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Some definitions of finiteness

J.L. Hickman

Since Paul J. Cohen's 1963 result, it has been possible to

investigate the consequences of the axioms of Zermelo-Fraenkel

set theory without the Axiom of Choice. In this paper we

examine the relative strengths of a number of finiteness

criteria against the background of ZF set theory without AC

1.

The study of finiteness criteria could be said to have been instigated

by Tarski [3] in 1921+; since then the properties and relative strengths of

finiteness criteria have been investigated within various systems of set

theory. To my knowledge, however, little work in this field has been done

against the background of strict ZF set theory; Tarski's own paper was

written within no particular system, but rather within what may be called

"intuitive set theory".

The reason for this apparent lack of interest in ZF , at least up

until recent years, can be readily explained. It is no good looking at

different finiteness criteria in any reasonable set theory that contains

AC , for in such a system all the well-known criteria are logically

equivalent. Specifically, as will be shown in this paper, any "reasonable"

finiteness criterion lies between two given criteria, namely £W-finiteness

and FDO-finiteness (see §3); and it is well known that even a weakened

form of AC is sufficient to enable us to prove these two conditions

equivalent. But it was not until 1963 that we knew for certain that AC

was independent of the ZF axioms; hence prior to that date any work on

finiteness criteria that was done in ZF set theory had somewhat the

appearance of an exercise in futility.
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322 J.L. Hickman

Since, in my opinion, ZF is one of the most comfortable set theories

in which to work, it seems reasonable to try to remedy this state of

affairs, and the aim of this paper is to take a step towards such a remedy

by stating and (where practicable) proving the relative strengths of a

number of finiteness criteria within ZF .

2.

In order to alleviate some of the notational difficulties that appear

to be inevitable in almost all branches of mathematics, I list here the

main notational conventions that I shall try to stick to throughout this

paper.

Logical:

1. "^" - negation;

2. "=" - definitional equivalence;

3. "•*•" - logical implication;

It, "-«-»-" _ logical equivalence;

5. "V" - universal quantification;

6. "3" - existential quantification;

7. "v" - disjunction;

8. "&" - conjunction.

Set theoretic:

1. "w" - set of natural numbers;

2. "P" - power-set operator;

3. "-" - set theoretic difference;

k. "-" - set theoretic equivalence;

5- "+" - union;

6. "•" - intersection;

7. "£" - generalized union;

8. "1 f" - generalized intersection.

Additional:

1. x, y, z , and so forth, are variables that range over arbitrary

sets;

2. f,g>h, and so forth, are variables that range over those sets

https://doi.org/10.1017/S0004972700047274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047274


Finiteness 323

that are functions;

3. k, m, n , and so forth, are variables that range over those sets

that are natural numbers;

h. von Neumann's definition of natural number is adopted, that is,

0 = p , n t 1 = ?i + in} . [The symbol "+" is used in two

senses here, but this slight ambiguity should cause no confusion.]

Thus "m < n" and "m £ n" may be regarded as synonymous;

5. "In" is a unary predicate applicable to functions and denotes

injectivity;

6. "+", "I" are unary predicates applicable to functions with domain

0) :

7- occasionally the notation "| |" will be used to denote

cardinality (of a set). Although not strictly legal in a paper of

this type, its use in certain places circumvents a much clumsier

notation;

8. all assertions and proofs are made within the language and

framework of ZF .

3.

The formal definitions of the finiteness criteria to be studied are as

follows.

DEFINITION 1. FN(x) = 3n(x - n) .

DEFINITION 2. FT(x) = Vy3zVw\y € P2(x)-M ->• z € y &

(w i yP(z) -* w = z)\ .

DEFINITION 3. FS(x) E \jf{f t P(x)
a & in(/) - ̂ (/)) .

DEFINITION 4. FDO(x) = Vy(y 6 P(x) & y = x + y = x) .

DEFINITION 5. FDl(x) i' PD0[P(x)) .

DEFINITION 6. FD2(x) E FD0{P2(x)) .
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Intuitively, a set x is

Ftf-finite if x contains n elements for some n ;

FT-finite if every non-empty subset of the poset (P(x), C) has a

minimal element;

FS-finite if the poset [P(X], C) satisfies the descending chain

condition;

FDO-finite if x is Dedekind finite;

FDl-finite if P(x) is Dedekind finite;

FO2-finite if P2(x) is Dedekind finite.

Clearly FT and FS have duals, FT* and FS* , for example

FS*(x) = V/(/ € P(x)1* & In(f) •+VK/)] . It is not at all difficult to

show that FT *-*• FT* and FS •<->• FS* : the proof of the latter is given

here, since the equivalence will be required later on in this paper.

LEMMA 1. FS *->• FS* .

Proof. Assume ^FS*(x) , that is, 3f[f t P(x)01 & In(f) & +(/)] .

For any such / , define g = g~ i P(x) by g(n) = x - f(n) . Then

clearly In(gO & t(g) , and so ^FS(x) . Hence FS •* FS* ; and the

converse is exactly analogous.

The relative strengths of the six criteria may be diagrammed as

follows:-

FN •*-+ FD2 *-»• FT

+
FS «->• FD1

FDO

The implications indicated by single arrows are in fact strict implications;

however, the proofs of their strictness require the construction of

non-standard ZF-models, and so, because of the complexity of even the

simplest of these, cannot be presented here. Suffice it to say that these

models can be constructed by the boolean technique described in Rosser [2],

but there would appear to be no reason why forcing methods as described in
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Cohen [/] could not be used.

The following lemma is used repeatedly in almost all work on

finiteness:

LEMMA 2. \/X\FD0(X) *-* V/(/ £ xa

Proof. Assume 'VPOO(x) , that is, 3y[y £ P(x)-{x] & y - x) . Then

it is routine to prove the existence of a triple (y, f, z) , where

y £ P(x)-{x}, f £ y is bijective, and z £ x-y . For any such triple,

define g = g - £ x u by g(0) = z, g(n+l) = f[g(n)) . Then clearly

In(g') . Conversely, assume 3/(/ £ x & In(/)} , and for any such / ,

y = y £ P{x)-{x] by y = x - {/(o)} , and define g = g. £ yX by

g[fM) = /("+l) and g(z) = z for z £ x-f'm . Then clearly g is

bijective.

4.

The most difficult of all the implications to prove is FS •* FD1 ;

this requires a couple of preliminary lemmas, and will be deferred to §5.

In this section the "lightweights" are dispatched.

Three of these are really trivial, and are dealt with at once.

THEOREM 1.

(i) FD1 •* FDO ;

(ii) FD2 * FD1 ;

(Hi) FD1 •* FS .

Proof (i). Assume ^FDO(x) , that is by Lemma 2,

3f[f £ / & In(/)) . For any such f , define g = g. £ P(x)" by

g(n) - if(n)} • Clearly In(^) , and so by Lemma 2 it follows that

. Hence FD1 •* FDO .

(ii.). This follows immediately from (i) upon the replacement of x

by P(x) .

(Hi). Assume 'VFS(x) , that is, 3f{f £ P(x)U & In(/) & +(/)) :
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follows at once by Lemma 2.

Because of these implications, there only remain the above-mentioned

implication FS •* FD1 , and the two equivalences FN -*->• FT, FN *-*• FD2 , to

prove.

THEOREM 2. FN *->• FT .

Proof. Assume FN(x) ; if x = $ , then FT{x) holds vacuously;

hence assume x # p . It is routine to prove (by induction on |x|) that

2 « P(x) -• FN(z) . For y € F2(a;)-{0} , define S € P(u>) by

5 = {ra ; J2(s € i/ & z = m)} . Then S t 0 , and so minS exists.

Thus s - minS for some z $ y , and clearly any such z is minimal in

y . Hence FT(.x) , and so FN + FT . Now assume ^FN(x) ; then it is

routine to prove, by induction on n , ir3y[y € P(x) & y - n) . Hence

the following set s = {y € P(x); FN(x-y)} i P2(x)-W , and has no minimal

element. Thus ^FT(x) , and so FT ->• FN .

THEOREM 3. FN -<-• FD2 .

Proof. From Lemma 2 it follows that FN •+ FDO ; thus if it can be

shown that FN(x) -* FN[P(X)) , it will follow that

FN{x) - FN{p{x)) + FN[P2{x)) -»• FD0[P2{X)) = FD2(x) .

2n
Thus assume FN{x) , that is, in(x - n) . Define / t. P(n) by

f(y) = X , X being the characteristic function n ->• 2 . It is easily

seen that f is bijective, and so P(x) - P(n) = 2n . Thus

FN(x) •* FN[P(x)) , and so FN •*• FD2 .

Now assume -VfW(x) , and define / € P 2 ^ ) " by

f{n) = {y t P(x) ; y - n) . Considerations similar to those in the proof

of Theorem 2 show that In(/) . Thus ^FD2(x) follows by Lemma 2, and so

FD2 •* FN .

5.

The remaining implication is FS -»• FD1 . As stated earlier, its proof

is longer than the previous proofs, and depends upon two preliminary

lemmas. Thus it might be best to commence with an informal outline.
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The proof proceeds, as usual, by contradiction, and so it is assumed

that f € P(x)"3 is injective; the problem is to construct g i P(s)u

such that In(g) and either +(<?) or + (<?) - by Lemma 1, it does not

matter which. An obvious construction is applied to / in an attempt to

construct h t P(x) such that In(h) & +(fe) : if it works, the proof

is complete. If it fails, however, then a proper subset xo of x can be

defined, as can a function /g € P(*o) with In(/0) . The original

problem has thus been relativized to XQ . Now the process is iterated,

and so after a finite number of iterations a strictly increasing function

will be produced, or else an inductive definition of a strictly decreasing

function can be given.

A well-ordering on the finite subsets of to is required. Thus:-

DEFINITION 7.

(i) Define S i P2(io) by S = {j f P(oo) ; FN(J)} .
(0 (1)

(ii) For J € S , J - n , define J* £ <m by

J*(k) = minij-iJHj)}^^) , for k € n .

DEFINITION 8. Define the binary relation

<t € p[[ I „*] x f I „<]]
L U^eu J Kim ))

as follows. For (/, g) i. if x OJ" , set

€ n v m = n & 3 W i fe C m & /(fe) € g{k)

Clearly <•, defines a well-ordering on £ w > a well-ordering can

now be induced on 5
0)

DEFINITION 9. Define the binary relation < ( pfs x S } as

follows. For J, K i S , set J < K i J* <1 K* .

Some terminology is required for the preliminary lemmas.
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DEFINITION 10. Let x be a set, and take y i P(x) , / 6 P{x)b

J d S .

(i) Define y/f (. P(w) by y/f = {n ; f{n)'y f 0} .

(ii) Define y§f € P2(x) by yttf = {f(n)-y € P(x) ; n i y/f} .

(iii) Define Jf € P(x) by J/ = [

The two preliminary lemmas can now be given.

LEMMA 3.

ixifiAf i Pix)" & In(f) & (j S S( + FN(Jffff)) -»• V S C K ) .

Proof. Given x , assume that / satisfies the hypotheses of the

lemma. It will be shown that \FS*(x) , from which ^FS(x) follows by-

Lemma 1. Let an attempt be made to define g i P{x) as follows:

g(0) = /(0) , g(n+l) = gin) + f(mj , mn = m±n{k ; f(k) $ P{g{n))} .

In order to show that this definition is valid, it is necessary to show

that for each n , m exists. For this it suffices to show that

'in~3j[j € 5 & gM = Jf] , for then the existence of m follows from

the hypotheses of the lemma.

For n = 0 this is trivial. Assume that gip) = Jof f°r some

Jo € 5^ . Since In(/) & FN{Joffff) , it follows that

3.7 \fU) \ p(&(f)) • L e t JO be the least such j , and put

Jl = JQ + {J'Q} ; then g(p+l) = J\f . Thus g is well-defined, and it is

clear that In(^) & +{g) .

LEMMA 4 . V*V/3J3n f € P(x)m & J 6 5 & J f # / - u -> f(n)§f - u] .
( 0) J

Proof. Given x, f , assume the hypotheses, and put

U = {J t S ; Jftff - a)} ,- X = min U . Then |JST| = 1 . For if not, put

Xo = {minJ} , Xi = X - Xo . Then |^.| 2 1 , and FN(x ./#/) , for

i < 2 . But \Xf#f\ 5 |X0.Wl
 + \Xlf#f\ < w , a contradiction. Thus

|X| = 1 .

https://doi.org/10.1017/S0004972700047274 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700047274


Finiteness 329

THEOREM 4. FS •* FD1 .

Proof. Assume FS(x) & ^FDl(x) , and let / i P(x)u be injective.

The construction referred to in the outline of this proof above is that

described in the proof of Lemma 3; it follows from the assumption FS(x)

that this construction must fail. Thus, in accordance with the outline, a

set Xg Z P(x)-{x} and an injection fg Z P(xg) must be defined. It may

of course be assumed the x \ f"ui ; and the analogous assumption can and

will be made with respect to each pair fx ., /.} to be defined. From the

If 1r

assumption FS(x) it follows, by Lemma 3, that Jfttf - u> for some

J Z 5 ; hence, by Lemma h, f(j)#f - u for some j Z w . Let Jo be

the least such j' , and put xg = f(Jo) ; clearly xg € P(x)-{x} .

Now define Jg Z P(Xg) as follows:

f o M = xO'f[kn) , kn = minjm ; xO'f(m) | {((>, x0, /g(0), ....

For each n , such a k exists, since Xnfff = U) ; thus fn is

71

well-defined. From the definition of /g it is clear that In(/o) a n d

that {x0, <j>> | P(/g"o)) .

Now assume that for each m 5 q , q Z u fixed, x , f have been

defined such that the following conditions hold:

(Ii) for each m < q , f 6 P(x ) u has been defined in terms of

fm and xm such that I n ^ } & {*m+1, *} Ifm and xm such that I n ^ } & {*m+1,

It follows from the assumption FS(x) that FS(x ) for m < q ; hence an

application of Lemmas 3 and h to the pair (x , / ] guarantees the

existence of j Z co such that / (j)fff - (0 ; let j . be the least

such j , and put x +. = f (j +.) . It is easy to see that (i) carries

over.

Now define / + 1 € P(x ) w as follows:
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where

Vm) *{p- Vi* Vi(0)' •••'
The verification that / is well-defined goes through as before, and it

is routine to check that (ii ) is carried over. Thus induction ensures the

existence of x for all n .

But then the function g € P(x) given by g{n) = x is well-defined

and strictly decreasing, from which ^FS(x) follows. This contradiction

proves the theorem.
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