NORMAL FITTING CLASSES AND HALL SUBGROUPS

Elspeth Cusack

It was shown by Bryce and Cossey that each Hall π -subgroup of a group in the smallest normal Fitting class S_* necessarily lies in S_* , for each set of primes π . We prove here that for each set of primes π such that $|\pi| \ge 2$ and π' is not empty, there exists a normal Fitting class without this closure property. A characterisation is obtained of all normal Fitting classes which do have this property.

Let F be a normal Fitting class closed under taking Hall π -subgroups, in the sense of the paragraph above, and let S_{π} denote the Fitting class of all finite soluble π -groups, for some set of primes π . The second main theorem is a characterisation of the groups in the smallest Fitting class containing F and S_{π} in terms of their Hall π -subgroups.

1. Introduction

Let F be a normal Fitting class of finite soluble groups and π a set of primes. F is said to be *closed under taking Hall* π -subgroups if each group in F possesses a Hall π -subgroup which lies in F. Since every normal Fitting class contains all finite nilpotent groups [3, Theorem 5.1], we avoid triviality by assuming that $|\pi| \ge 2$ and that π' is not

Received 24 September 1979. This paper is based, in part, on a section of the author's PhD thesis, which was submitted at the University of East Anglia in April 1979. The financial support of the Science Research Council is gratefully acknowledged.

Elspeth Cusack

empty. Bryce and Cossey showed that the smallest normal Fitting class is closed under taking Hall π -subgroups, for each set of primes π [6, 4.15]. This fact can be more easily deduced from a result of Hauck [8, Chapter 6]. In Section 3 of this paper, we prove the following result.

THEOREM 1. Let π be a set of primes such that $|\pi| \ge 2$ and π' is not empty. Then there exists a normal Fitting class which is not closed under taking Hall π -subgroups.

The concept of the join of two Fitting classes was introduced in [7]. The join of Fitting classes X and Y is defined to be the smallest Fitting class containing their union. For each set of primes π , let S_{π} denote the Fitting class of all finite soluble π -groups, and recall that a subgroup N of the direct product $G \times H$ of groups G and H is said to be *subdirect* in $G \times H$ if $N(1 \times H) = G \times H = (G \times 1)N$. Our second main result is proved in Section 4.

THEOREM 2. Let π be a set of primes and F a normal Fitting class closed under taking Hall π -subgroups. Let H be a Hall π -subgroup of a group G. Then G lies in $S_{\pi} \vee F$ if and only if $(G \times H)_{F}$ is subdirect in $G \times H$.

That many normal Fitting classes are closed under taking Hall π -subgroups for a given set of primes π is ensured by the characterisation of these Fitting classes obtained in Theorem 5 of Section 3.

2. Preliminaries

All groups mentioned are finite and soluble. Basic definitions and facts concerning Fitting classes and the *-operation may be found in [3] and [10]. The notation is standard and is described in [7]. We point out that as a consequence of [10, Theorem 2.2c)], the normal Fitting class S_* is contained in every normal Fitting class. We list the following results for the reader's convenience.

I [7, Corollary 2.6]. Let X and Y be Fitting classes such that $X \subseteq Y^*$. Then a group G lies in $X \vee Y$ if and only if there exists a group K in X such that $(G \times K)_y$ is subdirect in $G \times K$.

When $X = S_{\pi}$, for a set of primes π , and Y is a normal Fitting

https://doi.org/10.1017/S0004972700006055 Published online by Cambridge University Press

230

class closed under taking Hall π -subgroups, Theorem 2 will allow us to dispense with the arbitrary choice of the group K in I. The next result can be deduced from I and Theorem 2.9 of [7].

II. Let X, Y and Z be Fitting classes such that $X \subset Y^*$.

1. If $X \subset Z$, then $(X \lor Y) \cap Z = X \lor (Y \cap Z)$.

2. If $Y \subset Z$, then $(X \lor Y) \cap Z = (X \cap Z) \lor Y$.

We now introduce a notation of Hauck [8]. Let F be a Fitting class and π a set of primes. Then $Y(S_{\pi}, F)$ denotes the Fitting class of groups in which each Hall π -subgroup lies in F. The following theorem is a consequence of Hilfssatz 3 of [1].

III. $Y(S_{\pi}, F)$ is a normal Fitting class, for each set of primes π and normal Fitting class F .

Finally, we have a theorem collated from various sources, which will be crucial to the proof of Theorem 1.

IV. Let p and q be distinct primes. There exists a group H(p, q) such that $O_p(H(p, q)) = H(p, q)_S$ and $|H(p, q)/H(p, q)_S| = q$.

If q|p-1, then the existence of H(p, q) is established in [2]. The existence of H(p, q) when q|p-1 is a consequence of the main theorems of [5] and [9]. Details of the construction of a suitable group H(p, q) may be found in [4, Chapter 3.7].

3. Normal Fitting classes closed under taking Hall π -subgroups

Let π be a non-trivial set of primes, in the sense of Theorem 1. Choose distinct primes p, q and r such that p and q are in π , and r is in π' . Set K = H(p, q), L = H(r, q) and denote by G the normal subgroup $(K_{S_*} \times L_{S_*})((k, l))$ of $K \times L$, where k and l are elements of order q in K and L respectively. Set $F = \operatorname{Fit}\{G\} \vee S_*$. Certainly F is a normal Fitting class, since $S_* \subseteq F \subseteq S$ [10].

Proof of Theorem 1. The candidate is F. Since G lies in F and each Hall π -subgroup of G is isomorphic to K it is sufficient to prove that K is not in F. We begin by examining G. If G is in S_* , then $G \leq (K \times L)_{S_*}$. This implies that $K \times L = (K \times 1)(K \times L)_{S_*}$ and it follows from the definition of a Fitting class that L lies in $S_{\pi} \vee S_*$. Let Q be a Sylow q-subgroup of L. Certainly Q is a Hall π -subgroup of L, and so by Theorem 2, $(L \times Q)_{S_*}$ is subdirect in $L \times Q$. Since Q is nilpotent, Q lies in S_* , which leads to the contradiction that L is in S_* . We conclude that G does not lie in S_* , and consequently that $G_{S_*} = K_{S_*} \times L_{S_*} = (K \times L)_{S_*}$.

Suppose now that K lies in F. By [7, Corollary 2.5], G possesses a characteristic subgroup N such that $(K \times N)_{S_{\star}}$ is subdirect in $K \times N$. If $N \leq G_{S_{\star}}$, then K must lie in S_{\star} , a contradiction. We may therefore assume that $NG_{S_{\star}} = G$. It follows that $(K \times G)_{S_{\star}}$ is subdirect in $K \times G$. There exists, therefore, an element x of G, of order q, such that (k, x) is an element of $(K \times G)_{S_{\star}}$. Each element of order q in G is a conjugate of $(k, l)^n$, for some integer n lying between 1 and q. Since $G/G_{S_{\star}}$ is abelian, we have $xG_{S_{\star}} = (k, l)^n G_{S_{\star}}$, for some integer n. The fact that G is a normal

subgroup of $K \times L$ now establishes that (k, k^n, l^n) is an element of $(K \times K \times L)_{S_*}$. By definition of the *-operation [10],

$$(K \times K \times 1)_{S_*} = (K_{S_*} \times K_{S_*} \times 1) \langle (g^{-1}, g, 1) | g \in K \rangle .$$

We therefore have

$$(1, k^{n+1}, l^n) = (k^{-1}, k, 1)(k, k^n, l^n) \in (K \times K \times L)_{S_*}$$

Certainly $(1, k^{n+1}, l^n)$ is an element of $1 \times K \times L$, and so $(k^{n+1}, l^n) \in (K \times L)_{S_*}$. Since $(K \times L)_{S_*} = K_{S_*} \times L_{S_*}$, the choice of k and l implies that q divides both n and n+1. This contradiction leads us to conclude that K does not lie in F.

The characterisation of those normal Fitting classes closed under taking Hall π -subgroups depends on the following two results.

LEMMA 3. Let π be a set of primes and F a normal Fitting class which is closed under taking Hall π -subgroups. Let H be a Hall π -subgroup of a group G in FS_{π}. Then G lies in Y(S_{π}, F) if and only if $G = H_F G_F$.

Proof. Suppose that G is in $Y(S_{\pi}, F)$. Certainly $G = HG_F$, and $H = H_F$. It is immediate that $G = H_FG_F$. Conversely, suppose that $G = H_FG_F$. Then $H = H_F(H \cap G_F)$, and by hypothesis $H \cap G_F$ lies in F. Thus $H = H_F$, ensuring that G is in $Y(S_{\pi}, F)$.

THEOREM 4. $S_{\pi} \lor Y(S_{\pi}, S_{*}) = S$, for each set of primes π .

Proof. Let *H* be a Hall π -subgroup and *K* a Hall π '-subgroup of a group *G* in S_*S_{π} , . Then $G = KG_{S_*}$, and so $H \leq G_{S_*}$. Since S_* is closed under taking Hall π -subgroups, this ensures that *H* lies in S_* . Thus S_*S_{π} , is contained in $Y(S_{\pi}, S_*)$.

Suppose now that H is a Hall π -subgroup of a group G in S_*S_{π} . Then $G \times H$ is in S_*S_{π} , and it follows from Lemma 3 that $(H \times H)_{S_*}(G \times H)_{S_*}$ is the $Y(S_{\pi}, S_*)$ -radical of $G \times H$. Since $(H \times H)_{S_*}(G \times H)_{S_*}$ contains $(H_{S_*}G_{S_*} \times H_{S_*}) \langle (h^{-1}, h) | h \in H \rangle$, and $G = HG_{S_*}$, the $Y(S_{\pi}, S_*)$ -radical of $G \times H$ is subdirect in $G \times H$. We conclude from I that S_*S_{π} is contained in $S_{\pi} \vee Y(S_{\pi}, S_*)$. It follows from [7, Theorem 2.1] that $S_*S_{\pi} \vee S_*S_{\pi}$, = S, and consequently $S_{\pi} \vee Y(S_{\pi}, S_*) = S$.

THEOREM 5. Let F be a normal Fitting class and π a set of primes. Then F is closed under taking Hall π -subgroups if and only if $F = (S_{\pi} \cap F) \lor (Y(S_{\pi}, S_{*}) \cap F)$.

Proof. IF. Certainly $S_{\pi} \cap F$ and $Y(S_{\pi}, S_{\star})$ are contained in $Y(S_{\pi}, F)$. Thus F is contained in $Y(S_{\pi}, F)$, and so is closed under taking Hall π -subgroups.

ONLY IF. Suppose that F is closed under taking Hall π -subgroups. In other words, $F \subseteq Y(S_{\pi}, F)$. Since $Y(S_{\pi}, S_{*}) \subseteq Y(S_{\pi}, F)$, it follows from II and Theorem 4 that

$$\begin{split} Y(S_{\pi}, F) &= (S_{\pi} \vee Y(S_{\pi}, S_{\star})) \cap Y(S_{\pi}, F) \\ &= (S_{\pi} \cap Y(S_{\pi}, F)) \vee Y(S_{\pi}, S_{\star}) = (S_{\pi} \cap F) \vee Y(S_{\pi}, S_{\star}) \; . \end{split}$$

A further application of II yields that

$$\begin{split} F &= F \cap \mathcal{Y}\big(S_{\pi}, F\big) = F \cap \big(\big(S_{\pi} \cap F\big) \vee \mathcal{Y}\big(S_{\pi}, S_{\star}\big)\big) \\ &= \big(S_{\pi} \cap F\big) \vee \big(\mathcal{Y}\big(S_{\pi}, S_{\star}\big) \cap F\big) \end{split}$$

4. The proof of Theorem 2

LEMMA 6. Let π be a set of primes and F a normal Fitting class closed under taking Hall π -subgroups. Let H be a Hall π -subgroup of a group G in $S_{\pi} \vee F$. Then G_F contains H_F .

Proof. Certainly $S_{\pi} \vee F \subseteq FS_{\pi}$, and so Lemma 3 implies that $H_F G_F$ is the $Y(S_{\pi}, F)$ -radical of G. Since $F \subseteq Y(S_{\pi}, F)$, we may apply II to obtain $(S_{\pi} \vee F) \cap Y(S_{\pi}, F) = (S_{\pi} \cap Y(S_{\pi}, F)) \vee F = F$. Thus $H_F G_F$ lies in F, establishing the result.

Proof of Theorem 2. IF. This follows immediately from I.

ONLY IF. Both F and S_{π} are contained in FS_{π} , so $S_{\pi} \vee F$ is contained in FS_{π} . Let T denote the set of groups G in FS_{π} such that for some Hall π -subgroup H of G, $(G \times H)_F$ is subdirect in $G \times H$. Since F is closed under taking Hall π -subgroups, $F \subseteq T$, and by definition of the *-operation $S_{\pi} \subseteq T$. That $T \subseteq S_{\pi} \vee F$ is ensured by I, and it is thus sufficient to show that T is a Fitting class.

Let H be a Hall π -subgroup of a group G in T. Certainly $G \times H$ is in $S_{\pi} \vee F$, and it follows from Lemma 6 that $(G \times H)_F$ contains $(H \times H)_F$. The definition of the *-operation, and the fact that $G = HG_F$, allow us to write $(G \times H)_F = (G_F \times H_F) \langle (h^{-1}, h) | h \in H \rangle$. Suppose now that N is a normal subgroup of G. Then $N = (N \cap H)N_F$ and

$$\begin{split} \left(\mathbb{N} \times (\mathbb{N} \cap H) \right)_F &= \left(\mathbb{N} \times (\mathbb{N} \cap H) \right) \cap \left\{ \left(G_F \times H_F \right) \langle \left(h^{-1}, h \right) \mid h \in H \rangle \right\} \\ &= \left(\mathbb{N}_F \times (\mathbb{N} \cap H)_F \right) \langle \left(h^{-1}, h \right) \mid h \in \mathbb{N} \cap H \rangle \ . \end{split}$$

Thus N lies in T .

If N and M are normal subgroups, and H is a Hall π -subgroup, of a group G, such that N and M are in T and G = NM, then certainly $H = (H \cap N)(H \cap M)$. Let h be an element of H. Then there exist elements n of N and m of M such that h = nm. By hypothesis, $(n^{-1}, n) \in (N \times (N \cap H))_F$ and $(m^{-1}, m) \in (M \times (M \cap H))_F$. Since G/G_F is abelian, $mnm^{-1}n^{-1} \in G_F$. Thus

$$(h^{-1}, h) = (m^{-1}n^{-1}, nm) = (n^{-1}, n)(m^{-1}, m)(mnm^{-1}n^{-1}, 1)(G \times H)_{F}$$

ensuring that G lies in T. This completes the proof that T is a Fitting class.

References

- [1] James C. Beidleman und Peter Hauck, "Über Fittingklassen und die Lockett-Vermutung", submitted.
- [2] Thomas R. Berger, "More normal Fitting classes of finite solvable groups", Math. Z. 151 (1976), 1-3.
- [3] Dieter Blessenohl und Wolfgang Gaschütz, "Über normale Schunk- und Fittingklassen", Math. Z. 118 (1970), 1-8.
- [4] Owen John Brison, "On the theory of Fitting classes of finite groups" (PhD thesis, University of Warwick, Warwick, 1978).
- [5] R.M. Bryant and L.G. Kovács, "Lie representations and groups of prime power order", J. London Math. Soc. (2) 17 (1978), 415-421.
- [6] R.A. Bryce and John Cossey, "A problem in the theory of normal Fitting classes", Math. Z. 141 (1975), 99-110.
- [7] Elspeth Cusack, "The join of two Fitting classes", Math. Z. 167 (1979), 37-47.

- [8] Peter Hauck, "Zur Theorie der Fittingklassen endlicher auflosbarer" (PhD thesis, Johannes Gutenberg-Universität in Mainz, Mainz, Germany, 1977).
- [9] Harmut Laue, Hans Lausch und Garry R. Pain, "Verlagerung und normale Fittingklassen endlichen Gruppen", Math. Z. 154 (1977), 257-260.

[10] F. Peter Lockett, "The Fitting class <u>F</u>* ", Math. Z. 137 (1974), 131-136.

School of Mathematics and Physics, University of East Anglia, Norwich, England.

236