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Abstract. The in-plane appearance of barred galaxies is formed in ei­
ther of two ways: 1) the usual bar-mode instability in a fast rotating disk 
forms a fast bar, while 2) the radial orbit instability (or its modifications) 
leads to a slow bar. The vertical structure depends on the universal mech­
anism of the bending instability both in fast and slow bars. Among all 
the relevant topics, I chose (i) a critical review of the work on the bend­
ing instability, and (ii) some comments concerning the local and global 
stability criteria for non-axisymmetric disturbances in galactic disks; in 
particular, a new approximate local dispersion relation for a star disk is 
presented. Also shown is a range of accuracy for the intuitional global 
criterion of the slow bar instability of the Ostriker-Peebles type (on the 
example of the exactly-solved model). 

1. Introduction 

Generally speaking, the formation of bars, with all their complex 3D-arrangement, 
need not be a result of instabilities, much less of those highly simplified versions 
commonly used. Nonetheless, the study of these instabilities and the structures 
which they produce is indubitably useful (for more detail, see Fridman & Poly­
achenko 1984 (henceforth FP); Sellwood & Wilkinson 1993; Polyachenko 1994). 

There are few basic instabilities which could play an important part in the 
bar formation processes (the full list of instabilities in stellar systems is poor 
enough too, e.g., compared with plasma). Namely: first, the bar-forming (in 
a narrow sense) instability responsible for the bar's appearance in the plane of 
rotation (top view), and, second, the bending instability which determines the 
bar's side view. Following are brief discussions of these instabilities and their 
connections with galactic bars. 

As is clear from the names, fast and slow bars differ first in their pattern 
speeds; accordingly, a fast bar ends near the corotation resonance (CR) while a 
slow (or moderate1) bar is of order of the inner Lindblad resonance (ILR) radius 
in size. 

While there are several different ways for in-plane bar formation, the only 
physical mechanism for thickening the flat stellar systems is, as yet known, 
just that of the instability which is called 'bending'; the simplest mechanical 

'The convenient classification of bars was described by Pasha and Polyachenko (1994). 

405 

https://doi.org/10.1017/S0252921100050107 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100050107


406 Polyachenko 

analogy of this instability is the behavior of a metallic ruler compressed on its 
edges. Conceptually2, the bending instability acts identically in both fast and 
slow bars, and I begin a more detailed presentation from this instability (Sec. 2), 
somewhat departing from a common practice. Such a change of the usual order is 
also justified because just the bending instability has recently become the subject 
of extensive study (e.g., Merritt & Sellwood 1994). The study was provoked by 
some new interesting applications of the bending instability: e.g., this instability 
is possibly to be important in the formation of the specific, 'peanut' bar shape 
(e.g., see Raha et al. 1991; the bending instability by itself in bars is not, of 
course, surprising). It is convenient to follow the chronology in presenting the 
principal results; in passing, I correct some inexactitudes made in the bending 
instability presentation by Merritt & Sellwood (1994). Section 3 considers the 
bar-forming instabilities (Subsection 3.1 is devoted to fast bars, Subsection 3.2 
to slow bars). 

2. Bending instability 

Bending (or hose, hose-pipe, fire-hose) instability was discovered by Toomre 
(1966) and re-discovered by Kulsrud, Mark & Caruso (1971). These two pa­
pers were carried out independently (despite five years of delay with the second 
article) because Toomre's article was published in an obscure summer-school 
proceedings. Such a 'semi-publication' of that paper presumably resulted from 
Toomre's skepticism: he did not think that this instability can be of much inter­
est (so the majority of workers have not seen that paper up to the present, and 
we all know it only in its recent presentation by Merritt & Sellwood (1994)). 
In this case, however, Toomre's skepticism is easy to understand: in the sixties, 
any flattening of stellar systems (including elliptical galaxies!) was attributed to 
rotation; as for disk galaxies which have always been the subject of his highest 
interest, they were thought to be 'cold' everywhere. 

The two papers (by Toomre and by Kulsrud et al.) are almost identical in 
their results: 

1. They derived the dispersion relation for a sheet, i.e. a layer of negligible 
thickness in z and uniform in x and y: 

u? = 2TrGcrk-k2v2
y, (1) 

where vy is the velocity dispersion of stars in any one direction parallel to the 
plane, k is the disturbance wavenumber, and a is the surface density. This 
equation shows that there occurs the instability (w2 < 0), for sufficiently short 
wavelengths. 

2. They used the same considerations for estimating a critical value of 
anisotropy, i.e. of the ratio vz/vy (vz is the velocity dispersion normal to the 
plane), when the bending instability of a slab (a layer of a finite thickness 2h) 

2It is evident from the physics of the bending instability that 'hot' slow bars should be thicker 
than 'cold' fast bars, all things being equal (first for the same halo mass). But bending 
instability phenomena for both types of bars have much in common: stabilization by a halo or 
a central mass, peanut or box shapes, etc. 
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Figure 1. The curves of the bending instability boundary for star slabs 

was suppressed. Namely: appealing to intuition, they claimed without ceremony 
that the slab should be stable for wavelengths comparable to its thickness. Of 
course, such an estimation could not claim to be exact. However, Kulsrud et 
al. mentioned that "Toomre has found in a numerical investigation that the 
instability only occurs for v^/vy < 0.1", i.e. for vz/vy < 0.316. They continue: 
"so it would appear difficult for such an instability to occur." Thus, I may note 
also that 

3. They all were unanimous in their sceptical relation to this instability. 
The bending instability of the slab was studied by Polyachenko & Shukhman 
(1977); for simplicity, we considered the model of the slab uniform in density; the 
outer curve in Figure 1 is the instability boundary we found (a very similar curve 
was recently published by Merritt & Sellwood 1994). Our analytical theory of 
1977 was exact for a sufficiently thin slab, when vz/vy = 1/a << 1; for larger 
values of this ratio, the theory was approximate. In Figure 1, the exact instabil­
ity boundary 3 shows the inner line; this figure is taken from FP. According to 
the dispersion relation (1), the instability occurs for perturbations with wave­
lengths A < Ai, Aj « ho?. In fact, one can see from Figure 1 that, for each given 
slab (fixed dispersion ratio ), there are two limiting wavelengths: 1) Toomre's 
and 2) still one boundary, from the short-wavelength side, A > A2, A2 « ha, dis­
turbances with shorter wavelengths are damping. The instability region narrows 

3This curve was a result of standard computations with the use of of the expansion of the 
perturbed potential over the complete system of functions (Legendre polynomials). 
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with decreasing a and vanishes at some critical a = ac. It occurs at ac = 2.68, 
in the approximate theory; the computed exact ac = 3.0. Correspondingly, the 
inverse values which Toomre used are: 

(vz/vy)c « 0.373, in approximate calculations, 
(2) 

(vz/vy)c w 0.333, in exact computations. 

Recall that Toomre's N-body estimation was (vz/vy)c ss 0.316. Araki (1985) 
showed that the above result (2) depends slightly on the model used: for the 
anisotropic Maxwellian velocity distribution, i.e. in the ,sec/i2(z)-model for the 
vertical density profile, he found 4: (vz/vy)c « 0.293. Rather detailed analysis of 
the physical mechanisms of this instability and its stabilization is available in our 
papers (Polyachenko & Shukhman 1977 1979) and the monograph (FP). When 
moving up in the vertical straight-line in Figure 1, decreasing progressively the 
disturbance wavelength, we enter the instability region at k = k}, here (k > k\) 
the instability being of the hydrodynamic nature: all particles take part in the 
instability process simultaneously and coherently; we leave the instability region 
at k = fc2, where 

X/vy « l/uz (3) 

(or kvy « LOZ,OJZ is the frequency of free oscillations of particles in the equilibrium 
slab), here (k < fc2) the instability being of the kinetic nature: only a narrow 
group of resonance particles (kvy ss OJZ) takes part in the growth, at k < fc2, 
or in the decay, at k > fc2, of an initial perturbation. (The same condition (in 
essence) occurs, for example, for Jeans instability.) In the limit of very short 
waves, X/vy « l/uz, a particle during the time of one free vertical oscillation 
crosses many waves; the corresponding perturbations are damping. By the way, 
the term 'Landau damping' in its original sense (Landau 1946) concerns just 
such short-wavelength disturbances. When turning to the global modes in finite 
systems, we should first replace A in formula (3) by the system's radius R; then 
X/vy « ciR/vy w C2/u!y « l/w0, where uy is the characteristic frequency of star 
oscillations, and C\ and c2 are constants. So, the condition for the instability 
boundary should be expressed in terms of the ratio of star frequencies in per­
pendicular directions. Our following stability study of homogeneous oblate and 
prolate spheroids (Polyachenko & Shukhman 1979, see also FP) confirmed such 
a hypothesis. The behavior of the instability boundary curve 72 = f2(c/a) (7D 
is the spheroid's (as a whole) angular velocity of rotation, ft is the star frequency 
in the (a;,2/)-plane, c/a is the axis ratio) is especially simple for the bell-shaped 
mode of the oblate spheroid (see, e.g., Figure 53a in FP): it is the straight line 
beginning at -y2 « 0.25 (for c/a = 0) up to ~f2 m 0.6 at c/a = 0.3, where this 
curve suddenly dropped; the system is stable for c/a > 0.3. The behaviors of 
the marginal curves for other modes are similar, and the same is true for prolate 
spheroids (see FP, p. 313). The sharp decrease of the curves occurs at such a 
thickness, for which in the homogeneous model used there are resonances be­
tween the star oscillation frequencies with respect to z and the frequencies in 

4Merritt & Sellwood (1994) mistakenly stated that Araki's paper was the first study of the 
bending instability in a slab (missing our earlier work). 
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the rotation plane (x,y). For the bell mode, this is the resonance u>z = 2f2; 
just this mode is the most 'dangerous'; for the m = 1 mode, the resonance is 
u>z = 3ft, and so on. Such a strong influence of these resonances is due, of 
course, to the idealization of the model. For the real nonhomogeneous systems, 
the curves will have a smoother form. One can note a natural consequence of 
this result. Let us imagine a stellar system (bar, bulge, ...) formed from an 
initially sufficiently thin proto-system as a result of saturation of the bending 
instability. Then the average ratio of star oscillation frequencies is likely to be 
about 2:15 (for instance, for the final state in Figure 3 (bottom, left) of the paper 
by Polyachenko & Polyachenko (these proceedings) this ratio equals to 1.89:1, 
under the simplest way of averaging). So the importance of the resonance orbit 
family in a thick bar (that is emphasized by Combes et al. 1990) is possibly 
made due to the system coming to the boundary of the bending instability. As 
for an exact general criterion of the bending instability, it is likely to be im­
possible. It is hardly probable that any more certain criterion (than above 2:1 
average - in what sense? - frequency ratio) exists. I could remind the preceding 
experience of searching the 'universal' stability criterion for the fast bar mode 
(beginning with the well-known paper by Ostriker & Peebles 1973) or the radial 
orbit instability of spherical systems (myself); both these attempts had only a 
limited success. Below, I show that the same is true for the slow bar mode. 

3. Bar-forming instabilities 

3.1. Fast bars 

Since almost all papers at this meeting are devoted to fast bars6, here I decided 
to restrict myself to only one of the relevant problems, namely, the problem of 
the instability criteria. The derivation of the general criterion for the bar-mode 
instability of arbitrary disks is difficult if not impossible to realize, so we are 
forced to use the local dispersion relations and corresponding local instability 
criteria7. 

Unlike the gas disks (see Goldreich & Lynden-Bell 1965; Polyachenko & 
Strel'nikov 1989; Polyachenko 1990), even the rigorous local dispersion relations 
for the star disks cannot exist in principle. I know two different ways for deriving 
the approximate local dispersion relations, both giving similar results. One of 
them was suggested in the diploma work of my student (Strel'nikov 1989). Let 
us start from the integral equation for the Fourier transformation $g of the 
perturbed potential $(r) (that can be obtained from the corresponding equation 
by Julian & Toomre 1966): 

| * , > / * 2 + *2 = - l°° *q.K(q, q'yti'-iUq, (4) 

5Merritt & Sellwood (1994) think that this is a general principle. 

True, in several papers (e.g., Combes, Elmegreen, Zasov, Noguchi), the slow/moderate bars do 
occur, but under the other names: ILR-bars, Lynden-Bell's bars, induced (tidal) bars, etc. 

The best known example is the Goldreich - Lynden-Bell - Toomre swing amplification local 
mechanism applied to the grand fast bar instability. 
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where we assume the perturbation (~ exp(im<p — iait)) to be localized near 
the radius TQ, the star distribution function in the velocities vr,vv is /o = 
Aexp(-Q0),A = (T0ft0/T«c2,g0 = (v2/c2 + V 2 /C 2 ) /2 ,CT 0 = a{r = 0),a(r) is 
the surface density, fto = &(r = 0),ft(r) is the disk angular speed, K is the 
epicyclic frequency, c = «2A/7rG<7o, k = k{fi/S.^kv = m/ro, A = K/TR | Q. |,ft = 
dQ,/dr,v = 7 / K , 7 = Im(u>),K(q,q) = h(q,q')exp{-xg(q,q)),x = C 2 / 2 K 2 A 2 , 
M?'?') = (99' + a4)s«re(9-g ')-a (

2(g-g ')co.s(g-g ') ,#(g,g ') = g2 + g'2 + 2a4 -
2[(?<7 + a4)cos(q — q) + a2(q — 5 )sin{q - q ), where a2 = 2ft0/ro I ^o l'^2 = 

a4 — a2. Multiplying equation (4) by etqx, integrating with respect to q between 
q = —00 and q = +00, reversing the order of the integrals in q and q , we find 

[- V<72 + k2 + / e
! ( ? - 9 ,ZA'(9, q )dq }*qe

l^dq = 0, (5) 

where 2 = (w — mQ.o)j'K. For deriving the dispersion relation, let us consider a 
single harmonic: $ g = 6(q — qo); then we obtain a desired result: 

y q
2 + k2 + jo°°eH*H(t,q)dt = 0, (6) 

where H(t,q) = h{t,q)e-X9(t'q\h{t,q) - a2tcos(t)-(q2-qt+a4)sin(t), g(t,q) = 
-2a2tsin(t) + 2(q2 - qt + a4)(l - cos(t)) + t2. 

The criterion of the marginal stability is obtained from (6) at z = 0: then 
we have the dependence Qo = Qo(A) where Qo = Kcr/2irGao, A = c/2\/l2 + k2. 
In principle, the behavior of these curves is similar to that for the gas case 
(e.g., Polyachenko 1990); in particular, here we also have some value of Qo = 
Qm(Q2

m ~ 3) which guarantees that perturbations may not grow when Qo > Qm-
This result agrees with that obtained by the second method of deriving the ap­
proximate local dispersion relation (Toomre 1981). A detailed presentation of 
the results of analyzing the relations above can be found in our paper (Poly­
achenko & Strel'nikov 1995). 

3.2. Slow bars 

Referring for a detailed discussion of this subject to our papers (Polyachenko 
1989, 1992; Pasha & Polyachenko 1994; Polyachenko & Polyachenko 1994, 1995, 
see also our paper in these proceedings), I will enlarge here on the particular 
problem of formulating the general instability criteria for large-scale modes. 

As is well-known, Ostriker & Peebles (1973) were the first who attempted to 
suggest the hypothesis, according to which stability or instability of an isolated 
axial-symmetrical system (fast bar-mode) is defined by the ratio t = Trot/\W\, 
where TTot is the kinetic energy of rotation and W is the potential energy. There 
exists a large body of critical remarks concerning this criterion (see especially 
Toomre 1981); nonetheless, it is operable in many cases. The Ostriker-Peebles 
criterion was based only on intuition because any simple model suitable for the 
analytical study is as yet unknown. By the way, it is concerned with the fact 
that the fast bar-mode instability is easily saturated by a modest halo mass. 
In contrast, the slow bar-mode instability cannot be stabilized by any finite 
halo mass, and just in the limit of large halo-to-disk mass ratios Mk/Md, the 
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stability problem can be solved analytically (Polyachenko 1989, 1992). It allows 
for comparing the exact instability criterion with that suggested by intuition. 
The last-mentioned criterion is, in this case, t = Tpr/IM^jl < tcr, where Tpr is 
the part of the kinetic energy of the active subsystem of stars attributable to 
orbital precession, WQ is the gravitational energy of interaction among these 
stars, 

a a 

| WG |= 2ir2GJ jpi[r)pi{r)J0{r,T)dTdr, (7) 
o o 

where we assumed that the disk under consideration consists of "needles" of the 
same length 2a, i.e. all the stars have the same energy E = EQ; pi = r<r(r) is the 
quantity proportional to the linear mass density of a needle, while o(r) is the 
usual surface density; Jo is obtained (for m = 0) from a more general expression: 

j , \ _ I / cos(ma)dg 
7r J sjx1 + y2 — 2xycos(a) 

Here we are not interested in a specific value of tcr. 
In the case being considered (large values of MhjMj) we deal with the 

version of the radial orbit instability when star orbits as a whole (rather than 
individual stars) are the elementary objects. In such a case, the exact insta­
bility condition can be derived (e.g., Polyachenko 1992). It turns out that this 
condition is reduced to the intuitional form t < tcr by replacing Jo(r, r ) in the 
expression (7) for the disk potential energy into J2(r,r ) . 

References 

Araki, S. 1985, PhD thesis MIT 
Combes, F., Debbasch, F., Friedli, D. & Pfenniger, D. 1990, A&A, 233, 82 
Fridman, A. M. & Polyachenko, V. L. 1984, Physics of Gravitating Systems, 

New York: Springer-Verlag 
Goldreich, P. & Lynden-Bell, D. 1965, MNRAS, 130, 125 
Julian, W. H. & Toomre, A. 1966, ApJ, 146, 810 
Kulsrud, R., Mark, J. W.-K., & Caruso, A. 1971, ApJS, 14, 52 
Landau, L. D. 1946, Zh. Eksp. Teor. Fiz., 16, 574 
Merritt, D. k Sellwood, J. A. 1994, submitted to ApJ 
Ostriker, J. P. & Peebles, P. J. E. 1973, ApJ, 186, 467 
Pasha, I. I. & Polyachenko, V. L. 1994, MNRAS, 266, 92 
Polyachenko, V. L. 1989, Sov. Astron. Lett., 15, 385 
Polyachenko, V. L. 1990, in Dynamics of Astrophysical Disks, J. A. Sellwood, 

Cambridge: Cambridge Univ. Press 
Polyachenko, V. L. 1992, Sov. Astron., 69, 10 
Polyachenko, V. L. 1994, in Physics of the Gaseous and Stellar Disks of the 

Galaxy, I. King, San Francisco: ASP, 103 

https://doi.org/10.1017/S0252921100050107 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100050107


412 Polyachenko 

Polyachenko, V. L. & Polyachenko, E. V. 1994, Sov. Astr. Lett., 20, 491 
Polyachenko, V. L. & Polyachenko, E. V. 1995, Sov. Astr. Lett., in press 
Polyachenko, V. L. & Polyachenko, E. V. 1995, Sov. Astron., in press 
Polyachenko, V. L. & Shukhman, I. G. 1977, Sov. Astr. Lett., 3, 254 
Polyachenko, V. L. k Shukhman, I. G. 1979, Sov. Astron., 56, 957 
Polyachenko, V. L. & Strelnikov, A. V. 1989, Astron. Tsirk., 5, 3 
Polyachenko, V. L. & Strelnikov, A. V. 1995, Sov. Astron., in press 
Raha, N., Sellwood, J. A., James, Q. A., & Kahn, F. D. 1991, Nature, 325, 411 
Sellwood, J. A. & Wilkinson, A. 1993, Rep. Prog. Phys., 56, 173 
Strelnikov, A. V. 1989, diploma work, Moscow State University 
Toomre, A. 1966, in Geophys. Fluid Dynamics, 111 

Toomre, A. 1981, in Structure and Evolution of Normal Galaxies, S. M. Fall & 
D. Lynden-Bell, Cambridge: Cambridge Univ. Press, 111 

https://doi.org/10.1017/S0252921100050107 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100050107



