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Abstract. This review presents most recent measurements of magnetic fields in various types of
stars and substellar objects across the H-R diagram with the emphasis on measurement methods,
observational and modeling biases, and the role of magnetic fields in stellar evolution.
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1. Introduction
An extraterrestrial magnetic field was first discovered in sunspots a century ago (Hale

1908), and it took four decades since then to detect it on a distant star (Babcock 1947).
Even though we evidence now a significantly more rapid progress in studying cosmic
magnetic fields, it is only around 100–200 stars on which magnetic fields have been
detected directly, primarily via the Zeeman effect (ZE) in spectral lines. These fields are
believed to be inherited from the interstellar medium during the star formation process
and are either fossilized or recycled and amplified by a magnetic dynamo in the stellar
interior during subsequent evolutionary stages. Such dichotomy appears to be related to
the stellar structure: fossil fields are primary suspects in hot massive stars with outer
radiation zones, while dynamo generated fields are attributes of cool stars with outer
convection zones (see Fig. 1). However, this simple picture should be taken with a caution
as, e.g., little is known how magnetic fields are transported through the stellar interior.

Indirect evidence of magnetic fields on stars operating a magnetic dynamo comes from
a multitude of activity phenomena similar to those observed on the Sun, such as spots,
plages, chromospheric emission, flares, enhanced X-ray and UV radiation, coronal loops,
and coronal mass ejections. Thus, a study of an extensive sample of stars of various activ-
ity levels provides key constraints for stellar and solar dynamo models. It was suggested
by Skumanich (1972) and confirmed by others that rotation plays a crucial role in the
generation of stellar activity and, hence, of magnetic fields, so that cool stars with more
rapid rotation show a higher level of magnetic activity. Among single stars these are
pre-main-sequence stars (T Tau-type) and early-age main-sequence stars both of solar
type and much cooler red dwarfs. Evolved binary components which are tidally locked at
fast rotation by a close companion are also strongly magnetically active (RS CVn-type,
BY Dra-type, Algol-like systems as well as FK Com-type which are probably formed
from coalesced binaries).

In contrast to the very dynamic appearance of cool stars, presumably fossil magnetic
fields on hotter stars appear rather static and topologically uncomplicated, being often
low order multipoles or even dipole-like. Most prominently such fields are observed on
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the main sequence Ap-Bp-type stars and white dwarfs, while the topology of magnetic
fields on other hot stars remains to be discovered.

The goal of this review is to provide a brief account of the most recent measurements
of stellar magnetic fields, analyze underlying assumptions in the interpretation of data,
and identify requirements, both observational and theoretical, for obtaining a realistic
and relatively complete overview of the magnetic H-R diagram (see Fig. 1). For earlier
records see reviews by Mestel & Landstreet (2005) and Berdyugina (2005).

2. Zeeman effect in atoms and molecules
Interaction of an atom or a molecule with an external magnetic field in general leads

to splitting of energy levels and, thus, to broadening or even splitting of spectral lines.
For relatively weak magnetic fields (when magnetic perturbation << internal coupling)
the splitting is proportional to the magnetic field strength, B, and scaled by the effective
Landé factor, geff :

Δλ ∝ geff λ2B. (2.1)

It is also proportional to the square of the wavelength. For this reason, successful mea-
surements of magnetic field strengths can be carried out using red or IR lines with large
geff .

Values of geff in the cases of pure LS-coupling for atoms and Hund’s cases (a) and
(b) for diatomic molecules are given by simple expressions depending only on quantum
numbers of the involved energy levels (Landau & Lifshits 1991). However, there are
examples of atomic transitions for which the LS-coupling approximation fails to describe
the level structure, and there is almost no molecular transitions well described by the
pure Hund’s cases due to internal perturbations. In these cases, the effective Landé
factor becomes dependent on quantum numbers of involved and perturbing energy levels
as well as on coupling constants (e.g., Berdyugina & Solanki 2002). In case of stronger
magnetic fields, when the magnetic perturbation is comparable to or larger than the
internal coupling, i.e. in case of the Paschen-Back effect (PBE), geff looses its meaning
as a constant in Eq. (2.1) as it becomes a function of B (e.g., Berdyugina et al. 2005).

Magnetic diagnostics based on atomic transitions are most often used for measuring
stellar magnetic fields, largely because LS-coupling violations as well as the PBE in
atoms at stellar magnetic fields (except some Ap stars and white dwarfs) are relatively
rare, which significantly simplifies calculations. However, for cooler stars, whose spectra
are strongly dominated by molecules, molecular magnetic diagnostics become essential.
A significant progress in understanding the molecular Zeeman, Paschen-Back and Hanle
effects was achieved in recent years and made it possible to utilize a novel approach
for studying stellar and solar magnetism (Berdyugina & Solanki 2002, Berdyugina et al.
2002, Berdyugina et al. 2003, Berdyugina et al. 2005, Afram et al. 2007, Afram et al.
2008, Asensio Ramos & Trujillo Bueno 2006, Berdyugina & Fluri 2004, Shapiro et al.
2007). The PBE appears to be rather common in molecular lines at stellar magnetic
fields. It is responsible for Stokes profile asymmetries, net polarization across line profiles,
wavelength shifts and polarization sign changes depending on B as well as weakening
of main branches and strengthening of satellite and forbidden lines. These pecularities
make molecular lines highly sensitive diagnostics despite lower on average effective Landé
factors as compared to atomic lines.

A magnetic field measured from line splitting (broadening) of a spectral line (both
atomic and molecular) using the Eq. (2.1) approximation represents a mean magnetic
field strength averaged over the visible stellar disk irrespective to the field polarity, 〈|B|〉,
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i.e. assuming that the filling factor of this field, f , is unity. In reality, the line profile can
contain information on both the field distribution and f . However, because of thermal and
stellar rotation broadening, this technique is limited to detection of only kG fields with
large filling factors. It was employed in pioneering measurements (Robinson 1980, Saar
1988) and is still useful for surveys of large samples of stars. Reliable measurements
require Zeeman splitting larger than or comparable to line widths in the absence of the
field.

The most complete way to detect and study stellar magnetic fields is to use the po-
larimetric technique. The Stokes vector �I = (I,Q,U, V )T fully describes the polarization
state of radiation and contains information on the magnetic field vector, which can be
deduced from Stokes measurements by inversion techniques. Realistic estimates can only
be obtained by carrying out polarized radiative transfer with detailed calculation of the
Muller matrix, which describes a magnetized stellar atmosphere.

However, polarimetry of stars other than the Sun is a rather challenging task and rep-
resents a relatively small field of stellar astrophysics. This, on one hand, is due to still very
limited instrumental capabilities and, on the other hand, due to disk-integrated observa-
tions of the Stokes parameters. The latter results in significant cancellation of the signal
from regions of mixed polarity fields and, thus, only large-scale magnetic fields can be de-
tected from disk-integrated polarimetric measurements, which still requires the accuracy
of the order 10−3 −10−4 . Therefore, most of the current polarimetric measurements were
made using only Stokes V parameter, which reveals only a mean longitudinal component
of the magnetic field (along the line of sight and with polarity cancellations), 〈Bz 〉, under
the assumption that the filling factor f = 1 for each single-time measurement. The two
quantities can be disentangled by analyzing time-series Stokes V measurements (e.g., by
ZDI, see Sect. 3).

3. Zeeman-Doppler Imaging
Applying an inversion technique to time-series of the four Stokes parameters one can

recover the distribution of the temperature and magnetic field vector over the stellar sur-
face, a technique introduced by Semel 1989 and called Zeeman-Doppler Imaging (ZDI).
Several numerical codes have been developed for atomic diagnostics: based on the max-
imum entropy method (Donati et al. 1989, Brown et al. 1991), Tikhonov regularization
(Piskunov & Kochukhov 2002), and principle component analysis (Carroll et al. 2007).
Most recently, ZDI employing both atomic and molecular lines has become available
(Sennhauser et al. 2008, Berdyugina et al., in preparation).

In practice, however, obtained Zeeman-Doppler stellar images are largely based on
measurements of Stokes I and V only. To some extent, the magnetic vector contributes
to the line of sight component observed in Stokes V at different rotational phases and
different Doppler shifts. For instance, the radial field will dominate the Stokes V near
the centre of the stellar disk, while the azimuthal field will be most noticeable in the
circular polarization near the stellar limb. This allows for recovering some parts of the
magnetic field components from Stokes V observations only. However, the solution is
certainly not unique and strongly constrained by assumptions. For instance, in order to
limit the solution, a special type of regularization based on spherical harmonic expansion
was suggested (Piskunov & Kochukhov 2002). In this case the solution is forced to take
the form of such an expansion which is useful for stars with clearly dominating multipole
structures, like e.g. Ap stars. Thus, when interpreting ZDI results obtained only from
Stokes I and V , one has to take into account that the magnetic field distribution is
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underdetermined for each component and that there might be a cross-talk between dif-
ferent components.

An additional independent constraint on the ZDI solution for cool stars is provided by
molecular Stokes profiles. Since molecular lines preferrably form in cooler regions, often
associated with magnetic fields, they bear the information on physical conditions in these
regions and their location on the stellar surface. Simultaneous inversions of atomic and
molecular lines significantly improve the quality of ZDI maps and reduce the cross-talk
between magnetic field components (Sennhauser et al. 2008).

4. Biases in observations and interpretation
Zeeman signatures in stellar spectra are generally extremely small, with typical relative

amplitudes of 0.1%. Detecting them requires measurements of polarization with noise
level lower than 10−4 , while the current instrumentation allows for the best relative
noise level of 10−3 . Therefore, a multi-line approach for increasing the signal-to-noise
ratio of the measured polarization was proposed (Semel 1989, Semel & Li 1996) and
successfully used for detecting stellar circular polarization as an indication of magnetic
fields (Least Squares Deconvolution, LSD, Donati et al. 1997).

The underlying assumption in the LSD technique is the weak field approximation
(WFA), i.e. one assumes that the magnetic splitting of spectral lines is smaller than
their local Doppler broadening. In this case, the Stokes V signal is proportional to the
derivative of the intensity profile I(v) in the velocity domain:

Vi(v) ∝ geff (i)λiIi
′(v), (4.1)

where geff (i) is the effective Landé factor and λi is the wavelength of the ith spectral
line. It is assumed further that the local line profiles are self-similar and scale in depth
and width with the central depth and wavelength. Finally, the LSD Stokes V profile can
be obtained as a sum over many individual lines, i.e. as linear weighted average of line
profiles.

A similar approach can be applied to other Stokes parameters with the gain factor in
the S/N ratio as large as 30 when using more than 2000 line profiles. Drawbacks of this
technique are non-linear effects in summation of Stokes profiles and effect of blends (see
Sennhauser et al. 2008) as well as diminishing information contents on T and B due to
massive averaging. This leads to the fact that LSD profiles cannot be considered anymore
as observed but rather processed Zeeman signatures with strong influence of the WFA.
The latter is generally not applicable for |B| > 1 kG and geff ∼ 1 and in the case of the
PBE. An alternative technique for increasing the S/N ratio in spectropolarimetric data
is based on the principal component analysis (PCA) which does not directly rely on the
WFA (Mart́ınez González et al. 2008).

Usage of LSD profiles for ZDI again involves the WFA combined with the assumption
on Gaussian shapes of line profiles (Donati et al. 1989). Furthermore, to overcome a
lack of information contained in Stokes V only, a strong constraint on the magnetic
field topology in form of a multipole expansion was employed (Piskunov & Kochukhov
2002, Donati et al. 2006).

Modeling Zeeman-broadened Stokes I profiles often involves template spectra of mag-
netically active and inactive stars which are weighted by a filling factor (Valenti & Johns-
Krull 2001, Reiners & Basri 2006):

Iλ = (1 − f) Iλ (B = 0) + f Iλ(B �= 0). (4.2)

https://doi.org/10.1017/S1743921309030683 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309030683


Stellar magnetic fields across the H-R diagram 327

Such an analysis implicitly assumes that (1) the field is concentrated in patches sur-
rounded by field free regions, (2) field is oriented radially in the photosphere, (3) magnetic
regions are characterized by a single field strength, and (4) the temperature structure
is the same for magnetic and non-magnetic atmosphere Valenti & Johns-Krull 2001.
In this approach, the field strength being determined from the splitting is usually well
constrained, but the filling factor depends on the unknown temperature structure of mag-
netic regions. In the case when the used spectral line becomes stronger in starspots, the
filling factor can be overestimated, and vice versa. Also, only stars with strong magnetic
fields and large field areas can be studied with this technique.

It is important to emphasize that the assumptions mentioned in this section introduce
largely unknown biases in the determined field strengths and distributions. The most
obvious improvement is to solve consistently full Stokes radiative transfer equations using
stellar atmosphere models. This has been already implemented in the newest ZDI codes
and should become the standard approach for interpretation of spectropolarimetric data.

Extracting weak polarization signals with multi-line techniques, such as LSD or PCA,
at the level of 10−4 or smaller relies on the assumption that spectropolarimeters are
perfect at such levels, i.e. there are no cross-talks between Stokes parameters. It is however
common that a few percent cross-talks can occur between the intensity and polarization
as well as between circular and linear polarization. Such cross-talks can be responsible
for weak Stokes V signals in stars where linear polarization is due to other processes than
magnetic fields, e.g., due to optical pumping and absorptive polarization, which can be of
the order of 1% in Stokes Q and U (Kuhn et al. 2007, Harrington & Kuhn 2007). In such
cases a cross-talk of only 1% can result in a non-magnetic 10−4 Stokes V signal, which
may confuse a proper interpretation of a magnetic signal. The non-magnetic absorptive
polarization appears to be common for stars with circumstellar material, such as Ae-Be
stars with disks and winds, AGB stars with envelops, and perhaps upper-main-sequence
O-B stars with winds. It is remarkable that Stokes V signals (LSD) detected in spectra
of such stars are reported to be very weak are normally interpreted as indication of weak
magnetic fields.

5. Pre-Main-Sequence stars
5.1. T Tau stars

T Tau-type stars are pre-main-sequence stars of about one solar mass at an age of a few
million years, still surrounded by disks of gas and dust remaining from their formation.
They are believed to be almost fully convective and maintaining vigorous magnetic dy-
namo. In particular, it is widely accepted that magnetic fields play an important role in
the surface and flare activity of T Tau stars as well as in accretion processes and stellar
wind phenomena (see reviews by Petrov 2003, Johns-Krull 2009).

Most recent magnetic field measurements in classical T Tauri stars (CTTS) were made
by Johns-Krull (2007) from broadening of Zeeman-sensitive Ti II lines in the near IR. It
is interesting that the line broadening could not be modeled with one single value of
〈|B|〉 and required a distribution of fields between 0 kG and 6 kG with different filling
factors. When averaged over the visible stellar surface (f = 1), the mean field of 12
CTTS was found to be 2.5±0.3 kG (majority of the sample). It appears that this value
exceeds significantly the field strength predicted by simple magnetospheric accretion
theory. At the same time, these stars might be underluminous in X-rays as compared
to main-sequence stars with the same mean magnetic field strengths. Relatively strong
mean fields (> 1 kG) detected on all CTTS imply that they are indeed powerful magnetic
generators.
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A topology of the magnetic fields on CTTS remains largely unknown. Available ZDI
maps of two CTTS (V2129 Oph and BP Tau) are obtained from Stokes I and V LSD
profiles only and constrained by a multipole expansion (Donati et al. 2007, 2008a). In the
two cases a combination of a relatively weak dipole (0.35 kG and 1.2 kG) and octopole
(1.2 kG and 1.6 kG) was found, both slightly tilted with respect to the rotation axis.
Accretion spots seem to coincide with the two main magnetic poles at high latitudes
and overlap with dark photospheric spots. The average surface field strength in the
case of BP Tau is however significantly underestimated compared to that obtained by
Johns-Krull (2007).

5.2. Ae-Be Herbig stars
Herbig Ae/Be (HAeBe) stars are pre-main-sequence stars of intermediate mass (about
3 to 10 M�) embedded in dust-gas circumstellar material similar to CTTS but with
hotter photospheres and outer radiation zones. Some HAeBe stars demonstrate activity
characteristics normally associated with the presence of chromospheres or coronae, which
implies possible presence of magnetic fields and magnetoaccretion.

Several Stokes V surveys with different instruments (Wade et al. 2007, 2009, Hubrig
et al. 2009, and references therein) reveal that about 7% of these stars may possess surface
magnetic fields, 〈Bz 〉, in the range of a few hundred Gauss. Note however that polarization
signals in embedded stars can have non-magnetic origin too (see Sect. 4). Temporal
variations of Stokes V LSD profiles can be described with a dipole field component of
about 1 kG, which is quite stable over several years. Such a simple and stable topology
may imply that magnetic fields are of primordial origin. There are however indications
that magnetic fields on Ae stars perhaps correlate with their X-ray luminosity and become
very weak or completely disappear when they arrive on the main sequence (Hubrig et al.
2009).

6. Main-Sequence stars
6.1. Massive stars

Stars in the upper part of the main-sequence with masses exceeding 10 M� are char-
acterized by strong variable winds, Hα emission variations, chemical peculiarity, and
non-thermal radio/X-ray emission. These phenomena can be explained by the presence
of magnetic fields in such stars, which still remains a largely unexplored territory. Po-
larimetric surveys (e.g., Hubrig et al. 2008) in Stokes V found evidence of 〈Bz 〉 ∼200 G
in only a few stars so far, which may imply that magnetism is not a very common
phenomenon among such stars. It is also necessary to verify whether weak circular polar-
ization is not contaminated by a possibly stronger non-magnetic linear polarization due
cross-talks (see Sect. 4).

Less massive early B to early F stars in the upper main sequence host a subclass of
chemically peculiar Bp–Ap stars with strongest known magnetic fields among nonde-
generate stars, up to 20 kG. They comprise only about 5% of the population and their
chemical peculiarity is related to the presence of strong magnetic fields (see a recent
review by Mathys 2009). Magnetic fields of Bp–Ap stars cover their whole surface. They
have a significant degree of large-scale organization and, in first approximation, their
structure is resembling a simple dipole that is inclined to the stellar rotation axis. This
can also be clearly seen in ZDI maps (e.g., Kochukhov et al. 2004). Intrinsic variations
of these magnetic fields have not been definitely observed so far, which strongly suggests
that they might be fossil fields.
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Figure 1. Occurence of magnetic fields across the H-R diagram in pre-MS, MS, and post-MS
stars. Percentage indicates the fraction of stars of a given type to have such fields. The dashed
line separates stars with convective (on the right) and radiative (on the left) envelops.

6.2. Solar-type stars
Solar-type activity on the main sequence is characteristic for stars with subsurface con-
vection zones, roughly from F7 to K2 spectral classes. On the Sun, mean longitudinal
field 〈Bz 〉 does not exceed 10 G, while local magnetic fields (in plages and sunspots) are
of the order of 1–3 kG. Unprecedented details of solar magnetic fields are not reviewed
here, and the reader should refer to another chapter of these proceedings.

Magnetic activity in solar-type stars declines with age and is closely related to a loss of
angular momentum throughout the main-sequence lifetime (see, e.g., Skumanich (1972),
Güdel et al. 1997. Thus, young stars exhibit high average levels of activity and rapid
rotation, while stars as old as the Sun and older have slower rotation rates and lower
activity levels. Also, a change of the magnetic field topology with rotation rate was
suggested (Petit et al. 2008), as deduced from ZDI maps of four stars obtained under the
multipole expansion approximation from Stokes V LSD profiles. It appears that slower
rotators possess mostly poloidal fields, while more rapid counterparts host a large-scale
toroidal component. A rotation period of ∼12 days seems to be a threshold for the
toroidal magnetic energy to dominate over the poloidal component for shorter periods.

6.3. Low-mass dwarfs
Red dwarfs constitute at least 80% of the stellar population in the Galaxy. Younger
stars and binary components exhibit remarkable magnetic activity which is expressed in
extremely strong optical flares, starspots, and enhanced UV, X-ray and radio emission,
thus, indicating active chromospheres and coronae powered by magnetic fields. Most of
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the knowledge on the latter was deduced from broadening/splitting of line profiles, mainly
atomic or FeH lines, modeled with template stellar spectra which limited the accuracy
of the results (e.g., Johns-Krull & Valenti 1996, Reiners & Basri 2007). Mean fields of
up to 4 kG were found to be common for these stars, with little or no dependence on the
mass. The latter appears to be surprising as stars later than M4 are expected to be fully
convective and a change of the dynamo mechanism is anticipated in lower mass stars.

Spectropolarimetric surveys of red dwarfs revealed rich Stokes V spectra with many
atomic and molecular signatures formed in starspots and chromospheres (Berdyugina
et al. 2006, 2008), which provide unique information on the vertical structure of mag-
netic regions. ZDI maps based on the multipole expansion, weak-field approximation and
Stokes V LSD profiles (Donati et al. 2008b, Morin et al. 2008) indicate a possible change
in the field topology from largely toroidal configuration in M1 to axisymmetric poloidal
components in M4, supposedly due to the onset of a distributed dynamo. However, ZDI
based on polarized radiative transfer in many atomic and molecular lines indicates that
photosphere temperatures of spotted M dwarfs correspond to earlier spectral classes and
large-scale bipolar regions are seen on both M1 and M4 active red dwarfs (Berdyugina
et al., in preparation).

7. Post-Main-Sequence stars
A loss of angular momentum during the main sequence stage and beyond leads to

overall diminishing of magnetic activity in red giant branch (RGB) and asymptotic giant
branch (AGB) stars, except evolved binary components which gain a faster rotation due
to tidally locked orbits (RS CVn-type stars).

Single red giants, rotating for some reasons relatively fast, apparently possess mean
longitudinal fields 〈Bz 〉 (deduced from Stokes V LSD profiles) comparable to that of old
solar-type stars, i.e. 1–10 G (Konstantinova-Antova et al. 2008, 2009). Approximately the
same range of field strengths is observed near the photospheres of AGB stars, where SiO
masers are formed (Herpin et al. 2006). It reduces with a 1/r law down to 10−3 −10−1 G
at the outskirts of the circumstellar envelope, as measured from OH masers. Such fields
may play a role in shaping circumstellar envelopes in post-AGB objects.

Evolved binary components in RS CVn-type variables are distinguished by their strong
chromospheric plages, coronal X-ray and microwave emissions as well as strong flares in
the optical, UV, radio and X-ray. Remarkable activity and high luminosity of these stars
make them favourite targets for magnetic studies. Earlier ZDI images (based on LSD
and the WFA) indicated the presence of a (sub-)kG field with a dominating almost
axisymmetric azimuthal component appearing as rings of opposite polarities at higher
and lower latitudes (Donati et al. 2003). Recently, a more realistic ZDI approach has lead
to detection of a bipolar region with dominant radial field component on the RS CVn-
type star II Peg (Carroll et al. 2007). The prototype of FK Com-type stars exhibiting
activity phenomena very similar to that of RS CVn stars was also confirmed to be a
magnetic star with an average longitudinal field 〈Bz 〉 of 250 G at the phase of maximum
visibility of cool spots (Korhonen et al. 2009).

Degenerate stellar remnants, such as white dwarfs (WD) and neutron stars (NS), are
known to be remarkable magnetic objects, especially in binary systems. Isolated magnetic
white dwarfs with fields of 106 − 109 G, are quite rare, comprising about 5–10% of all
white dwarfs (Wickramasinghe & Ferrario 2000), while those with kG fields apparently
are more frequent, 15-20% (Jordan et al. 2007). Such a distribution is reminiscent of the
occurence of magnetic non-degenerated stars. Observed spectral variations of magnetic
white dwarfs on a timescale of hours or days suggest a complex magnetic field distribution

https://doi.org/10.1017/S1743921309030683 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921309030683


Stellar magnetic fields across the H-R diagram 331

on their surfaces. In some cases, spot-like magnetic field enhancements superimposed on
a weaker dipole magnetic field can be identified. Similar structures are most probably
present on the surfaces of neutron stars with field strengths of 109 − 1015 G. Current
theory predicts that such structures can be generated from strong subsurface toroidal
fields on both white dwarfs and neutron stars.

8. Conclusions
The present review indicates that there is a tremendous progress in observations and

detections of magnetic fields on various types of stars, thanks to a new generation of
spectropolarimetric instruments on large telescopes. At the same time new, significantly
more advanced methods for the analysis of spectropolarimetric data based on full Stokes
polarized radiative transfer in atomic and molecular lines have been recently developed.
They are becoming standard techniques for advancing our knowledge on stellar mag-
netism and should replace methods with many unrealistic approximations, so that white
spots on the H-R diagram are filled with meaningful information.
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