lemma 5.4]
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Proof of Proposition 8.8 Our proof follows that of [1, Proposition 5.3] very closely.
Fix a nontrivial hereditary subalgebra A of C∗(Λ), and a positive element a ∈ A such

that Φ(a) ∈ C∗(Λ)γ satisfies ‖Φ(a)‖ = 1. Let b =
∑

λ,µ∈E bλ,µsλs∗µ be a finite linear

combination such that b > 0 and ‖a − b‖ ≤ 1
4
; this is always possible because

span{sλs∗µ : λ, µ ∈ Λ} is a dense ∗-subalgebra of C∗(Λ). Let b0 := Φ(b). Since Φ is
norm-decreasing and linear, we have

1 − ‖b0‖ =
∣

∣‖Φ(a)‖ − ‖Φ(b)‖
∣

∣ ≤ ‖Φ(a − b)‖ ≤ ‖a − b‖ ≤
1

4
,

and hence ‖b0‖ ≥ 3
4
. Furthermore, b0 ≥ 0 because Φ is positive. Apply-

ing Lemma 8.12, we obtain a projection Pn0,v0
such that b1 := Pn0,v0

b0 satisfies
b1 ∈ FΠE(n0, v0) and ‖b1‖ = ‖b0‖, where (ΠE)v0 ∩Λn0 is nonempty and TΠE(n0, v0)

is not exhaustive. Notice that b1 ≥ 0. By Lemma 8.14 there exists a projection
r ∈ C∗(b1) with rb1r = ‖b1‖r; note that r is clearly nonzero. Let v1 := s(ξΠE(n0, v0)),
and let S := {λξλ : λ ∈ (ΠE)v0 ∩ Λn0}.

Since b1 ∈ span{sλs∗µ : λ, µ ∈ S}, which is a matrix algebra indexed by S, we

can express r as a finite sum r =
∑

λ,µ∈S rλ,µsλs∗µ, and the S × S matrix (rλ,µ) is a
projection.

Since (Λ, d) satisfies condition (C), there exists x ∈ v1∂Λ such that for λ, µ ∈
Λr(x) with λ 6= µ, we have MCE(λx, µx) = ∅. By [12, Lemma 6.4], for distinct

λ, µ ∈ S, there exists nx
λ,µ such that Λmin(λx(0, nx

λ,µ), µx(0, nx
λ,µ)) = ∅. Let

M :=
∨

{nx
λ,µ : λ, µ ∈ S, λ 6= µ},

and let xM := x(0, M). Let q :=
∑

λ,µ∈S rλ,µsλxM
s∗µxM

. Since the matrix (rλ,µ) is a

nonzero projection in MS(C), we know that q is a nonzero projection in FNE+d(xM ),
and since sxM

s∗xM
is a subprojection of sv1

, we have q ≤ r. Using the defining property
of xM as in the proof of [12, Lemma 6.7], we have that qPn0,v0

bq = qPn0,v0
b0q = qb1q.

Now q ≤ Pn0,v0
by definition, so our choice of r gives

qbq = qb1q = qrb1rq = ‖b1‖rq = ‖b0‖q ≥
3

4
q.

Since ‖a− b‖ ≤ 1
4
, we have qaq ≥ qbq− 1

4
q ≥ 3

4
q− 1

4
q =

1
2
q, and it follows that qaq

is invertible in qC∗(Λ)q. Write c for the inverse of qaq in qC∗(Λ)q, and let

t := c1/2qa1/2.

Then t∗t = a1/2qcqa1/2 ≤ ‖c‖a, so t∗t ∈ A because A is hereditary.
We now need only show that t∗t is an infinite projection. But

t∗t ∼ tt∗ = c1/2qaqc1/2
= 1qC∗(Λ)q = q,

so it suffices to show that q is infinite. By choice of n0, v0, there exists σ ∈ S. By
Lemma 8.13, sσxM

s∗σxM
is infinite. But sσxM

s∗σxM
is a minimal projection in the finite-

dimensional C∗-algebra span{sσxM
s∗τxM

: σ, τ ∈ S}, which contains q. Since q 6= 0,
sσxM

s∗σxM
is equivalent to a subprojection of q, so q is infinite.
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Corollary 8.15 Let (Λ, d) be a finitely aligned k-graph. Suppose that Λ satisfies con-

dition (C) and is cofinal, and that every v ∈ Λ0 can be reached from a loop with an

entrance. Then C∗(Λ) is determined up to isomorphism by its K-theory.

Proof We have that C∗(Λ) is nuclear and satisfies UCT by Proposition 8.1, is simple
by Proposition 8.5, and is purely infinite by Proposition 8.8. The result then follows

from the Kirchberg–Phillips classification theorem [6, Theorem 4.2.4].
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[13] W. Szymański, Simplicity of Cuntz-Krieger algebras of infinite matrices, Pacific J. Math. 199 (2001),

no. 1, 249–256.

School of Mathematical and Physical Sciences

University of Newcastle

Callaghan, NSW 2308

Australia

e-mail: Aidan.Sims@newcastle.edu.au

https://doi.org/10.4153/CJM-2006-045-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-045-2

