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In a paper [1] with the same title Barnes has shown that if Q(x, y, z) is an
indefinite ternary quadratic form of determinant d ^ 0 then there exist integers
xuyuzuX2, — ,Z3 satisfying

(1.1) x2 y2 z2 = ±1

for which

(1.2) -i\d\

Furthermore, unless Q is equivalent to a multiple of

Qi(x,y,z) = x2 + xy + y2 - 2z2

or two other forms 62.63 then the constant f in (1.2) can be replaced by 1/2.2.
For 6 t equality is needed on at least one side of (1.2) while for 62.63 the constant
I can be reduced to 12/25 but no further.

As equality is not needed on both sides of (1.2) the question arises as to how
small the constant on one side can be while keeping the constant at the other
side as §. The purpose of this paper is to show that one side can be altered to 0
without invalidating (1.2). The precise result obtained is

THEOREM 1. Let Q be an indefinite ternary quadratic form of determinant
d 5̂  0. Then there exist integers xl,---,z3 satisfying (1.1) for which

(1.3) 0 ^ Q(xu yu zi)Q(x2, y2, z2)Q(x3, y3, z3) ^ 11 d \.

Furthermore the constant | can be improved to 4r^ = • 616••• unless Q is
equivalent to a multiple of 61 which requires f.
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[2J Ternary quadratic forms 389

It will be noted that, as for the symmetric case, much more can be proved
in the case m(Q) = 0, where m(Q) denotes the lower bound of | Q(x, y, z) | for
integral (x, y, z) ^ (0,0,0). In fact we have

THEOREM 2. Let Q be an indefinite ternary quadratic form of non zero de-
terminant with m(Q) = 0 Then M+(Q) = 0, where M+(Q) denotes the infimum
of the non negative values of

taken over all sets of integers xu ••• ,z3 satisfying (1.1).

In the proof of theorems 1 and 2 we use the following lemmas.

LEMMA 1. Let <f>{x,y) be a binary quadratic form of discriminant D > 0
and suppose 4> is not equivalent to a multiple of either of the forms x2 + xy — y2,
x2 — \y2. Then there exist integers x, v, u, v with j xv — yu | = 1 for which
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LEMMA 2. Let k>\be a real number. Then for any real number x0 there

exists an integer x for which

\(x-xo)
2-k\ ^

LEMMA 3. Let f(x, y, z) = (x + Xy + iiz)2 — (j>{y,z) be an indefinite ternary
quadratic form of non-zero determinant with m{f) ^ 1 — e. Let 4>{p,q) = k
where p, q are relatively prime integers. Then either

k ^ - | + s, or k = f, or k = 2, or k ^ 2.21(1 - e)2.

Further, if k = |- or 2 thenf(x,py, qv) is equivalent to x2 + xy — y2 or x2 — 2y2

respectively.

LEMMA 4. Let (j){x,y) be an indefinite binary quadratic form of discrimi-
nant D > 0 which does not represent zero. Suppose that </>(x,y) is not equivalent
to a multiple of x2 + xy — y2. Then there exists a form ax2 + bxy + cy2 equiv-
alent to <j>(x,y)for which —^jD^ac<0 unless <f> is equivalent to a multiple
ofx2 — 3y2, when <f> is equivalent to a form ax2 + bxy + cy2 with ac = — %D.

LEMMA 5. Let <K^,y) be an indefinite quadratic form of discriminant D > 0
which does not represent zero. Suppose that <t>(x,y) is not equivalent to a multiple
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390 R. T. Worley [3]

of x2 + kxy — y2 for k = 1,2,3 or 4 . Then there exists a form ax2 + bxy + cy2

equivalent to <p(x,y) for which 0 < ac ^ 3™ 5̂ D.

LEMMA 6. Let a, X, n be real numbers with a > 1 and set

F,(x) = (x + X)2 - a, FM(x) ={x + n)2-a.

Then it is possible to find integers xu---,xA such that

(1.3) 0 ^ FAxJFfa) g a{a),

(1.4) - p{a) g F,(x3)FM(x4) % 0

where o(a) and p(a) are defined as follows. Set A = 2-Ja and let n be the integer
such that n — 1 < A g n. Let

GM = Amin{(n2 - A2)2, (A2 - (n - 2)2)2} ,

<T2(a) = •&min{(n2 - A2)((n + I)2 - A2),
( A 2 - ( n - l ) 2 ) ( A 2 - ( n - 2 ) 2 ) } ,

c3{a) = Jg<A 2 - (n - l ) 2 ) 2 ,

Pi(«)=T6<n2-A2XA2-(n-2)2)>

Piifl) = Mn + I)2 - A2)(A2 - (n - I)2).
Then

a(a) = max(ffx(a), o2{a), <?3(a)), and

p(a) = maxGo^a), p2(a)).

LEMMA 7. Let a > 2. Then if a{a), p(a) are defined as in lemma 6 we have

a-2a(a) ^ 18/49

a~2p(a) ^ 9/16

LEMMA 8. Let (j>(y,z) be a non-zero indefinite binary quadratic form of
discriminant D > 0. Let p be a real number satisfying 0 < p < 1. Then $ is
equivalent to a form ay2 + byz + cz2 where either

(i) ay2 + byz + cz2 is reduced* and a ^ P\jD, or
(ii) 0 < a < p^JD, px/D <c<

where a = 2p + ^/(l + 4p2).

Of these lemmas, only the last three need to be proved here, as the first four
are to be found in the paper of Barnes mentioned earlier, while the fifth is a par-
tial restatement of the work of Barnes [2].

* See e.g. L.E. Dickson [3] p. 80. A form ax2 + bxy + cy?- with a > 0 is reduced if b > 0,
c < 0 and 0 < A - 6 < 2 j c | < A + Z> where A = j(h* - Aac).
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PROOF OF LEMMA 6. It is clear that we may take \k\ ^ \ and \\i\ g \ , in-

deed by changing the sign of x if necessary we may take O ^ A ^ i . O ^ ^ ^ i .

We assume first that n is even. From the definition of n we have

- i(A2 - (n - I)2) 5i F x ( - in) g \{n2 - A2)

and similarly for FM. We consider three cases.

(a) Fx(— i n ) , FM( —in) both positive. In this case

0 < Fx{\n - l)FM(|n - 1) g - ^ A 2 - (n - 2)2)2,

0 < Fx( - i«)FM( - in) ^ -^{n2 - A2), and

- ^ n 2 - A2)(A2 - (n - 2)2) ^ Fx(- in)FM(in - 1) < 0.

(b) Fx( — i"), FM(— in) of opposite sign or at least one zero. We assume
FM(- in) <; 0 without loss of generality. Then either Fx{- in)FM(- in) = 0 or

0 ^ F»{- in)Fx(i« - 1) ^ ^ ( A 2 - (n - 1)2)(A2 - (n - 2)2),

0 ^ F , ( - in)FM(in) ^ TV(«2 - A2)((n + I)2 - A2), and

- ^ n 2 - A2)(A2 - (n - I)2) ^ F x ( - i«)FM(- in) ^ 0.

(c) Fx(—in), FM(—in) both negative. In this case

0 < F x ( - in)F( 1(- in) ^ y^A 2 - (» - I)2)2 and

- ^ ( n + I)2 - A2)(A2 - (n - I)2) ^ F , ( - in)FM(in) < 0.

Clearly in each case it is possible to choose integers xu---,xA satisfying (1.3)
and (1.4).

If n is odd we repeat the above analysis with X, \i replaced by \ — A, \ — fi
respectively to obtain integers x1,---,x4 satisfying

0 ^ { ( - (x, + i ) + ( i - I))2 - a}{{- (x2 + i ) + (i - fi))2 -a}^ <r(a),

and

- P(a) ̂  { ( - (x3 + i ) + ( i - A))2 - fl}{(- (x4 + i ) + ( i - n))2 -a}^0,

which are, in fact, (1.3) and (1.4).

PROOF OF LEMMA 7. It should first be observed that n ^ 3 since a > 2, and
that n ^ 4 for a > 2.25. We consider aua2,a3, and p separately

(a) For 2 < a g 2.25 we have a^a^a) = A~4(n2 - A2)2 ^ -^. For a > 2-25
it is easily verified that
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a-tffiia) = A~4(A2 - (n - 2)2)2 ^ 4(n - l)(n2 - In + 2)~2

for (n - I)2 < A2 ^ (« - I)2 + 1, and

fl"2ffi(fl) = A-4(n2 - A2)2 £ 4(n - l)2(n2 - In + 2)~2

for (n - I)2 + 1 ^ A2 ^ n2. As (n - I)2 < A 2 g n 2 from the definition of n, as
n S; 4, and as the right hand side of the above two inequalities increases with n
we clearly have a~2o1(a) g 36/100.

(b) In a similar manner we have

a-2a2(a) = A~4(A2 - (n - 2)2)(A2 - (n - I)2) g 3n(n - l)(n2 - n + I ) " 2

for A2 ^ n2 - n + 1, and

a-2a2(a) = A~4((n + I)2 - A2)(n2 - A2) g 3«(n - l)(n2 - n + I ) " 2

for A2 ^ n2 — n + 1. Thus, since n 2: 3 we clearly obtain the inequality
a-2a2{a) ^ 18/49.

(c) Similarly

a-2o2(a) = A-4(A2 - (n - I)2)2 ^ «-4(n2 - (n - I)2)2

since n — 1 < A <i n. Hence a~2o-3(a) ^ 25/81 since n ^ 3.

Thus we have

a-2<r(a) g max(l/64, 36/100, 18/49, 25/81) = 18/49.

(d) It is simple to verify that

a~2(Pi(a) - p2(a)) = A~4(2n - l)((2n2 - In - 1) - 2A2).

Thus for A2 ^ n2 - n - | we have

a-2p(a) = a-2
Pl(a) = (n2A~2 - 1)(1 - (n - 2)2A"2).

Treating A2 as a variable satisfying (n - I)2 < A2 g n2 - n — i it is easily checked
that the right hand side of the above equation is always less than the value at
A2 = (n — I)2, the expression being decreasing in the allowable range. Thus

a-2p(a) < (2n - l)(2n - 3)(n - 1)~4 ^ 35/81

since n 2 - n ~ i ^ A 2 > 8 implies that n ^ 4. For A2 > n2 - n + i we have

a~2p{a) = A"4((n + I)2 - A2)(A2 - (n - I)2),

and analysis shows this to have a maximum of 4n2(n2 — 1)~2 when
A2 = (n2 - 1)2/(M2 + 1). Since n ^ 3 it follows that a~2p(a) S 9/16. Thus
for both ranges of A2 we have a~2p(a) g 9/16, as desired.
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PROOF OF LEMMA 8. Let ay2 + byz + cz2 be a reduced form equivalent to <j>
with a > 0. We assume a < p^JD for otherwise (i) is valid. The reduction condi-
tions imply that a + b + c> 0 and so in the equivalent form

ay2 +(b + 2a)yz + (a + b + c)z2 = ay2 + b'yz + c'z2

we have c' > 0. Plainly c' < a + b < (p + l ) v ^ < o^D, so either this form
satisfies (ii) or c' < p^D. In the latter case we have in the equivalent form

ay2 + (V + 2a)yz + (a + b' + c')z2 = ay2 + b"yz + c"z2

that c" >b'> {{b'f - Aac'f = xlD > Py/D, and

c" = a + (D + Aac'f + c' g (p + (1 + 4p2)* + p\/D = a^l D .

In this case we have found a form for which (ii) holds.

It will be noted that if k is a positive integer and p = (k2 + 4k)"i then the
form x2 + kxy — ky2 takes no positive values between 1 = p^lD and k + 4 — aslD.
For related work consult [ 4 ] .

THE PROOF OF THEOREM 2. If the lower bound m(g) = 0 is attained then there
exist relatively prime integers xlty1,zl, such that Qix^y^z^ = 0. Choosing
integers x2, •••, z3 to satisfy (1.1) it is clear that M+(Q) = 0. We therefore assume
m(Q) = 0 is not attained, when by a result of Oppenheim [5] Q takes arbitrarily
small values of either sign. Considering — Q if necessary we may assume that Q
has signature 1 and that Q takes arbitrarily small positive values. Then for arbit-
rarily small e0 < y | d |* where d = det(Q) we can choose relatively prime integers
*o».yo>zo s u c n that Q(x0, y0, z0) = E2 where 0 < E2 < e0. Indeed we may assume
Q(l, 0, 0) = e2 on applying a suitable integral unimodular transformation. We
write

Q(x, y, z) = E\X + ly + fiz)2 - 4>{y, z)

where <p is an indefinite binary quadratic form, and set

(f> = ay2 + byz + cz2,

D = b2 -4ac = 4ds-2.

We suppose firstly that (j> represents zero. By means of a suitable transforma-
tion we may take <j> = + y/Dyz + cz2, and after a further transformation of the
type y -* y + pz, z -»z which replaces c by c + p-JD we may assume ^JD ^ c
< 2y/D. The inequalities on c, e and e0 ensure c > e2, so we can choose integers
x3,x'3 to satisfy

e~lyjc < x3 + n < 2s~\/c, s~\ic — 1 ^ x'3 + (i < e~\,c
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respectively. Hence

M + ( 0 ^ 6(1, 0, 0)2(0, 1, 0)Q(x3, 0, 1) ^ £a • is2 • {E2(2E'\/C)2 - c} = ie43c.

Thus as ec is bounded above independently of e we have M+(Q) <̂  e3. Similarly

M + ( - Q) ^ - GO, 0, 0)6(0,1, 0)6(x3) 0, 1)

Hence M + ( - 0 « 8 < > / 2 .

We now suppose <̂> does not represent zero. By lemma 8 we may assume <f>
to be such that either

(i) TSSJD ^ a ^ yjD, — N/£) g c < 0 , or

(ii) 0 < a < TON/I* > To V D = c < f W D •

In the first case we have a > E2 and choosing x2 , .x2)x3 to satisfy

respectively we have

M+(6) ^ 6(1, 0, 0)6(x2, 1, 0)6(x3, 0, 1) g £2 • £2(2e-\ /a -

Thus M + (6) < £J as yja -4 £~i and c -4 e~l. Similarly

A M - Q) ^ Q(i, o, o)6(x2, i, 0)6(x3, o, i) <«!

In the second case we can choose x2 to make Q(x2, 1, 0) positive and <§ e*
and x3 to make Q(x3, 0, 1) of either sign such that | Q(x3, 0, 1) | < £*, and so
both M+(Q) -4 £3 and Af+(- 6) < £3-

Hence in all cases we have M+(Q) -4 s and M+(— Q) <£ s. Since s > 0 can
be made arbitrarily small we therefore have M+(Q) = 0 and M+(— 6) = 0.

We now examine the special form 6 i • For this form Barnes has shown
that the product

(3.1) 6i(*i> .Vi, Zi)Qi(x2, y2, z2)6i(*3» J3. Z3)

is at least 1 = i\d\ in absolute value for integers xlt---,z3 satisfying (1.1). Since
QiCl, 0, 0) = 1, 6i(0, 1, 0) = 1, 6 i ( l . 1, 1) = 1 and Q,(l, 0, 1) = - 1 it is clear
that (3.1) can be made both + 1 and - 1. Thus M + (6 i ) = 1 = i\d\ and
M + ( - Q 1 ) = l =i\d\.
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4

THE PROOF OF THEOREM 1. We may suppose that Q is an indefinite ternary
quadratic form of determinant d ¥= 0 and that m(Q) ¥= 0. In fact, since
| rf |~1M+(g) , | d\~1M+(— Q) are unchanged on multiplying Q by a positive con-
stant and interchanged on multiplying by a negative constant we may take m+(Q)
= "*(Q) = 1 where m+(Q) is the lower bound of non-negative values of Q. Then
for any sufficiently small e0, 0 ^ e0 < 1 there exists e, 0 ^ e < e0 and relatively
prime integers xo,yo, z0 such that Q(x0, y0, z0) = 1/(1 — e). After applying a suit-
able integral unimodular transformation we may suppose (xo,yo, z0) = (1,0,0)
and set

f(x, y, z) = (1 - e)Q(x, y, z) = (x + ky + A<z)2 - fry, z),

where </>(y, z) = ay2 4- byz + cz2 has discriminant

D = b2 -4ac = - 4d(l - e)3 = - 4dl.

We discuss the cases (j> indefinite, </> definite, separately, and show that i f / is not
a multiple of Qt then both \dt | ~ 1 M + ( / ) < k and \dt \~iM+( — f) < k, where

Suppose firstly that <t> is indefinite. In this case we assume that / does not
take the value — 1, since if it did we could replace / b y — f of the desired shape
with (j) definite and apply the argument to be used later. By lemma 3, therefore,
(j> takes no values in (— | + s, 2.21(1— e)2), and lemma 4 gives four possibilities
to discuss.

(a) (f>(y,z) is equivalent to a multiple of y2 + yz — z2. We may take this
multiple to be positive since </> is equivalent to its negative, and write

fix, y, z) = (x + ky + \iz)2 - a(y2 + yz - z2)

where a ^ 2.21(1 — e)2. In this case

/( l ,0 ,0) / (x2 , l,0)/(x3,1,1) = {(x2 + A)2 - a}{(x3 + ?. + n)2 - a)

and so by lemma 6 we have M + ( / ) ^ <x(a), M + ( —/) ^ p(a). Since dt | = | a 2

we have, by lemma 7, that

M + ( / ) ^ T 5 T \dt\, M + ( - / ) ^ T
9 o | ^ |

provided s0 is sufficiently small.

(b) <f>{y,z) is equivalent to a positive multiple of y2 — 3z2. We write

f(x,y, z) = (x + ky + nz? ~ a(y2 - 3z2)

where a ^ 2.21(1 — e)2. In this case

/(l,0,0)/(x2, l,0)/(x3,2,1) = {{x + k)2 - a}{(x + 2k + tf ~ a)}
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and the argument of (a) shows that M+(f) ^ -^ | d^ |, M+( — f) <| y|-1 dt | since
| ^ | = 3a2.

(c) 0(y, z) is equivalent to a negative multiple of y2 — 3z2. We write, since
y2-3z2 (2y2 + 2yz-z2),

f(x,y, z) = (x + Xy + fiz)2 - a(2y2 + 2yz - z2)

where a ^ 1 • 105. By lemmas 4 and 5, since / does not take the value — 1, we
have the existence of integers x1.x'l,yl,y'1,x2,--- ,y2, for which

\xiy2-x2yl\ = \x[y'2- x2y[ | = 1
such that

and

--6-Sa^f(x'uy[,0)f(x'2,y'2,0)<0

Choosing x3 that 0 </(x3, 0,1) g | + a we find that

731 8
|d, | " 'M+(/) g — ^

and

• 603

(d) 4> is equivalent to a form ax2 + bxy + cy2 with — | d , ^ ac < 0. In
this case we take a > 0, c < 0 and

/ = (JC + Xy + nz)2 - {ay2 + byz + cz2).

Choosing x3 such that | x 3 + ^J| ^ \ and xt, ••• ,y'2 is a similar way to that used

in (c) we find that

Thus as dx |~' ^ 5/8a | c | and j c | ^ J we find that

H i h ' M + C / ) ^ 1462/2379 and ) dl \~lM+(-f)< • 56

Hence in each of the four possible cases we find that both \dx \~lM+(f) and
I dt I ^ M + C - / ) are bounded above by 1462/2379.

Suppose now that (j> is positive definite, in which case we may take <t> to be
the reduced form of its class satisfying

0 g 6 ^ a g c , ac ^ | | D | .

We suppose, for the present, that in addition f(x, y, 0) is not equivalent to a mul-
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tiple of any of

x2 - 5/2y2, x2 + kxy - y2 {k = 1,2,3 or 4).

By lemma 3 we have a ^ 2 and so c ^ 2 . We choose x3 such that

c - 1 ; 2 ^ c ^ 2±

We then choose x1; x'1; •••, y'2 in a way similar to that used in (c) above to deduce
that M+(f) and M + ( —/) are bounded above

731 731
by j^Mc - 1) for 2 ^ c ^ 2\ and by ^ 4 a ( c - i)* for c ^ 2£.

Since ac ^ 4/3 | dt | we have | dx \~lM+(f) and | dt |~1M+( —/) bounded above

For the ranges of c considered both expressions are a maximum at c = 2^ and
these maxima are both y ^ j • y < 3/5. Hence to complete the proof of the
theorem it remains to consider the previously excluded possibilities for/(x,>>,0).
Since each of the excluded forms is equivalent to its negative we may consider the
multiple to be positive.

Case 1. Suppose f(x,y,0) is equivalent to a multiple of x2 — \y2, that is

The lower bound of values of the left side lies between 1 and 1 — e, while for the
right side it is k. Thus 1 — e 5* fc ^ 1. The right side when multiplied by 2k~x

has integral coefficients, so from the left side 2/c"1, 4/c~"12, and 2/c~1(A2 — a) are
each integral. Hence k = 1, while AX and 2(A2 — a) are integral. Comparing dis-
criminants gives a = | , so 2X2 is integral. As we may take \X\ ^ $ without loss
of generality we have X = 0. Thus

f(x, y, z) = (x + fiz)2 - (iy2 + byz + cz2)
where

Now (x + (iz)2 — cz2 is not equivalent to a multiple of x2 + xz — z2 as c~2.\,
so by lemma 1 there exist xi,x2,z1,z2 with |x!Z2 — x2Z! | = 1 and

/ (x 1 ,O,z 1 ) / (x 2 ,O,z 2 )S3c /5 .

By taking/(I , 1, 0) = 3/2 o r / (2 , 1, 0) = - 3/2 as necessary we find that M + ( / ) ,
M + ( —/) are bounded above by y^c. Hence as c ^ T T H I | wehave |<i1|~1M+(/),
\dt \-lM+(-f) both bounded above by 12/25.
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Case II. Suppose f(x,y,0) is equivalent to a multiple of x2 + xy — y2.
Arguing as in the previous case we may take

f(x, y, z) = (x + y + nz)2 ~ ( I / + byz + cz2)

with

0 g i £ 5 / 4 ^ c , \D\ ^ ^-c.

Barnes [1] has shown that for c ^ 2 • 99 we can choose x3 such that

| / (1, 0, 0)/(0, 1, 0)/(x3, 0, 1) I < ^j I d1 I.

He has also shown that for 2 • 21(1 — e)2 ^ c < 2 • 99 we can choose x^ x3, zu z3

with |x1z3 — x3Zj | = 1 such that

\f(xlt 0, z,)/(0, 1, 0)/(x3, 0, z3) | < -—^ \dl\.

Hence, replacing / (0, 1, 0) = — 1 by / ( I , 1, 0) = 1 if necessary it is clear that
\dt \~1M+(f) and \dt | " 1 M + ( —/) are bounded above by £ for this range of c.
By lemma 3 there are two further possibilities for c, namely:

(a) c = 2 , / (x ,0 ,z ) ~ k(x2 — 2y2). In this case Barnes has shown that after
a suitable transformation

| / 0 , 0, 0)/(0, 1, 0) /( l , 0, 1) I < (2/5 + 0(£)) | dt |

and so replacing / ( 0 , 1 , 0) by / ( I , 1, 0) if necessary we find that M+(f) and
M + ( —/) are bounded above by ^ | c/a | for suitable small e.

(b) c = 5/4. In this case Barnes has shown that f~ — Q1.

Case III. Suppose f(x,y,0) is equivalent to a multiple of x2+2xy — y2

which is equivalent to x2 — 2y2. Arguing as in case I , we may take

f{x, y, z) = (x+ nz)2 - (2y2 + byz + cz2)
with

0 ^ b ^ 2 ^ c, \D\^6c.

We consider firstly the cases where c ^ 2 • 21(1 — e)2.

(a) 2 • 2 < c < 3^ - e. We choose x3 such that 2\ <; (x3 + n)2 ^ 4 and x3

such that 1 g (x3 + n)2 j£ 2\. Since m(f) S; 1 - s we have

0 < / ( l , 0, 0) /( l , 1, 0)/(x3, 0,1) S - 0 - c)
and

4 - c < / ( l , 0, 0) / ( l , 1, 0)/(x'3, 0, 1 )< 0.
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Now dl = 2c — \b2 ^ 2c — 1, so plainly

| dx \-
lM+{f) £ (c - l)/(2c - 1) = i(l - (2c - I)"1)

and

\d, \-lM+(-f) £, (4 - c)/(2c - 1) = K - 1 + 7(2c - I)"1).

For the range of c under consideration these bounds are at most 9/22, 9/17 re-
spectively.

(b) c ~§. 3\ — £. We choose x3 such that

\f(x3,0,1)| ^ c - 2\ for c g 4} or |/(jc3> 0,1)| g (c - *)* for c 2: 4*.

Taking /(I , 0, 0) = 1 and either /(2, 1, 0) = 2 or / ( I , 1, 0) = - 1 we find that
|d1 |-1M+(/) , |^! |-1JVf+(-/) are bounded above by 2(c - 2|)(2c - I ) - 1 for
c ^ 4 | and 2(c — i)*(2c — I)"1 for c ^ 4^. For the allowable ranges of c, these
both have a maximum of -j% = • 533-- at c = 4}. Hence we find \dt \~1M+(f)
and Idj^'M+C —/) bounded above by ̂ 5-.

By lemma 3 it remains to consider the case

(c) c = 2,f(x, 0, z) ~ k(x2 — 2z2). Without loss of generality we can take

where 0 :S b <; 2. Since 0(1, — 1) = 4 — b we have by lemma 3 that either

b = 2 or b g 4-2-21(1 - e)2.

For f> = 2 we have

/(1,1,0)/(l, 0,1)/(1,1, - 1) = - 1 = - 11 dx I
and

so for this form we certainly have | dt |~1M+(/) and | dt |~1M+( —/) both bounded
above by ^.

It remains to discuss the case b g 4 — 2-21(1 — e)2 < 1 • 8 for suitably small
e. Plainly b ^ 1 — e since

/(2,1, -1) = b> -m(f).

Now/(5,1, 3) = 5-3b> - 0 - 4 > - m(/) for small e, so 5 -36 ^ 1 - e , i.e.
b ^ 4/3 + is. But now /(4, 1, — 3) = — 4 + 3b which is at most e. Hence
- 4 + 3b <; - 1 + e, so b ^ 1 + ie. Plainly, since | dt | = 3f + 0(e) and

M+(/) ^ /(I , 0, 0)/(l, 1, 0)/(l, 0, 1) = 1

and
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M_(/) = / ( I , 0, 0)/(l, 1, 0)/(3, - 2, 1) = 1 + 0(e),

we have \dl \~lM+{f) and jc/x | - 1 M + ( - / ) both bounded above by 4/15 + 0(e).

Case /K. Suppose/(x,j,0) is equivalent to a multiple of x2 +fexy —y2 where
fc = 3 or 4. As usual we may take

/ = (x + i(4 - fc)>> + nz)2 - ((1 + i / c 2 ) / + byz + cz2)
with

0 = fc =: 1+^fc2
 = c.

For fc = 3 we choose x3 such that

| / ( x 3 , 0 , l ) | g c - 2 ± f o r c £ 4 i
or

Taking / ( I , 0, 0) with either / ( I , 0, 0) = - 1 or / (2 ,0 ,0) = 3 it is clear that
M+(/) , M + ( - / ) are at most

3(c - 2i) for c = 4± and 3(c - i)* for c ^ 4±.

Using the bound on b to give a bound on dt we then find that | d 1 | ~ t M + ( / )
and \dt \~1M+( — / ) are bounded above by

12/ 1W 13\
T 3 ( c - 2 4 ) ( c - i 6 )

In the allowable ranges for c, for c = 4£ each expression is a maximum of
384/715 = - 5 3 - .

For k = 4, choosing x3 such that | /(x3, 0, 1)| ^ (c — £)*, and taking
/ ( I , 0, 0) with either/(2, 1,0)= - 1 or/(3, 1, 0) = 4 leads by a similar argument
to the upper bound 8^/19/75 = -46--- for \di\-lM+(f) and \dt | " I M + ( - / ) .
This completes case IV and so theorem 1 is proven.

REMARKS. It would be possible to define quantities such as M+ + + , M+ + _,
M + __ and M for a ternary quadratic form, where e.g. M + + _ is the lower
bound of

| C(*i, yi, zi)Q(x2, y2> Z2)Q(*3> y^, ^3) |

over integral xlt---,z3 satisfying (1.1) such that two of the values are positive
(or non-negative ) and the other value is negative (or non-positive). The constant
I would have to be increased for some of these problems, since for example
the form

Q5(x, y, z) = 3x2 + 8(x.y + y2 - z2 + yz)

https://doi.org/10.1017/S1446788700029062 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029062


[14] Ternary quadratic forms 401

has all its negative values at most — 5 and its positive values at least 3 . Thus

M + _ _ ( 6 5 ) ^ i ¥ r \ d \ . Indeed

Q6(x,y, z) = x2 + 3(xy + y2 - z2 + yz)

has M + _ ~(Q6) ^ f | d | . For discussion of these forms see lemmas 2.6, 2.7 of [6].
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