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A reproducing kernel approach to Lebesgue decomposition®
Jashan Bal, Robert T.W. Martin, Fouad Naderi

Abstract. We show that properties of pairs of finite, positive and regular Borel measures on the complex unit circle such as domination, absolute
continuity and singularity can be completely described in terms of containment and intersection of their reproducing kernel Hilbert spaces
of ‘Cauchy transforms’ in the complex unit disk. This leads to a new construction of the classical Lebesgue decomposition and proof of the
Radon-Nikodym theorem using reproducing kernel theory and functional analysis.

Given a finite, positive and regular Borel measure, y, on the complex unit circle, dD), it is natural to consider its L2—space,
L2(u) = L*(u,0D), as well as H*(u) = C[g’]*”'Hsz, the closure of the analytic polynomials, C[¢], in L?(u). The
linear operator of multiplication by the independent variable, M%, is unitary on L?(u) and has H?(y) as a closed invariant

subspace so that Z# := M 2‘ |2 (u) is an isometry that will play a central role in our analysis. The u—Cauchy transform of

any h € H*(u) is the analytic function,

@@= [ ML) e o).
o 1-2z4
in the complex unit disk, D := (C);. Here, given a Banach space, X, (X); and [ X]; denote its open and closed unit balls in
the norm topology.

Recall that a reproducing kernel Hilbert space (RKHS), 3, is a Hilbert space of functions on a set, X, so that point
evaluation at any pointx € X yields abounded linear functional on the space. The Riesz representation lemma then implies
the existence of kernel vectors, kx, x € X, so that the bounded linear functional of point evaluation at x is implemented by
inner products against k. The function of two variables, k : X X X — C,

k('x5 y) = <kx’ky>g_(' >

is then called the reproducing kernel of J{. In this paper, all inner products and sesquilinear forms are conjugate linear in
their first argument and linear in their second argument. Any reproducing kernel function is a positive kernel function on
X X X, i.e. for any finite set {x1, -+ ,x,} C X, the n X n matrix,

[k(xisx)]i<i,j<n 20, 0.1)

is positive semi-definite. Conversely, by a theorem of Aronszajn and Moore, given any positive kernel function, k, on
X X X, one can construct a RKHS of functions on X with reproducing kernel k [3], see Subsection 1.2. Given this bijective
correspondence between positive kernel functions on X and RKHS of functions on X, one writes H = H(k) if H is a
RKHS with reproducing kernel k.

Equipping the vector space of u—Cauchy transforms with the H?(u)—inner product,

(6ug:Guh), = (. M2y &heH (),

yields a reproducing kernel Hilbert space (RKHS) of analytic functions in D, #* (u), with reproducing kernel,

1 1

K (z,w) = / ————u(d?); z,w € D. 0.2)
b 1—zL1-wl

Using the above formula (0.2), it is easy to check that domination of measures implies domination of the reproducing

kernels for their spaces of Cauchy transforms,

U<t t>0 = kH < kA,

see Theorem 3.1, where we write k < K for positive kernel functions k, K on X, if K — k is a positive kernel function on X.
We will say that A dominates u in the reproducing kernel sense (by t*> > 0) and write u <gg t*A to denote that k# < t>k*. By
results of Aronszajn, domination of kernels, k < ?K, is equivalent to bounded containment of their RKHS, i.e. k < *K if
and only if H(k) € H(K) and the norm of the linear embedding e : H (k) <> F(K) is at most # > 0 [3]. See Subsection
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1.2 for a review of RKHS theory and these results. In summary, domination of measures implies bounded containment of
their spaces of Cauchy transforms:

U<t = () CHT), e (W) > I, llepall <t

ie u < 1?21 = u <gg *A.

Building on this observation, we show that domination and, more generally, absolute continuity, as well as mutual
singularity of measures can be completely characterized in terms of their spaces of Cauchy transforms. Moreover, we
develop an independent construction of the Lebesgue decomposition and new proof of the Radon-Nikodym theorem
using reproducing kernel methods and operator theory.

Outline

The following Background section, Section 1, provides an introduction to (i) the bijective correspondence between positive,
finite and regular Borel measures on the circle and contractive analytic functions in the disk, (ii) reproducing kernel theory
and (iii) the theory of densely—defined and positive semi-definite quadratic forms in a separable, complex Hilbert space.

Section 2 introduces the reproducing kernel Hilbert spaces, Z* (), of u—Cauchy transforms associated to any positive,
finite and regular Borel measure, i, on the complex unit circle. These are Hilbert spaces of holomorphic functions in the
complex unit disk.

Our first main results appear in Section 3. Theorem 3.1 proves that domination of positive measures in the reproducing
kernel sense is equivalent to domination in the classical sense:

Theorem 3.1  Given positive, finite and regular Borel measures, 1 and A on the unit circle, u <gg 1> for some t > 0 if and only
ifu <r’A.

This result is extended to general absolute continuity, written ¢ < A, in Theorem 3.12. Namely, we say that y is
absolutely continuous in the reproducing kernel sense with respect to A, written u <grg 4, if the intersection of the space
of u—Cauchy transforms with the space of A—Cauchy transforms, int(y, 4), is norm-dense in Z* (u).

Theorem 3.12  Let u, A be positive, finite and regular Borel measures on OD. Then p << A if and only if u <grg A.

Moreover, Theorem 3.12 gives a formula for the Radon-Nikodym derivative of y with respect to A in terms of the
closed, densely—defined embedding, e, 4 : int(u, A) == Z*(u) NH*(A) C I (1) — FH*(A).

These are satisfying results, however, actual construction of the Lebesgue decomposition of u with respect to A using
reproducing kernel methods is more subtle and bifurcates into the two cases, where: The intersection space, int(u, 1) =
H*(u) N F*(Q), of the spaces of u and A—Cauchy transforms is (i) invariant, or, (ii) not invariant, for the image, V¥, of
ZH =M éf |2 (1) under Cauchy transform. Some necessary and sufficient conditions for this to hold are obtained in Lemma
4.3 and Proposition 4.7. Namely, as described in Subsection 1.1, there is a bijection between contractive analytic functions
in the complex unit disk and positive, finite and regular Borel measures on the circle. If a positive measure, u, corresponds
to an extreme point of this compact, convex set of contractive analytic functions, we say that y is extreme, otherwise yu is
non-extreme. As established in Lemma 4.3 and Proposition 4.7, the intersection space, int(u, 1) will be V,,—reducing if (i)
A is non-extreme or if (i) 4 + A is extreme, and the intersection space will be non-trivial and not V,—invariant if u, A are
both extreme but u + A is non-extreme.

In the positive direction, we obtain:

Theorem 4.5 Let y and A be finite, positive and regular Borel measures on the unit circle. If the intersection space, int(u, ) is
V,—invariant and u = p4c + [ is the Lebesgue decomposition of u with respect to A, then

(1) =X (fac) © I (ps).
In this case,
H* (ae) = int(, )7 and g+ () 0 () = {0}.
Given two positive, finite and regular Borel measures, y and A, on the complex unit circle, 3D, one can associate to y a
densely-defined and positive semi-definite sesquilinear or quadratic form in H?(1). Namely, we define the form domain,
Domgq, € H 2(Q), as the disk algebra, Dom qyu = A(D), the unital Banach algebra of all uniformly bounded analytic

functions in the unit disk which extend continuously to the boundary, equipped with the supremum norm. The disk algebra
embeds isometrically into the continuous functions on the circle, € (0D) and A(D) can be viewed as a dense subspace of
2
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H?*(A). The quadratic form, q,, : Dom q,, X Dom g, — C is then defined in the obvious way by integration against y,

Qg ) = /a F@MOud). g € AD) = Doma 03)

As described in Section 3 and Theorem 3.8, there is a theory of Lebesgue decomposition of densely—defined and positive
semi-definite quadratic forms in a Hilbert space, }{. Namely, given any such form, there is a unique Simon—Lebesgue form
decomposition,

q = qgc t Qs>

where 0 < qgc, G5 < q, e is absolutely continuous in the sense that it is closeable and it is maximal in the sense that g
is the largest closeable quadratic form bounded above by q. The form qj is singular in the sense that the only closeable
positive semi-definite form it dominates is the identically O form. Here, a positive semi-definite quadratic form, g, with
dense form domain Dom ¢ in H, is closed, if Dom q is a Hilbert space, i.e. complete, with respect to the norm induced by the
inner product q(-, -) + (-, -)g¢. A form is then closeable if it has a closed extension. See Subsection 1.3 for an introduction to
the theory of densely—defined and positive semi-definite quadratic forms.

An immediate question is whether the Simon-Lebesgue decomposition of the form, q, in H 2(Q) coincides with the
Lebesgue decomposition of y with respect to A. Namely, if u = pq-+us and q, = quc+0s, thenisit true that q,c = gy, and
0s = Ou,? A complete answer, summarized in the theorem below, is provided in Theorem 4.12, Theorem 4.18, Corollary
4.14 and Corollary 4.15.

Theorem If Gy = Qac + Qs is the Simon—Lebesgue form decomposition of q,, in H?*(Q), then
%+(ﬂ) = %+(Qac') @ %+(QS)7
where
%+(Qac) = int(ﬂ7/l)_H.H”~

If 4 = pge + U is the Lebesgue decomposition of p with respect to A, then

%+(ﬂ) = %+(ﬂac) +%+(/«ls)9

is a complementary space decomposition in the sense of de Branges and Rovnyak, with Z* (ua.), I (us) contractively contained
in Z*(w). Moreover, Z* (Uac) is the largest RKHS, H (k), contractively contained in Z*(qac) S F+(w) so that the closed
embedding, e : H(k) N I+ (1) C H(k) — F*(A), is such that T := ee* is Toeplitz for the image, V*, of Z* under Cauchy
transform, i.e. VA*tVA = 1. In particular, the Simon—-Lebesgue decomposition of the quadratic form, A in H*(Q) coincides with
the Lebesgue decomposition of (1 with respect to A if and only if int(u, A) is V¥ —invariant.

In the above, the spaces of g, and q;—Cauchy transforms are defined in an analogous way to the space of y—Cauchy
transforms, see Subsection 4.1. By Proposition 4.7, the intersection space, int(u, 4), is not always V¥ —invariant. Example
4.9 (continued in Example 4.17) provides a concrete example, where ¢ = my and A = m_ are the mutually singular
restrictions of normalized Lebesgue measure, m, to the upper and lower half-circles, so that the Lebesgue decomposition
of m, with respect to m_ has m.q. = 0 but int(m,, m_) # {0}, so that q,,,,qc # 0.

Remark This ‘reproducing kernel approach’ to measure theory on the circle and Lebesgue decomposition of a pos-
itive measure with respect to Lebesgue measure was first considered and studied in [14, 15], in a more general and
non-commutative context.

1 Background

1.1 Function theory in the disk, measure theory on the circle

Classical analytic function theory in the complex unit disk and measure theory on the complex unit circle are fundamen-
tally intertwined. There are bijective correspondences between (i) contractive analytic functions in the disk, (ii) analytic
functions in the disk with positive semi-definite real part, i.e. Herglotz functions and (iii) positive, finite and regular Borel
measures on the complex unit circle. Namely, starting with such a positive measure, y, its Herglotz—Riesz transform is the
Herglotz function,

Hy(2) = /a ) :”; (d¢) € 6(D).

—Z
3
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Itis easily verified that Re H,,(z) > 0, is a positive harmonic function. Applying the inverse Cayley transform to any Herglotz
function, i.e. the Mobius transformation sending the open right half-plane onto the open unit disk, D, which interchanges
the points 1 and 0, yields a contractive analytic function, b, in the disk,

|b,(2)] <1, z€D.

(By the maximum modulus principle, b, is strictly contractive in D unless it is constant.) Each of these transformations is
essentially reversible. Namely, given any contractive analytic function, b, the Cayley transform, Hp, := %, is a Herglotz

function and the Herglotz representation theorem states that if H is any Herglotz function in the disk, then there is a unique
finite, positive and regular Borel measure, u on the circle, so that

H(z) =ilm H(0) +/8]D :+Z§,u(d§) =ilm H(0) + H,(2),

—Z
see [13, Boundary Values, Chapter 3]. To be precise, two Herglotz functions correspond to the same positive measure, y, if

and only if they differ by an imaginary constant. If H;, H; are two Herglotz functions so that H, = H; +if for some t € R,
then their corresponding inverse Cayley transforms obey

z(1) z—z(t) t
b,=—=-m by, m =——7 2(t) = 5— >
2= M e b () (2) L r0 2(1) = o
so that b5 is, up to multiplication by the unimodular constant %, a Mobius transformation, M), of b1, where mg ()

defines an automorphism of the disk interchanging 0 with z(¢).

If a contractive analytic function, b, corresponds, essentially uniquely, to a positive measure, y, in this way, we write y :=
Up, and pp, is called the Clark or Aleksandrov—Clark measure of b [5]. Many properties of contractive analytic functions in
the disk can be described in terms of corresponding properties of their Clark measures and vice versa [1, 2]. For example, by
Fatou’s theorem, the Radon-Nikodym derivative of any Clark measure, yp, with respect to normalized Lebesgue measure,
m, on the circle is given by the radial, or more generally non-tangential, limits of the real part of its Herglotz function,

#o(de) = limRe Hy (r{); m-—a.e., { € 0D
m (dg ) rT1
2

O 025 T

P11 =b(ro)|?
[7], [13, Fatou’s Theorem, Chapter 3]. As a corollary of this formula, we see that b is inner, i.e. it has unimodular radial
boundary limits m—a.e. on the circle, if and only if its Radon-Nikodym derivative vanishes almost everywhere, i.e. if and
and only if its Clark measure is singular with respect to Lebesgue measure.

As a second example which will be relevant for our investigations here, b is an extreme point of the closed convex set of
contractive analytic functions in the disk if and only if its Radon-Nikodym derivative with respect to Lebesgue measure is
not log-integrable. That is, b is an extreme point if and only if

up(d)
m(d{)
This follows from the characterization of extreme points in the set of contractive analytic functions given in [13, Extreme
Points, Chapter 9] and Fatou’s Radon-Nikodym formula as described above. Here, equipping the set of all bounded analytic
functions in the disk with the supremum norm, we obtain the unital Banach algebra, H*, the Hardy algebra, whose closed
unit ball, [ H*], is the compact and convex set of contractive analytic functions in the disk. It further follows from a well-
known theorem of Szego (later strengthened by Kolmogoroff and Krein), that H?(u) = L?(u) if and only if u = py, for an
extreme point b € [H*]; [13, Szegd’s Theorem, Chapter 4], [23]. Namely, Szeg’s theorem gives a formula for the distance
from the constant function 1 to the closure of the analytic polynomials with zero constant term in L2 (p):

s

¢ L'=L'(m).

log

) u(do)
infpecioyll = pla | = exp / log “49€)  ag).
s L2 o °m(dl)

It follows, in particular, that b is an extreme point so that j—f:l is not log-integrable if and only if 1 belongs to the closure,
Hg (u), in L?(u) of the analytic polynomials obeying p(0) = 0. That is, if and only if Hé (1) = H?(p). An inductive
argument then shows that this is equivalent to H?(u) = L?(u), so that Z¥ = M? lE2 () = M? is unitary. If ¢ = pp, is the
Clark measure of an extreme point, b, we will say that u is extreme, and that y is non-extreme if b is not an extreme point.
The results of this paper reinforce the close relationship between function theory in the disk and measure theory on the

circle by establishing the Lebesgue decomposition and Radon-Nikodym theorem for positive measures using functional
4
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analysis and reproducing kernel theory applied to spaces of Cauchy transforms of positive measures. We will see that the
reproducing kernel construction of the Lebesgue decomposition of a positive measure y, with respect to another, 4, bifur-
cates into the two cases, where: the intersection of the spaces of u and A—Cauchy transforms, is (i) invariant, or (ii), not
invariant for the image of Z# under Cauchy transform. Moreover, whether or not this intersection space is invariant is
largely dependent on whether 4, or i + A are non-extreme or extreme.

1.2 Reproducing kernel Hilbert spaces

As described in the introduction, a reproducing kernel Hilbert space (RKHS) is any complex, separable Hilbert space of
functions, J{, on a set X, with the property that the linear functional of point evaluation at any x € X is bounded on J<.
Further recall, as described above, that for any x € X, there is then a unique kernel vector or point evaluation vector, k,, € J
so that (ky, h)qc = h(x) for any h € H and we write H = H(k), where k : X X X — Cis a positive kernel function on X in
the sense of Equation (0.1). Much of elementary reproducing kernel Hilbert space theory was developed by N. Aronszajn
in his seminal paper, [3]. In particular, there is a bijective correspondence between RKHS on a set X and positive kernel
functions on X given by the Aronszajn—-Moore theorem, [3, Part I, [20, Proposition 2.13, Theorem 2.14] and this motivates

the notation H = H (k).

Theorem (Aronszajn-Moore) If H = F(k) is a RKHS of functions on a set, X, then k is a positive kernel function on X.
Conversely, if k is a positive kernel function on X, then there is a (necessarily unique) RKHS of functions on X with reproducing
kernel, k.

Any RKHS, H(k), of functions on a set X, is naturally equipped with a multiplier algebra, Mult(k), the unital algebra of
all functions on X which ‘multiply’ H (k) into itself. That is, g¢ € Mult(k) if and only if g - h € H (k) for any h € H (k).
Any h € Mult(k) can be identified with the linear multiplication operator My, : H (k) — H(k). More generally, one
can consider the set of multipliers, Mult(k, K), between two RKHS on the same set. If 7 € Mult(k, K), then M, is always

bounded, by the closed graph theorem. Adjoints of multiplication operators have a natural action on kernel vectors: If
h € Mult(k, K), then

MK, =k h(z).

All RKHS in this paper will be RKHS, H(k), of analytic functions in the complex unit disk, D = (C){, with the additional
property that evaluation of the Taylor coefficients of any & € H (k) (at 0) defines a bounded linear functional on H (k).
Again, by the Riesz representation lemma, for any j € N U {0}, there is then a unique Taylor coefficient kernel vector,
kj € H(k), so that if h € J((k) has Taylor series at 0,

hz) =) 2,
j=0

then <kj, h)ﬂf(k) = h] It follows that

k(i J) = (kiskj) g0 »
defines a positive kernel function, the coefficient reproducing kernel of H(k), on the set N U {0}. It is easily checked that for
any such Taylor coefficient reproducing kernel Hilbert spaces, H (k) and H(K), of analytic functions in D,

k<K o k<K

The reproducing and coefficient reproducing kernels of a Taylor coefficient RKHS in D are related by the formulas:

k(z,w) = Z k(j,0)zZw’, and k, :szkj'
J.€=0 j=0
Adjoints of multipliers also have a natural convolution action on coefficient kernels, if 2z € Mult(K, k), then,
MiKe =Y kihj. (L.1)
i+j=C

We will say that a RKHS, H(k), of analytic functions in X = D is a coefficient RKHS in D, if Taylor coefficient evaluations
define bounded linear functionals on H (k). In this case the positive coefficient kernel function k on N U {0} is an example
of a discrete or formal reproducing kernel in the sense of [4].

In this paper it will be useful to consider densely-defined multipliers between RKHS H(K), H (k) on X, which are not

necessarily bounded.
5
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Proposition 1.1 (Multipliers are closeable) Let k, K be positive kernel functions on X, and let h be a function on X so that the
linear operator My, : Dom M), € H (k) — F(K) has dense domain, Dom M},. Then My, is closeable, and closed on its maximal
domain, Dompy, My, := {g € H(k)| h-g € H(K)}, MKy = kyxh(x), and V xex Ky is a core for MY, if My, is defined on its
maximal domain.

Recall that a linear operator with dense domain in a Hilbert space, J{, is said to be closed if its graph is a closed subspace
of H@®H. Further recall that a dense set, 2 C Dom A, contained in the domain of closed operator, A, is called a core for A if
A is equal to the closure (minimal closed extension) of its restriction to 9. In general, given any two linear transformations
A, B, we say that B is an extension of A or that A is a restriction of B, written A C B, if Dom A C Dom B and B|pom 4 = A.
Equivalently, the set of all pairs (x, Ax), forx € 9, is dense in the graph of A. Finally, A is closeable if it has a closed extension.

Proof Define Domy,,x M}, to be the linear space of all g € H (k) so that & - g € JH(K). This is the largest domain on
which M}, makes sense. If g, € Domp,y My, is such that g, — g and Mg, — f, then since H(k), H(K) are RKHS, it
necessarily follows that

gn(x) = g(x), and  h(x)gn(x) = h(x)g(x) = f(x), x € X.

This proves that f = h-g,sothat g € Dompy,,y My, and M, is closed on Domy,.x M}, If M}, is densely-defined on some other
domain, Dom M}, then Dom M}, € Domy,,x M}, by maximality, so that M}, has a closed extension, and is hence closeable.

The fact that \/ K, is a core for M ;‘l follows from the assumption that M}, is defined (and closed) on its maximal domain.
By maximality, M}, with domain Domy,,y M}, has no non-trivial closed extensions which act as multiplication by A. Let
T. be the closure of the restriction of M; to\V/ Ky. Then T, C M; is densely—defined and closed so that M, € T := T},
where T, the adjoint of T, is necessarily closed so that T* = T,.. However,

T*K, = M} K, = K h(x),

so that T necessarily acts as multiplication by % on its domain. By maximality, Dom 7 = Dom ,,x M}, and M), =T. [

Remark 1.2 1f H (k) and H(K) are Taylor coefficient RKHS in D, then one can further show that the adjoint of any closed
multiplication operator, M, : H(k) — H(K) acts as a convolution operator on coefficient kernels, as in Equation (1.1),
and the linear span of all Taylor coefficient kernels is also a core for M.

One can define a natural partial order on positive kernel functions on a fixed set, X. Namely, if k and K are two positive
kernel functions on the same set, X, we write k < K, if K — k is a positive kernel function on X. Notice that the identically
zero kernel function is a positive kernel on X, so that k < K can be equivalently written as K — k > 0. The following
theorem of Aronszajn describes when one RKHS of functions on X is boundedly contained in another in terms of this
partial order, [3, Section 7] [20, Theorem 5.1].

Theorem (Aronszajn’s inclusion theorem) Let k, K be positive kernel functions on a set, X. Then H (k) € H(K) and the norm
of the embedding e : H{ (k) — H(K) is at most t* > 0 if and only if ’ K > k.

If k and K are both positive kernel functions on a set, X, it is immediate that k + K is also a positive kernel function on
X. The following ‘sums of kernels’ theorem of Aronszajn describes the norm of H(k + K) and the decomposition of this
space in terms of H (k) and H(K) [3], [20, Theorem 5.4, Corollary 5.5]. Notice, in particular that k, K < k + K as kernel
functions so that H (k) and H{(K) are contractively contained in H (k + K), by the inclusion theorem.

Theorem (Aronszajn’s sums of kernels theorem) Let k, K be positive kernel functions on a set, X. Then, H(k + K) = H(k) +
H(K) and

||h||12}6(k+1<) = min{”f”:z}f(k) + ”g”é((]()l f+g=nh}.
In particular, H(k + K) = H(k) & H(K) if and only if H(k) N H(K) = {0}.

Observe that the sums of kernels theorem asserts that the algebraic sum H(k + K) = H(k) + H(K) is a direct sum
if and only if it is an orthogonal direct sum. More can be said about this decomposition and the structure of H(k + K)
using the theory of operator-range spaces of contractions and their complementary spaces in the sense of de Branges and
Rovnyak [6], [8, Chapter 16]. Let A € Z(J, J) be a bounded linear operator. The operator-range space of A, Z(A), is the
Hilbert space obtained by equipping the range of A with the inner product that makes A a co-isometry onto its range. That
is, Z(A) = Ran A C J, with inner product,

(Ax, Ay) 4 == gx, PéerAy%f .
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One can generally show that Z(A) = R(VAA*), [8, Corollary 16.8]. If A is a contraction, ||A]| < 1, then Z(A) C J
is contractively contained in J in the sense that the embedding, e : #(A) < { is a linear contraction. In this case, one
can define the complementary space of A, R°(A) = R(VI — AA*). The notion of complementary space was originally
introduced in a more geometric way by de Branges and Rovnyak [6]. Namely, if J{ is any Hilbert space and # C H is a
Hilbert space which is contractively contained in H, then & = R(j), where j : & — H is the contractive embedding. L.
de Branges and J. Rovnyak defined the complementary space, Z¢ of X as the set of all y € I so that

2 2
sup ([ly +x[l5¢ = [Ix[I5) < +oo.

XER

One can prove that ¢ = %€ (j) and that the above formula is equal to the norm of y in &€ (j), so that these two definitions
coincide [8, Chapter 16]. The following theorem summarizes several results in the theory of operator-range spaces, see [8,
Chapter 16].

Theorem 1.3 (Operator-range spaces of contractions) Let A € L (I, J) bea contraction. Ife : B(A) — Jandj: R (A) —
d are the contractive embeddings, then

J=R(A)+R(A).
Foranyx =y +z € Jsothaty € R(A) and z € R (A), the Pythagorean equality,
||x||?; = ”y”(zqg(A) + ”ZH?QC(A)’ (1.2)
holds if and only if y = ee*x and z = jj*x, so that, in particular, Ij = ee* +jj*. As a vector space, the overlapping space is
R(A)NR(A) = AR (A7),

and A : R (A*) — R (A) acts as a linear contraction.

Moreover, the following are equivalent:

(i) A is a partial isometry,
(i) R(A) and R€(A) are isometrically contained in J as orthgonal complements, § = R(A) & R (A),
(iii) F(A)NR°(A) ={0}.

Observe that, as in Aronszajn’s sums of kernels theorem, the algebraic sum § = Z(A) + Z°(A) is a direct sum if and
only if it is an orthogonal direct sum.

Theorem 1.4 Let H(K) be a RKHS on a set, X. If H (k) is another RKHS on X which embeds, contractively, in H(K), and
e : H(k) — FH(K) is the contractive embedding, then F(k) = FK(e) and the complementary space, K€ (e), is the RKHS on X
with reproducing kernel K — k.

An embedding of RKHS, e : H (k) — H(K), is necessarily injective.

Proof Lete : H(k) < H(K) be the contractive embedding and consider the operator-range space of e. Given any
g, h € H(k), we have that

(eg.eh). = (g, Mgc(x) »
since e is injective. Hence, for any x € X,

(ks ehye = (ks Mgty = h(x) = (eh) (%), (1.3)

and it follows that % (e) = H (k). Indeed, equation (1.3) shows that % (e) is a reproducing kernel Hilbert space on X with
point evaluation vectors ky := ek and that forany x,y € X,

k(x,y) = <%X,Ey>e = (kx, ky> =k(x,y),

so that R(e) = 3‘((%) = H(k). Now consider the complementary space, Z€(e), of H(k) = R(e). Since this
complementary space is contractively contained in H(K), for any VI — ee*g € R (e),

<(I —ee")K,, mg>% = <VI - ee*I(x,g>
- (VI —ee*g)(x),

H(K)
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proving that %€ (e) is also a RKHS on X with point evaluation vectors k', := ({ — ee*) K. Hence,

kK (x,y) = <k;,k'y>% =((I —ee")Ky, (I - ee*)Ky>%,
= <Kx, (- ee*)Ky>}C(K)
= K(-x’y) - k(x5 y)

Ifj: R (e) — H*(u) is the contractive embedding, then observe that jj* + ee* = I3¢(k), so that
A() = RWj*) = F (e).

The previous theorem and Theorem 1.3 provide additional information on the structure and decomposition of H(k+K)
in Aronszajn’s sums of kernels theorem.

Corollary 1.5 Let k, K be positive kernel functions on a set, X and let e : H (k) — H(k + K) andj : H(K) — H(k + K)
be the contractive embeddings. Then we can identify H (k) and H(K) with the operator range spaces R (e) and R (j), respectively.
Moreover, I3 (k+k) = ee"+j* so that H(K) = R (e) is the complementary space of R(e) = F(k), and given any h € H(k+K),

1All7x = e hIIE + 11" All% -

The intersection space, H(k) N H(K) is equal to e R (e*) and jRC(j*), and e : R (e*) — K (e) = H(K),j: R°(*) —
FKE(j) are contractions.

Finally, as described in [18] and [17, Section 5], we can define a pair of natural ‘lattice operations’, V and A on the set of
all positive kernel functions on a fixed set, X. Given two positive kernel functions, k and K, on X,let k VK =k + K, a
positive kernel function on X. We can also construct a second RKHS on X by defining

int(k, K) := H(k) N H(K),
equipped with the inner product

(& M pak =g M) +(g Mk -

It is not difficult to verify that int(k, K), equipped with this inner product is complete, and that point evaluation at any
x € X defines abounded linear functional on int(k, K), so that this is a RKHS, H(k A K), of functions on X. The following
theorem describes a useful relationship between H (k + K) and H(k A K) [17, Theorem 5.2], [18].

Theorem (Sums and intersections of RKHS) Let k, K > 0 be positive kernel functions on a set, X. Define two linear maps, Uy
and U, of H(k + K) and H(k A K), respectively, into H (k) & H(K) by

Uyk+K)y =k ®Ky, xeX, and Upf:=f@d—f, feH(kAK).
Then, Uy, U, both define isometries into H (k) & JH(K) with Ran Uy = Ran U3, so that
Hk)® H(K) =U,H(k+K) ® U\FH(k AK).

The point evaluation vectors for H(k A K) = H (k) N FH(K) are given by the formulas

1
(k AK)x = EUT\(KX ® —ky) = Uj\(Kx ®0) = U;F\(O69 —kx).

1.3 Positive quadratic forms

A quadratic or sesquilinear form, q : Dom q X Dom q — C, with dense form domain, Dom q in a separable Hilbert space,
H, is said to be positive semi-definite if q(x,x) > O for all x € Dom q. Such a quadratic form is said to be closed, if Dom q
is complete with respect to the norm induced by the inner product

<'» '>q+ib = ('7 >9‘C + q(» )

and q is closeable if it has a closed extension. We will let H ©)) denote the Hilbert space completion of Dom g with respect

to this g + id—inner product. Hence, q is closed if and only if H(q) = Dom q. If g > 0 is closeable, then its closure, g, is

the minimal closed extension of . By Kato, closed positive semi-definite forms obey an ‘unbounded version’ of the Riesz
8
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Lemma [16, Chapter VI, Theorem 2.1 and Theorem 2.23]. Namely, q > 0 is closed if and only if there is a unique self-adjoint,
densely-defined and positive semi-definite operator, A, so that Dom q = Dom VA and

q(x.x) = qa(x,x) = («/Zx, m)}(

Any self-adjoint operator is necessarily closed. Following Kato and Simon, we can define a partial order on densely—defined
and positive semi-definite forms by q; < q; if

(i) Dom g, € Dom qy, and
@) qi(x,x) < gz2(x,x) for allx € Dom ;.

In particular, if g4 and qp are the closed forms of the self-adjoint and positive semi-definite operators A and B, we say
that A < B in the form sense if ga < qp as forms. This reduces to the usual Léwner partial order on bounded, self-adjoint
operators, if A and B are bounded. At first sight, it may seem strange that the larger’ form in the above definition may have
a smaller domain. The following result of Kato provides some justification for this [16, Chapter VI, Theorem 2.21], [22,
Proposition 1.1].

Lemma 1.6 (Kato) Let A, B > 0 be self-adjoint and densely—defined in H. Then A < B in the form sense if and only if
(tI+A)'<@tl+B)7",
foranyt > 0.

Recall that if A is a closed operator with dense domain, Dom A C I, that 2 C Dom A is called a core for A, if A
is equal to the closure of its restriction to 9. Similarly, if q is a closed, densely—defined and positive semi-definite form,
a (necessarily dense) set & C Dom q is called a form-core for q, if & is dense in J{(q) It is not difficult to verify that if
q = q4 is closed, then 9 is a form-core for q if and only if P is a core for VA.

Toeplitz forms. The classical Hardy space, H> = H?*(D), is the Hilbert space of square-summable Taylor series in the
complex unit disk, equipped with the £2—inner product of these coefficients. By results of Fatou, any element of H> has
non-tangential boundary limits almost everywhere on the unit circle, 9D, with respect to normalized Lebesgue measure,
m [13]. Identifying any & € H? with its boundary limits defines an isometric inclusion of H? into L? = L?(m). Classically,
Toeplitz operators, T, on H?, are defined as the compression of bounded multiplication operators on L? to H2. Namely,
T =T, :== PppMg|p2, and ||Tg|| = [|Mg]| = ||gllc so that g € L*. A theorem of Brown and Halmos, [10, Theorem 6],
characterizes the Toeplitz operators as the set of all bounded operators, T, on H? which obey the simple algebraic condition,

S*TS =T,

where S = M, is the shift on H?, the isometry of multiplication by z. Under the boundary value identification of H? with
the subspace H?(m) C L?(m, dD), the shift is identified with the isometry S = Z" = M’Z’ | E22 (m) -

Recall, as described in the Outline, given a positive, finite and regular Borel measure, i, on D, we can associate to u the
densely-defined and positive semi-definite quadratic form, q,,, with dense form domain, Dom q,, := A(D) in H 2= H*(m),
where m is normalized Lebesgue measure. This positive form, q,,, is an example of a Toeplitz form, as studied by Grenander
and Szeg6 in [9]. Namely, Dom q, = A(DD) obeys SDom q,, € Dom q_,, and

0, (Sx,8y) = qu(x,y); x,y € A(D) = Dom qp.

If g, is closeable so that ﬁ = qr for a closed, self-adjoint 7 > 0, then by Kato’s unbounded Riesz lemma we have that
S*TS =T, and our results will show that

du ,
qu(x,y) —<M\/7X,M\/7y>m, f= o eL', x,y e A(D),
see Theorem 3.12. Hence, T = Ty = P2 My|pp2 is a closed, potentially unbounded Toeplitz operator with symbol f, in
this ‘quadratic form sense’. In particular, if T > 0 is bounded, which happens if and only if u < t*m for some ¢ > 0, then
by the Riesz representation lemma, S*T'S = T, so that T is a bounded Toeplitz operator by Brown-Halmos, in which case

T=Tsfor f= Zl—r’:l € L™ and || f||e < t, by Theorem 3.1 and Corollary 3.2.
9
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2 Spaces of Cauchy transforms

Let u be a positive, finite and regular Borel measure on the complex unit circle. Recall that given any h € H?*(u) =
Cl¢] 20 s p—Cauchy transform is the function

(Guh)(2) = /H @) ﬁuwg) = (ko hypagys ko(0) = (1-20)7, @.1)

We will call the functions k, z € D, Szegi kernel vectors.

Recall that A(D) denotes the disk algebra, the unital Banach algebra of analytic functions in D which extend contin-
uously to the boundary, dD. Since the analytic polynomials are supremum-norm dense in A(D), viewed as a subspace of
the continuous functions, € (D), on the circle and H? () = A(D)fll'”Lz(m, it follows that H?(u) = C[g’]fH'HLZ(M =
A(D)_”'HLZW. Similarly, #p := V ep k; is also supremum-norm dense in A(D) C €(dD), so that this subspace is also
dense in H% ().

Lemma 2.1 The u—Cauchy transform of any h € H? () is holomorphic in D.

Proof Givenany z € D, since (€,/)(2) = (kg, h)p2(,), consider the Leibniz difference quotient

Guh - (Buh
lim ( M )(Z+€) ( M )(Z) = lim E_l <kz+6 _kZah>L2(lu) .

€e—0 € e—0

(Here, recall that our inner products are conjugate linear in their first argument.) This limit will exist and &,/ will be
holomorphic, if and only if the limit of € ' (k,4¢ — k) exists in H?(y). This limit exists in supremum norm on the circle
(and so belongs to A(ID)), and so it certainly exists in the L?()—norm by Cauchy—Schwarz. Indeed,

. ke (0) = k() . 1_ZZ_(1_ZZ_ZE)
m —, m

li =1 — =
€0 € e(1-4z)(1-L(z+¢)
__ ¢
(1-42)°
and this limit is continuous on D for any fixed z € D. Hence €,,h € O(D) for any h € H*(p). [

Let Z*(u) = €,H*(1) € O(D) be the complex vector space of u—Cauchy transforms equipped with the inner
product,

<(gﬂg’%ﬂh>ﬂ =& M 2y -

Lemma 2.2 The space of u—Cauchy transforms, Z* (u), is a RKHS of analytic functions in D with reproducing kernel

1 1
Ko = /aD 1-z¢1 —Wé“'u(d{) = ke kowdigo

B al(Z) +H,(w)

2 1—2zw

where H, (2) = [, ::% u(d?) is the Herglotz—Riesz transform of p.

By construction, €, is an isometry of H* (1) onto Z* (u).

Proof To show that this inner product is well-defined, we need to check that €, 4 = 0 in the disk implies that 4 = 0 in
H?*(u). Indeed,

(Buh) (2) = (kes ) g

and since \/ k; is dense in A (D), the linear span of the Szego kernels is also dense in H? (1) as described above. Hence this
vanishes for all z € D if and only if & = 0.
By definition, for any z € D,

(Guh)(2) = (zs B 2y = (Gpukz, Guh)
10
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so that Z* () is a RKHS in D with kernel vectors k% = 6.k and reproducing kernel

1 1
I = = —
0w = (ke Gk g = [ =)
Finally,
—_— 1+z 1+w
Ha) o = [ z: d)+ / e ute)
= 2(1-zw) ﬂ(dé“)
v 11—z 1-
establishing the second formula. [

Example 2.3 (Hardy space.) If 4 = m is normalized Lebesgue measure, then,

Hy(2) = /a ) I 2 o)

Z

- [ (@) ~m(@m)
op 1 —2z(
=i [ Pntaw)- [ miao
= Jop oD
—i = /Zn -ii0gg — . /ane—za -1=1
_j=0ZE0 ¢ Eo -0 -

It follows that b,,, := Z’": = 0, so that m = p is the Clark measure of the identically O function. Moreover,
1H, +H 1
km(Z, W) —— m(z) _m(w) — — = k(Z, W),
2 1—zw 1—zw

is the Szego kernel. This is the reproducing kernel for the classical Hardy space H?> = H?*(D), of square—summable Taylor
series in the complex unit disk, equipped with the £2—inner product of the Taylor coefficients. That is, %+ (m) = H?

Since any h := G,g € #* () is holomorphic in the open unit disk, its Taylor series at 0 has radius of convergence at

least one,
h(z) = Z hjzl.
Jj=0

Moreover, expanding k() in a convergent geometric sum,

@)= hyel = e, )2 = 2.2 {0, 8) 12

J=0 J=0

= Y6,

j=0
and it follows that the Taylor coefficients are given by
hj=(€ul’,h),;  jeNU{0}.

That is, for any j € N U {0}, the linear functionals £; (k) = fzj are bounded on #*(u) and are implemented by inner
products against the Taylor coefficient kernel vectors k? := €, ¢’. Hence Z* (u) is a Taylor coefficient RKHS in D with

coefficient reproducing kernel, k# (i, j), on the set N U {0},
G, j) = <k‘.‘, k’.‘> ,
i I

and k* is then a positive kernel function on N U {0}.
11
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Given a positive measure y, let V), := €,Z"%,,. This is an isometry on #*(u) that will play a central role in our
analysis. This operator has a natural action on kernel vectors:

VukiZ = kY -k, and Vi (kY - kf) = kiZ. (2.2)
In particular,

\/(kg - kg) =RanV,,
zeD

where, here, \/ denotes closed linear span. It is easy to check that a function, & € #*(u), is orthogonal to Ran V, if and
only if & = c1, ¢ € C, is constant in the disk. Hence the following statements are equivalent:

(i) w isextreme,
(i) Hz(ﬂ) L (),
(iii) Z M |2 () and hence V), is unitary,
(iv) Z*(p) does not contain the constant functions.
Lemma 2.4  Given any finite, positive and regular Borel measure, u, on 0D, the co-isometry V', acts as a backward shift on

HH(p), ie.if h € HH(p), h(z) = XX hjz/, then

_ h(z) - h(0)
—

(Vih)(z) = th

Givenany h € Z* (),
(Vuh)(z) = zh(z) + (V) (0)1.
Given any h in the classical Hardy space, H?> = % *(m), one can check that S := V,, = M, is the isometry of mul-

tiplication by the independent variable, z, on H?, the shift. In this case, adjoint of S is called the backward shift and acts
as

(8"h)(z) =

It is straightforward to verify that if 4 € H? has Taylor series h(z) = 3. /:lj z/,then (S*h)(z) = Zj’io ﬁj“zf. This motivates
the terminology ‘backward shift’ in the above lemma statement. This lemma is easily verified and we omit the proof.

h(z) — h(0)
—

3 Absolute continuity in the reproducing kernel sense

Recall that given positive measures u and A, we say that u is dominated by A if thereisat > 0so that u < 21, and we say that
1 is reproducing kernel or RK-dominated by A, if Z* () € %% (A) and there isat > 0 so that the norm of the embedding
et HH(p) — () isat most 7, written u <gg 12A. We will begin this section by showing that these two definitions
of domination are equivalent.

Theorem 3.1  Given positive, finite and regular Borel measures 1, A on the unit circle, u < t*A for some t > 0 if and only if
M <RK 2.

Proof (Necessity.) If u < ?A theny :==1?1 — pisa positive measure and

ﬁ/ L Lﬂ(dg)—/ : —u(d0)
op1—z21-wl aml—z{l

/ L1 —(d0) =Kz w).
ap1—zZ1-

It follows that 12 k* — k* = k? is a positive kernel so that k# < t?k*.

2k (z, w) — kH(z,w)

First proof of sufficiency. Conversely, suppose that K := t2k? — k¥ > 0 is a positive kernel. View the analytic polynomials,

C[Z], as a dense subspace of the disk algebra A(ID), embedded isometrically in the Banach space & (0D). For any finite,
positive and regular Borel measure on the complex unit circle, 4, we define the positive linear functional, /i on € (9D) by

Acf) 1=/ fdy.
57
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(The map u + (1 is a bijection, by the Riesz—Markov theorem.) We then define a bounded linear functional, {x on € (9D)
by (x = 124 — .

By Weierstraf§ approximation, C[{] + m is supremum-norm dense in the continuous functions, € (9D). Since the
Fejér kernel is positive semi-definite, the partial Cesaro sums of any positive semi-definite f € € (9D) will be a positive
trigonometric polynomial, i.e. a positive semi-definite element of C[{] + @ and, by Fourier theory, it follows that the

positive cone of C[{] + C[{] is supremum norm-dense in the positive cone of € (9D). Moreover, by the Fejér-Riesz
theorem, any positive trigonometric polynomial, p+g > 0, on dD factors as |g|? for an analytic g € C[¢] (and necessarily,
p = g, deg(p) = deg(g)). Hence, to check that {x is a positive linear functional on € (dD), it suffices to check that
tx(p+p) >0foranyp+p=|g|*>0,p,geC[l].Ifp= 27:0 pj¢/andg = 27:0 £;¢/, then by construction

(8. %u8), = € &1y = P Dy + {1 P2y = (Gups Gpul) , +(€ul. Cpup) , -

Since
n
Cup = ) pikt,
j=0

where the k;‘ , J € N U {0} are the Taylor coefficient evaluation vectors, and since similar formulas hold for 4, we obtain
that

n
e = [ 18P0 = ) = Y Tty (KoK g
i,j=0
where the K;,i € NU {0} are the Taylor coefficient evaluation vectors in H(K). Namely, H(K) is also a Taylor coefficient

RKHS in D so that K (i, j) := (K,-, Kf)ﬂ-f(l() defines a positive kernel function on the set N U {0}. It follows that

/ 18(OP (L) — u(d0) = o,
oD

for any g € C[{], or, equivalently,
k47 = [ (p+DEd-dn 20,

for any positive semi-definite p +p € C[{] + m By density of the positive cone of C[{] + m in the positive cone of
the continuous functions, it follows that £k is a bounded, positive linear functional on € (D), with norm ||{k || = €k (1) =
t2A(6D) — u(4D) = K(0,0) > 0. By the Riesz—Markov theorem, there is then a unique, positive, finite and regular Borel
measure, y, on 9D, so that

k() = /a HOytao),

for any f € €(D), i.e. x = 7, and we conclude that y = 1?4 — u > 0 so that >4 > p.

Second proof of sufficiency. If t?k* > k*, then by Aronszajn’s inclusion theorem, Z* (1) € %*(1) and the norm of the
embedding e, 1 : # (1) — (1) is at most ¢ > 0. Observe that e := e, 3 acts trivially as a multiplier by the constant
function 1, so that

1A _ s« A _
e'k; =k, and e k; —k;l,
forany z € Dand j € N U {0}. Hence,
eVLZ = e (k- k)
= ki — ki = VFkLZ
= VHe'k]z,
so that e* intertwines V4 with VH, e*V4 = VHe*, Setting E := %;e*%,l, we see that for any monomial,
i _ * x71 A
E{) =6, ki
— @r M _ s] 2
- %ykj _é’j GH (l’l),
so that E : H?(1) < H?(u) obeys Ep = p for any p € C[{] € H?(A). In particular, EZ' = ZME. At this point one
could argue using the Riesz-Markov theorem as above, however, here is an alternative argument. Since Z* and Z* are

contractions (they are isometries), we can apply the intertwining version of the commutant lifting theorem [19, Corollary
5.9] to conclude that E can be ‘lifted’ to a bounded operator E : L?(1) — L?(u), with norm ||[E|| = ||E||, so that
13
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EMZ} = MZE, and Py (M)EA|H2(/1) = E.SettingT := E*E € Z(L*(1)), T > 0is a positive semi-definite M?—Toeplitz
operator in the sense that

Asrpra g d _ s pgME g

Mg TM{ =F Méy MgE—T,
since le, M:f are isometries. Since, M? (and M:f) is in fact unitary, it follows that T commutes with le Since C[{] +
C[Z] <€ Ran le is a dense set in L2(A), a simple argument shows that 7" acts as multiplication by f := T1 € L?(1).

However, since T = M is a bounded and positive semi-definite operator, it is easy to check that 2> T = 11 flleor
7|l = IEII* = IIEII* = |IT]l, and f > 0 A—a.e. Finally, one can also check that 7 = P2y T|g2() is Z*~Toeplitz, i.e.
ZY¥TZ* = T.In conclusion, for any p, g € C[{],

/(mmq(é)ﬂ(d{) =P D2y = EPsEQ) 2y
= <‘/7p,‘/7q>m(d) =(p.Tq),2y)

= (pMya) o= [ PO £,

This formula extends to elements of the form g = p + g € C[{] + C[{] since
<ﬁ1 +q1,p2+ CI2>L2(”) ={q1:92) 12 (u) + {4192, Dz () + P2 PO B2y + L P192) 2 () -

Again, by Weierstrafl approximation, since C[{] + C[{] is supremum-norm dense in & (0D), which is in turn dense in
L?(A) and L?(u), it follows that for any g, h € L2(1),

/ SO h(Ou(de) = / SO F(OAD),
oD oD

where f > 0, A—a.e. and || f||e < #*. We conclude that ¢ < #21 and that

Py
A(d¢)’
is the (bounded) Radon-Nikodym derivative of u with respect to A. [

Definition 1. Let T € Z(H) be a bounded operator and let V be an isometry on HH. We say that T is V—Toeplitz if
VTV =T.

If g > 0is a positive semi-definite quadratic form with dense form domain, Dom q € J(, we say that q is V—Toeplitz if
Dom q is V—invariant and
q(Vg,Vh) = q(g, h); g,h € Domg.

In particular, if 7 > Ois a positive semi-definite, self-adjoint and densely—defined operator in 3, we say that T is V—Toeplitz
if the closed, positive semi-definite form it generates,

ar(x,y) = <‘/Tx, ﬁy}

is V-Toeplitz. If T > 0 is bounded, this latter definition reduces to the definition of a bounded, positive semi-definite
V—Toeplitz operator.

}c; x,yEDoquzDom\/T,

Corollary 3.2 Let u, A be positive, finite and regular Borel measures on 0D so that u < t>A. In this case,

Eya:=Bpe, ;G H () — H*(p),

is a co-embedding in the sense that E,, ap = p for any p € C[{]. Moreover,

e; kS =KE, e k= kY VzeD, j e NU{0},
eZ’AV,I = V“ez’/l and equivalently E, ,Z* = ZFE, . If T, = EZ’AE,,J, then T, is Z*—Toeplitz and T is the compression
of a bounded multiplication operator, T = Ppp2ayMy|g2(a), where f > 04 — a.e., ||fllo < 2, and f = %g)) is the

Radon—Nikodym derivative of u with respect to A.

Remark 3.3 While the co-embedding, E, 1 : H*(1) < H?*(p) always has dense range, it may have non-trivial kernel.
For example, if A is the sum of two Dirac point masses at distinct points ¢, & € 0D, u is the point mass at £, then y < A
14
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and if p is any polynomial vanishing at ¢, then E,, 1p = 0 € H*(p). To be precise, H* (1) is the closure of the disk algebra,
A(D), or the polynomials, C[£], in the L?(u)—norm, so that if p € C[£] or a € A(D) vanishes on the support of u, then
p=0=ainH*(u).

More generally, absolute continuity of positive measures can also be described in terms of their spaces of Cauchy trans-
forms. It is a straightforward exercise, using the Radon-Nikodym formula, to show that y is absolutely continuous with
respect to 4, if and only if one can construct a monotonically increasing sequence of positive measures, 1, > 0, so that
My < ufor all n, the u,; T p increase monotonically to u, and there is a sequence of positive constants, t, > 0 so
that u, < 2. Indeed, this can be readily established by taking the §oin’ or point-wise maxima of Z—’/{ and the constant
functions #2 - 1. Since u, < u for all n, Aronszajn’s inclusion theorem implies that #*(u,) € #*(u) and that the
embeddings e,, : Z*(u,) — F*(u) are all contractive. Moreover, and again by Aronszajn’s inclusion theorem, each
K (un) € Z*(A) is boundedly contained in #* (1) so that

I (un) € X (@) NHT (D) = int(u, A). (3.1)
Proposition 3.4 If u << A then the intersection space, int(u, 1) = Z+(u) N F*(A) is dense in I+ ().

Proof We have thatforalln,0 < u, < pand y, T u.Moreover, Z*(u,) C int(u, A) foralln. If1 > g, > 0, u—a.e. are
the Radon—-Nikodym derivatives of the u,, with respectto y,and p € C[{],1et 6, := €, andlete,, : Z* (u,) — '+ (u).
Then,

”(gpp - en(gnp”i = ”(gup”il — 2Re <%upv en%np>ﬂ + ”en%np”f;

= P12 = 2Re CEnp. Dz ) + |2

IA

2||P||§.12(#) - 2”17”?.12(”")

2/|momv@Aamuaea
oD

by the Lebesgue monotone convergence theorem. In conclusion,
(1) = \/ H* (n),
n=1

where, here, \/ denotes closed linear span. [

This motivates the following definitions:

Definition 2. Let u, A be finite, positive and regular Borel measures on dD. We say that y is absolutely continuous with
respect to A in the reproducing kernel sense, it <gg A, if the intersection space,

int(p, ) = (1) N ()
is norm-dense in Z* (u).

We say that u is reproducing kernel singular with respect to A, written u Lgg A4, if the intersection space is trivial,
int(u, 4) = {0}.

By the previous proposition, g < A implies that u <«<grg A. The main result of this section will be to show that this new
‘reproducing kernel’ definition of absolute continuity is equivalent to the classical one.

Lemma 3.5 If u <gg A then the embedding, e, 4 : int(u,d) C ¥ () — F*(Q), is closed with dense domain int(u, A).
In this case, the co-embedding, E, a1 : DomE, 4 C H*(1) <> H*(u), is densely-defined and closed. Both C[{] and Fp =
V ;ep k7 are cores for E,, y and E, ak; = ko, Eyy ap = p forall k; € HFp and p € C[L]. The (closed) self-adjoint and positive
semi-definite operator, T;, := E;’AEH’,l is Z1—Toeplitz.

Proof Lete := e, , and observe that e is, trivially, a multiplier by the constant function 1 from #* () into #*(1). By
Proposition 1.1 and Remark 1.2, e is closed on its maximal domain, int(y, 1), its adjoint acts as

x1 A _ LM s« A _ LM
ek; =kz, alr;d ekj—kj,
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on kernels and coefficient kernels and the linear spans of the point evaluation and Taylor coefficient kernels in #* (1) are
both cores for e*. Since E = Ej, 1 1= €,,e"€,, E is closed, the formulas Ep = p for p € C[{] and Ek, = k are easily
verified, and it further follows that #p and C[{] are cores for E.

To check that T :=T), = E;,AE/"/' > 0 is A—Toeplitz, consider, for any p, g € C[{],

<\/7le,‘/?2/1‘1>112(4> =(EL-pEL @z

=P, {D mry = Z¥ D ZH @) o )
=P D) =EPEQ ()

- (¥

HX ()

As the polynomials are a core for E = E,, ,, this calculation holds on Dom £ = Dom \T. Moreover, since DomE =

Dom VT, by polar decomposition of closed operators, and since C[¢] and Hp are Z—invariant cores for E, they are also
cores for \/T , and it follows that Dom \/T « = Dom E is also ZA—invariant. ]

Proposition 3.6 Given u, A > 0, if A is extreme, then u <gg A if and only if u < A.

Proof Recall that A is extreme if and only if H?>(1) = L?*(A) so that Z' = M 2} In this case, the self-adjoint A—Toeplitz
operator T, > 0 is Toeplitz with respect to the unitary M 21 That is,

(VT2 NTom2n) = (T, Toh)

for all A € Dom 4/T},. Hence the quadratic forms for (M é’})*TﬂM 2} and T}, are the same. By uniqueness of the unbounded
Riesz representation, (M;})*TIJ M? = T}, so that, by Lemma 1.6,

H2 ()~

I+ MY T,MH™ =T +T,)7",
or, equivalently,
MHI+T,) ™" = (I +T,) "' M3,

This shows that 7}, and hence \NT u are affiliated to the commutant of the unitary operator M 2’ Since C[{] € Dom /T,
we conclude that \/T,, = M T acts as multiplication by \/T_ﬂ 1 = f € L*(1). Since \/E > 0, we necessarily have that
f = 0,1 —a.e., and we conclude that for any polynomials p, g,

v i = (VarNTaa),,. = [ P @a@r@rao.

As in the proof of sufficiency in Theorem 3.1, we conclude that the above formula holds for any g, & € C[{] +C[{], which
is dense in € (dD) and L* (u). In particular, the formula holds for all simple functions and characteristic functions of Borel
sets. Since f € L%(1), f2 € L'(2) and it follows that

_ pu(dd)
A(dg)’

is the Radon-Nikodym derivative of y with respect to A. [

f2

To prove that absolute continuity in the reproducing kernel sense is equivalent to absolute continuity in general, we will
appeal to B. Simon’s Lebesgue decomposition theory for positive quadratic forms in Hilbert space [22], [21, Supplement
to VIIL7]. Let H(q) be the Hilbert space completion of Dom ¢ with respect to the inner product (-, -)4¢ + q(+, ), and let
jq : Domq — iH(q) denote the formal embedding. Further define the co-embedding E : ﬂf(q) — H by

Eq(jq(x)) =1, x € Dom g.

By construction, j, is densely—defined, has dense range, and E; is contractive with dense range in }{. Hence E, extends by
continuity to a contraction, also denoted by Eq, Eq : F(q) — J.

Lemma 3.7 A densely—defined and positive semi-definite quadratic form, q, in J, is closeable if and only if jq is closeable, or
equivalently, if and only if E is injective.
16
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This lemma is a straightforward consequence of the definitions, see also [22].

Theorem 3.8 (Simon-Lebesgue decomposition of positive forms) Let q > 0 be a positive semi-definite quadratic form with
dense form domain, Dom q, in a separable, complex Hilbert space, 7{. Then q has a unique Lebesgue decomposition, @ = Gqc + Qs
where 0 < qqc, Gs < q in the quadratic form sense, 4 is the maximal absolutely continuous form less than or equal to q and q;
is a singular form.

If P denotes the projection onto Ker Eq, and Poc = I — Py, then g is given by the formula,

Qac(x’ y) = <jq()€), (Pac - EZEq)jq(y»g:C(q) = <jq(x)9Pac jq(y)>j{(q) - <x’ y>}(f . (3-2)

In the above theorem statement, recall that we defined the notions of an absolutely continuous or singular positive
quadratic form in the introduction. Namely, a positive semi-definite and densely-defined quadratic form, q : Dom q X
Domq — H, Dom q € 7, is called absolutely continuous if it is closeable, and singular if the only absolutely continuous
and positive semi-definite form it dominates is the identically zero form.

Remark 3.9 If, now, u, A > 0 are measures on the circle, we can take H := L?(1) or H%(1), and define Gy = Oonadense
form domain in J{ by the formula

0u(f.8) = /a F@s(outao)

For example, if 5 = L?(A), one can take Dom G, = € (D), the continuous functions. In this case, by the remark on
(22, p. 381], the quadratic form Lebesgue decomposition of g, coincides with the classical Lebesgue decomposition of u
with respect to A. Namely, in this case, the absolutely continuous part of gy, q,;qc is equal to q,,,_, the positive form of the
absolutely continuous part of u with respect to A, fac, and q,;5 = q,,, . In particular, g7 := G4 is the form of the positive
semi-definite, self-adjoint operator 7 = My > 0, where f € L'(A) is the Radon-Nikodym derivative of 4 with respect to
A. This follows because, as observed by Simon, in this case his construction of the absolutely continuous and singular parts
of q,, essentially reduces to von Neumann’s functional analytic proof of the Lebesgue decomposition and Radon-Nikodym
theorem in [24, Lemma 3.2.3]. See also [12, Section 5], which arrives at the same conclusion with the choice of form domain,
Dom gy, C L? (), equal to the simple functions, i.e. linear combinations of characteristic functions of Borel sets.

Theorem 3.10  Let q > 0 be a densely~defined and positive semi-definite quadratic form in a separable complex Hilbert space, I.
If 7 = Qqe is the closure of qqc, then (I +T)™! = EqGEq, where Eq : 3(q) < H is the contractive co-embedding.

Lemma 3.11 Let A : DomA C H — I be a densely-defined linear operator. Then A is closeable if and only if the positive
semi-definite quadratic form qasa(x,y) := (Ax, Ay) g, with form domain Dom qa-4 := Dom A, is closeable.

In the above statement, note that A*A is not defined if A is not closeable.

Proof (Proof of Theorem 3.10.) Let (x j)‘;":l C Dom q be a sequence with dense linear span. Apply Gram-Schimdt
orthogonalization to (x;) with respect to the q+id—inner product of F(q). This yields a countable basis (y );‘;1 C Dom q,
so that the sequence (jq(;)) is an orthonormal basis of F(q). Hence,

00

EqEq = Eq]jchc*: = Z (Eaja(y1):*)gc Eaja(y)) = Z (Vi )gcvi-
j=1

By [22, Theorem 2.1, Corollary 2.3], see Theorem 3.8 and Equation (3.2) above,

ac (6, ) + (5 Y)9¢ = arer(6,9) = (VIFTx NTHT) = (a0, Paca(0)) g
17
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foranyx,y € Domq € Dom q,. € Dom VI + T. Hence, for any x, y € Dom7,

qeE; (L+T)x, (1+T)y) = < EqEq(1+T)x, \|EqEG (I + T)y>g{
= D {06y Y0 (v (T +T)y) g
j=1

= Y (VI+Tx NT+Ty;) (VI+Ty, NT+Ty)

= > (Pacia(),3a0))sip (a3 Pac ia () guia
= (Pacjq(¥), Pacja(¥)) 4 = 41+7(x, )
=, (I+T)y)gc -
That is, the (closeable) quadratic forms of I + T and (I + T)EqE;(I + T') agree on Dom T, which is a core for VI +T,and
a form-core for q;47. Moreover, & := Ran VI +T NnDom VI +T is a core for m, so that for all x = my €9,
(x,x)g = (m , my>}c = (I + Ty, E(EL(I+ Ty,

= (VI+Tx, EENT+Tx)

That is, the (bounded) positive quadratic form of the identity, /, agrees with the quadratic form of VI + TE aEq VI + T onthe
dense subspace Dom VI + T. Here, if V := E} VI +T, this is a closeable operator by Lemma 3.11. In fact, V extends by con-
tinuity to an isometry, since qy+y = qy |DOm Nl Moreover, E, and hence \/m have dense range, so that mm
extends to an isometry with dense range, i.e. a unitary. For any x, y € Dom VI + T, we have that

(%, ¥)g¢ = <\/1 FTx, EQEINT + Ty>

'
Hence, by definition of the adjoint, for any y € Dom VI + T, EqGE] VI +Ty € Dom VI +T, and
mEqE;my =y.
Hence for any x = \/m_lg andy = m_lh,
(g.(1 +T)_1h>j{ = (X, )¢ = <E;\/mx, E;my>%
= (8. EqEyh) 4.
and we conclude, by the Riesz lemma for bounded sesquilinear forms, that

(I+T7)"" = E(E;.

Theorem 3.12  Let u, A be positive, finite and regular Borel measures on 0D. Then y1 << A if and only if u <gg A.

In this case, the co-embedding, E,, , : DomE, 5 C H?*(X) < H?(p) is closed, and its domain is Z'~invariant. Both C[(]
and Fp =\ k; are cores for E;, 5, Ey ap = p and Ey 2k, = k for any p € C[{] or Szego kernel k. The self-adjoint and
positive semi-definite operator, T,, := E;’AE#’/], is A—Toeplitz and

TM:PHZ(/I)MleZ(/I); f::—

in the quadmtic form sense, ie.
>H < >l ’ )
< Ul u 2(/1) \/? s \/7 2(/1) ) ’ [ ]

Proof Necessity was established in Proposition 3.4 and sufficiency, in the case where A is extreme, was proven in Propo-
sition 3.6. To prove sufficiency in general, assume that y <gg A so that the intersection space int(y, 1) is dense in the
space of u—Cauchy transforms, #* (u). Note that u <gg A if and only if 4 + A <gg A (and the same is true for <). This

follows from Aronszajn’s ‘sums of kernels’ theorem as stated in Subsection 1.2. By Lemma 3.5, e,42,4 : int(u + 4,4) C
18
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H(u+ ) — H*(A)is aclosed embedding, E, 40,1 := %Zwlefu/l,/l%/b is a closed co-embedding with #p =V k, and

Cl[{] ascores,and T :=T}4p = EZM 1Eu+a,4 2 0is self-adjoint, positive semi-definite, densely—defined and A—Toeplitz.

By Remark 3.9 and Theorem 3.10 above if E:L? (1 + ) = L?(Q) is the contractive co-embedding, and T:= My,
where f > 0d—a.e., f € L'(Q) is the self-adjoint, positive semi-definite multiplication operator by the Radon-Nikodym
derivative, f = cdl—ﬁ, then (I + T)~' = EE*. On the other hand, E := Eyiaa:DomE 00 C H*(1) — H*(u+4)is
closed and bounded below by 1, and so has a contractive inverse, namely, for any & € Zp or in C[{],

EEh=he H*(1), and, EEh=he H*(u+A).
Hence,
EElpomEe = Iz () lpomes  and  EE|p(uip) = Lysa-

Observe that the contractive co-embedding, E is necessarily injective and has dense range, so that it has a closed, potentially
unbounded inverse, E~!, which is densely-defined. Since (1 +7) 1 = EE*, we conclude that I + T = E~*E~!. Hence, for
any p, g € C[¢] € H*(),

- - gl el
(Vi+7p, I+Tq>L2(/l) = (E7'D E7') )
=P, D2 (ura) = (EPs EQ) b2 ()
= (VTp.NTq) .

H?*(2)

This calculation shows that the ‘compression’ of I + 7" to the intersection of its domain with the subspace H?() is equal
to 7, in this quadratic form sense. In particular T — I > 0 is the compression of ' = My to H?*(A), where f € L'(Q) is the
Radon-Nikodym derivative of u with respect to A. In conclusion, for any polynomials p, g,

/6 POAORD) = P
- <\/Tp, \/Tq>H2u) =P D)
= <ﬁp, ﬁq>
= <M\/?p’M\/7q>L2<A>
- / 24O F (D).
oD

L2()

As in the second proof of sufficiency of Theorem 3.1, this equality can be extended to arbitrary g, h € C[{] +C[{], so that
by Weierstraf approximation, u < A with Radon-Nikodym derivative f > 0, f € L'(A). [ |

4 Lebesgue decomposition via reproducing kernels

By Theorem 3.12, our definition of reproducing kernel absolute continuity is equivalent to the classical definition of abso-
lute continuity for finite, positive and regular Borel measures on the complex unit circle. In particular, if 4 < 4, it
follows that the intersection space of ¢ and A—Cauchy transforms is dense in the space of y—Cauchy transforms. Hence,
if g = pae + [ is the Lebesgue decomposition of u with respect to A, then int(,¢, A) is dense in #Z* (uq), and since
M= fae, int(pge, A) C int(u, A). Thatis, if gge # 0, it follows that int(u, A) # {0} is not trivial. This raises several natural
questions: How can we identify the space of yg.—Cauchy transforms? Is int(, ) ™ := int(u, 1) 1"l equal to the space
of t4.—Cauchy transforms? We will see that the answer to the second question is positive if A is non-extreme, but that in
general, int(u, 1) 7 is not the space of Cauchy transforms of any positive measure, see Corollary 4.15 and Example 4.17.

Theorem 4.1 If M is a RKHS in D that embeds contractively in F* (1), then M = F* (y) for a positive measure, y, y < p, if
and only if e : M — F* () is such that the positive semi-definite contraction T := ee” is V,,—Toeplitz.

In this case, M = H* (y) = R(e), and the complementary space of Z* (y) in F* (u) is H*(v), for a positive measure, v,
where k¥ = k* — k7 so that u =y + v.

Proof First, if Z*(y) = M C Z*(u) is contractively contained, then, e : Z*(y) < Z*(u) is trivially a (contractive)
multiplier so that, as before, e*k%' = k2, and

FVH = Ve,
€ 19 €
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In conclusion,
VH*ee"VH = eV V7e" =ee” = 7.
Conversely, if 7 = ee” is V#—Toeplitz and contractive, then, as in the proof of Theorem 3.1, 7" := €, ee" &), is a con-

tractive Z# —Toeplitz operator and we can appeal to the Riesz—Markov theorem to show that there isay > 0, so that
T = Py2(uyMy| g2 (uy, where f 2 0, || fllo < 11is the Radon-Nikodym derivative of y with respect to u. Namely, one can

define a linear functional, fit, on C[{] + C[{] € € (ID), by

Ar(p+q) =LTp) g2y + @ T g2y -

It is easy to check that i is bounded and positive using the Fejér—Riesz theorem, as in the proof of Theorem 3.1. The fact
that T is a positive semi-definite Z# —Toeplitz contraction ensures that (i1 extends to a bounded, positive linear functional
on €(0D), and that iy < fi, so that iy = 7 for some finite, regular and positive Borel measure, y < y, by the Riesz-
Markov theorem.

By Theorem 1.4, the complementary space, & (e), of #(e) = F*(y) is a RKHS in D with reproducing kernel
k’(z,w) = kM(z,w) — k”(z,w) and it is contractively contained in #*(u), by the inclusion theorem. Moreover, if
j i R(e) — H*(u) is the contractive embedding, then it follows that jj* = I — ee* > 0 is also a positive semi-

definite V#—Toeplitz contraction. Hence, by the first part of the proof, #Z = F#*(v) for a positive measure, v. Finally,
since k# = kY + kY, we obtain that u =y + v. [

Lemma 4.2 Given any u, A, the intersection space int(f, A), is both V and V,,—co-invariant, and Vi line(,0) = Vl’: line(u,2)-
Proof This is immediate, by Lemma 2.4, since both V; and V/’{ act as ‘backward shifts” on power series. [ ]

Lemma 4.3 If A is non-extreme, then the intersection space, int(u, ), is V,—reducing. If A is extreme, then int(u, A) is
Vy—reducing (and Vy—reducing) if and only if Vi line(u,2) = Valint(u,2)-

Proof By Lemma 2.4,if i € int(u, ), thenV,,h € Z*(u) and
(Vuh)(2) = zh(z) + (Vuh)(0)1 = (Vah)(z) = (Vah)(0)1 + (V,h)(0)1. (4.1)

Hence, if ¢ :== (V3h)(0) — (V,4)(0) € C and 2 is non-extreme, then both Vi and c¢1 belong to #* (1) so that V,, i €
FHT(A)NF*(u) = int(u, A). Recall that A is extreme if and only if #* (1) does not contain the constant functions. Hence,
if A is extreme then int(u, A) will be V,,—reducing if and only if (V,,1)(0) = (V,4)(0) for all & € int(u, A). By Equation
(4.1), this happens if and only if V,,h = V; h. [}

Corollary 4.4 If Ml C F*(u) is a V,—reducing subspace, then M = F*(y) for some y < p. Moreover, M+ = F*(y') for
some u >y > Osothaty +7y = p

Proof Let P be the orthogonal projection of #*(u) onto . Then if e : M — F*(u) is the isometric embedding,
P = ee*. Hence,

V;ee*V,, = V;PV,, = V;V,,P =P =ee”,
so that 7 = ee* is V#—Toeplitz and A = #*(y) for some 0 < y < u,and A+ = FZ*(y’), by Theorem 4.1. ]
Theorem 4.5 Let yu, A > 0 be finite, positive and regular Borel measures on OD. If the intersection space, int(u, ), is VH —reducing
and @ = pae + s is the Lebesgue decomposition of u with respect to A, then
%+(ﬂ) = %+(ﬂuc) @ %+(ﬂs)~
In this case,
H* (Hac) = int(u, )™, and  H*(us) NF* () = {0}.
That is, g is the largest positive measure < p which is RK-ac with respect to A, and pg is RK-singular with respect to A.
In particular, int(u, 1) will be V¥ —reducing if A is non-extreme by Lemma 4.3.
Proof By Theorem 3.12, we have that int(pge, ) C int(u, A) is dense in #* (u4c). Since we assume that int(u, 1)
is V,—reducing, its closure, int(u, 1) ™#, is also V,,—reducing and then int(u, 1) ™# = #*(y) for some 0 < y < uby

Corollary 4.4. By construction Yy <grg 4 so that y < A by Theorem 3.12. By maximality, ¥ < u,c and by construction
int(u, A) C int(y, 1). However, we also have that int(u 4, /%%) C int(u, ) C int(y, ). Henceif e : #* (uqc) — ()
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is the contractive embedding, then e, restricted to the dense subspace int(tyc, ) € #*(1yc) defines a contraction into
" (), which is isometrically contained in #* (). It follows that e extends by continuity to a contractive embedding of
K" (Uac) into Z*(7y). Hence, by Theorem 3.1, p14c < v and we conclude that y,. = . [

Corollary 4.6  Let u, A > 0 be finite, positive and regular Borel measures on OD. If int(u, 1) = {0} so that u Lrg A, then
1 L A Ifint(p, A) is either V, or Vy—reducing then yu L A if and only if u Lrx A. In particular, if either y1 or A is non-extreme
then u L difandonly if 4 Lrg A.

While the previous two results give quite a satisfactory description of the Lebesgue decomposition of y with respect
to A in terms of reproducing kernel theory in the case where the intersection space, int(u, 4) is V¥ —reducing, this is not
generally the case, as the next proposition and example show.

In the proposition statement below, recall the definition of the lattice operations V, A on positive kernels and the defi-

nition of the isometries Uy : H(K + k) — H(K) & H(k) and U, : H(K A k) = H(K) N H(k) = H(K) & H(k), see
Subsection 1.2.

Proposition 4.7 If u + A is extreme, then int(u, A) is V,,—reducing. If p, A are both extreme but yu + A is non-extreme, then
int(u, A) is non-trivial, but not V,,—reducing and

int(u, 1) 2 Uy \/ (Vs @ V) Uy 1.
Jj=1

Lemma 4.8 Let 1, A > 0 be positive, finite and regular Borel measures on OD. Consider the reproducing kernel Hilbert spaces of
i, A and y + A—Cauchy transforms in 0D, Z* (1) = H(kH), F+ () = H(k?) and F+(u + A) = H(kH + k?). Then,

UyVysa = Ve ® V) Uy

and Ran Uy, is V,, @ V—invariant so that Ran U, is V, @ V) co-invariant, and
U/\V#*lint(,u,/l) = U/\V/l*|int(;4,/l) = (V'u @ V/l)*U/\-

Moreover, we have that Vi, lint(u,a) = Valint(u,1) s that int(u, ) = H(kH A k%) is both V. and Vy—invariant if and only if
RanU, is V,, ® V —invariant.
Proof The intertwining formulas are easily verified. The range of Up : Z*(u+ 1) — X (u) @ (1) sV, &
Vi—reducing if and only if, for any h @ —h € Ran U, h € int(u, 4),

Vuh® -Vih =g & —g,
for some g € int(u, A). Clearly this happens if and only if V,; |in¢(u,4) = Valint(u,)- [ |
Proof (Proof of Proposition 4.7.) If A + yu is extreme then '+ (u + 1) = Z*(u) + #* (1) does not contain the constant

functions. Hence both A and u must also be extreme. In this case V,,, V; and V., are all unitary operators. We know that
Ran Uy is always V,, @ V;—invariant. On the other hand since i + A is extreme, V,,,, is unitary, hence surjective, and

T+ ) =\ (R = k),
so that
Ran Uy = \/ (k¥ = kb)) @ (k{ = k3).
Hence,
(Vi @ VpRanUy = \/ kX2 @ k2 € Ran Uy

It follows that Ran Uy, is V), & Vy—reducing, so that Ran U, = Ran Uy is also reducing. The previous lemma now implies
that int(y, A) is V,—reducing.

If, on the other hand, y, A are both extreme but i + A is not, then V¥, V4 are both unitary but VH* is not. Hence, since
1 L RanV#* 1 € %% (u + 1), we have that

Uyl L V¥ @V Ran Uy,

or, equivalently,

(VH o vﬂ)*(ﬁl 1 RanU,.
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Since V# & V1 is unitary, it follows that
0# (VF®VY)*Uy1 € RanU,,

so thatint(y, A) # {0}. Since Ran Uy is not V¥ & V! —reducing, neither is Ran U,, and hence int(y, 1) is not V,,—reducing
by the previous lemma. [

Example 4.9 (Lebesgue measure on the half circles.) Let m. be normalized Lebesgue measure restricted to the upper and

lower half-circles. Then m = m, + m_, and m, L m_. Note that both m. are extreme since Ciln;i = xop,, Where yo

denotes the characteristic function of a Borel set, Q, is not log-integrable (with respect to m). On the other hand, m is non-
extreme. By the previous proposition, int(m,,m_) # {0} is non-trivial, and yet m, L m_.If int(m,, m_) contained a
non-trivial V, := V™ or V_ := V™- —reducing subspace, .#, then the closure, #* or ./~ in the norms of Z* (m) would
be a closed V, or V_—reducing subspace. In the first case, Corollary 4.4 would then imply that #* = Z*(vy) for some
0 < y < my. On the other hand, int(y,m_) 2 A is dense in M = F* () so that y <grg m-_. Since RK-absolute
continuity is equivalent to absolute continuity by Theorem 3.12, this contradicts the mutual singularity of my and m_. A
symmetric argument shows that int(m., m_) cannot contain a non-trivial V_—reducing subspace either.

Similarly, m = my 4+ m_ can be viewed as the Lebesgue decomposition of m with respect to m.. In this case,
int(m,my) = Z*(my) # {0} since my < m. However, int(m, m,) cannot be S = V,,—reducing as then its closure,
int(m, m,) ™™ would be a closed, S—reducing subspace of H> = #*(m) and the shift has no non-trivial reducing sub-
spaces. (Hence this intersection space cannot contain any non-trivial S—reducing subspace.) In fact, int(m,, m_) cannot
(contractively) contain the space of y—Cauchy transforms of any non-zero positive measure, 7y, as then y <grg m, and
v <Rrk m_, so thaty < my, m_ by Theorem 3.12 and y = 0 since m, and m_ are mutually singular. Finally, we cannot
have int(m, m,) dense in H? either as this would imply that m <gg m, which would imply that m < m, by Theorem
3.12.

We can calculate some vectors in int(m., m_) more explicitly. By the proof of Proposition 4.7, we have that V; @
V*Uy1 € RanU,, and since Ran U, is always V, @ V_ co-invariant,

int(m.,m-) 2 \/ V. kg = \/ vk
j=t

Here, 1 = k', where m = m, + m_, so that Uy1 = ka' ® k. Since the unitaries V} both act as backward shifts on power
series, we can compute these elements of the intersection space explicitly. First, the kernel vectors of Z*(m..) at 0 are:
1 T 1
2 Jo 1—ze i
1

— 1 i0 _
2mi ogle 2

1 (z+1)
= —log|—|,

k§(2) de

O=r€

6=0

2mi z-1

where log is the branch of the logarithm fixed by the choice of the argument function taking values in [0, 27r). Here, the
branch cut is along the positive real axis, and

z+1 |72 -1
e—— = —-
z—1 |z—-1]?

k]

is strictly negative for any z € ID so that this formula defines a holomorphic function in D. (We know, of course, that kj
must be holomorphic in D.) Since

1=ko(z) = k(z,0) = k™(2,0) + k~(2,0) = kg (z) + kg (2),

it follows that
_ 1 z+1
k =1-kl(z)=1- —log|——]. 4.2
0 (?) 0(2) 27i Og(z—l) 42)
Also note that
1 1
— = —log(-1),
2~ i o8l

so that % = k3(0) = k; (0).
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Since V act as backward shifts on power series, it follows that kag = =VZkg, so that

(Ve ®V_)'ki @ ky € RanU, = v h&—h,

heint(my,m_)

as required.

4.1 Lebesgue decomposition of measures and their forms

As described in Remark 3.9 and Subsection 1.3, if 4,4 > 0 are positive, finite and regular Borel measures on the unit
circle, 3D, then one can construct the Lebesgue decomposition of p with respect to A by considering the densely—defined
positive quadratic form, g, : € (D) X € (0D) — 0, with dense form domain € (D) C L*(1), the continuous functions
on the unit circle. Namely, applying the Simon-Lebesgue decomposition to q,,, viewed as a positive, densely—defined form
in L2(1), one obtains,

G = AQuzac T Qs>

where q;qc is an absolutely continuous (closeable) form and q; is a singular form and moreover, G ;ac = Guue»> Os = Gpy
where u = pgc + U5 is the Lebesgue decomposition.

However, in this paper, since we wish to apply analytic and function theoretic methods, we instead consider the positive
quadratic Z'—Toeplitz form, g, associated to & > 0, with dense form domain Dom q,, = C[{] or Dom g, = A(D), in
H*(1) € L*(2). As we will show, if g, = qqc + Qs is the Simon-Lebesgue form decomposition of q, in H?(), then one
can define reproducing kernel Hilbert spaces of g, and qy—Cauchy transforms, #* (q,c) and #*(qs). The goal of this
subsection is to compare the Lebesgue decomposition of y with respect to A with the Simon-Lebesgue decomposition of
qu in H*(Q).

Let u, A > 0 be finite and regular Borel measures on dD. Consider the positive quadratic form, g, with dense form
domain, A(D) € H?(A). Observe that U:C(q,,) = H?(u+A) so that C[£] and Hp are both dense sets in this space. Consider
the Simon-Lebesgue decomposition, q,, = qqc + qs, of qy in H?(Q). By Theorem 3.8, g4 > 0, is the largest closeable
quadratic form bounded above by q,,. Since qqc < qy, this implies that Dom q,, = A(D) € Dom 4, and if gp = Qac
denotes the closure of q,., then A(DD) must be a form-core for the closed form qp by the maximality statement in Theorem
3.8. We define H%(quc), H*(q;) as the Hilbert space completion of the disk algebra, A (D), modulo vectors of zero length,
with respect to the pre-inner products, qqc, g5, respectively. Since 0 < qg¢, g5 <, We can define the contractive co-
embeddings E. : H*(u) — H*(quc) and E : H?(u) — H*(qs) by Eqea = a € H*(quc) and Esa = a € H?(uy).
(Here, an element a € A(D) could be equal to 0 as an element of H?(u), or as an element of the spaces H>(qqc), H*(qs).
However, the inequality 0 < qq¢, G5 < qy, ensures thatif a € A(ID) is zero as an element of H?*(u), i.e. it vanishes u—a.e.,
then a = 0 as element of both H?(qu.) and H?(qy). A more precise notation would be to let N, denote the subspace
of all elements of A(D) of zero-length with respect to the q,.—pre-inner product so that equivalence classes of the form
a+ Nge,a € A(D), are dense in H*(qac).)

Observe that if @ C A(D) is any supremum-norm dense set, such as #p = \/ k, or C[/], then D is dense in H*(u),
and since the co-embedding E. : H?(u) — H?(qqac) is a contraction with dense range, & will be dense in H?(qqc) and
it will be similarly dense in H?(q;).

Lemma 4.10 If Gp = Qg is the closure of Gy, and D C A(D) is supremum-norm dense, then D is a core for vD.

Proof Since Dom q, = A(ID), and gq¢ < qy is the largest closeable and positive semi-definite quadratic form, A(D) is a

form-core for qp, and hence a core for VD. Hence, A(D) is dense in G:C(qD) = ?C(qac). Givenanya € A(D), letx, € D
be a sequence which converges to a in supremum-norm. Then

0 < |jxn — a||fqz(/l) + Qe (Xn —a,x, — a)
< ”xn - a”iﬁ(/l) + ”xn - a”ip(ﬂ)

< |ln = all k(D) + 2(ID)) — o.

This proves that 9 is dense in the dense subspace A(D) C f]:C(qD), and hence 9 is a form-core for ¢p and a core for

vVD. n
Given any i € H?(qqc) or in H?(qy), we can now define the g, or g;—Cauchy transform of / as before:

(Bach)(2) = qac(kz, ),
23
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and similarly for . As in Lemma 2.1 and Lemma 2.2, Cauchy transforms of elements of H%(q4.), H*(qs) are holomorphic
in the unit disk, and if we equip the vector space of q,.—Cauchy transforms with the inner product

(CacX, CacY)ac = ac(*, ),
we obtain a reproducing kernel Hilbert space of analytic functions in the disk, #Z* (q4.) with reproducing kernel:
k() (z,w) = Qac (kg k).

Finally, since g, = Gac + 05, Gu = Gac, s = 0, we obtain the following.

Proposition 4.11  The RKHS of qqc and qs—Cauchy transforms are contractively contained in Z*(u) = #*(q,) and k* =
k(@) 4 k5 so that

%)4—(/1) = %H—(q:lc) + %+(q‘v)~
Moreover, if eqe : ' (qac) < H*(u) and ey are the contractive embeddings, then

3k 3k
I+ () = eaceye + €56y,

Proof To check the decomposition of the identity, it suffices to calculate
k*(z,w) = k(@) (z,w) + k% (z,w)
= <k£a6)’ kEVaC)>aC + <k;’ k:V)S
= (ClckE s elckiv) o + (€KL, kL)

= <k’zl, (eacepe + ese;)kﬁ>ﬂ .

S

Theorem 4.12  Let qy = Gac + Qs be the Simon—Lebesgue decomposition of the form q,, with dense form domain A(D) in H*(2).
Then,

%+(Qac) = int(,u,/l)_” = (%"’(,u) N %+(/l))—||'||y .
Ife:int(u, ) € Z*(u) — F*(Q) is the closed embedding and qp = Gqc, then
D =G ee"G,.

Lemma 4.13  Let q1, q; be densely—defined, closed and positive semi-definite quadratic forms in a separable, complex Hilbert space,
J. Then qi < gz if and only if q1(x,x) < q2(x, x) for all x in a form-core for qa.

Proof (of Theorem 4.12.) First, since g is closeable, q,. = qp for some closed, self-adjoint operator B > 0. By con-
struction, A(D) € Dom VB, and C[¢], #p = \/ k; and A(D) are all cores for VB. Since B > 0 is closed, Dom B is also a
core for VB. It follows that we can identify Dom B with a dense subspace of H2(q4c). Namely, if x € Dom B C H?(1), we
canfinda, € A(D)sothata, — xin H*(A)and VBa, — VBx.Since Gzc = 3, it follows that (a,,) is a Cauchy sequence
in H?(qqc), and we can identify x € Dom B with the limit, £, of this Cauchy sequence in the Hilbert space H*(q). Finally,
since Dom B is a core for VB, for anya € A(D) € Dom VB, we can find X, € Dom B so that x,, — a and \/Exn — VBa
and it follows that ,, — a in H?(qqc), so that Dom B can be identified with a dense subspace of H?(qac).
Furthermore, we can then define the g,.—Cauchy transform of any x € Dom B,

(Bacx)(2)

liTm Gac(kz,ay) =1lim <\/Ekz, \/Ean>
nfoo

<‘/§kz, \/EX>H2(/1)
= <kz,B)C>H2(/]) = ((g,le)(Z)

This proves that €cx € #*(A). Since Gucx € H*(qac) S F*(n), it follows that €,-Dom B C int(y, 2). Moreover,
since Dom B can be identified with a dense subspace of H?(qc), it follows that €,cDom B C #*(quc) N X+ (A) C
int(u, A) is dense in Z* (qac)-

Now consider qp, where D = €jee” @ and e : int(u,d) C Z*(u) — F*(A), as in the theorem statement. By

H*(2)

construction, #p is a core for VD, and it is also a core for B, so that this set is a form-core for both qg = q4¢ and qp. It

follows that qp |9, < qulo, isapositive closeable form so that by maximality and Lemma4.13, qp < qp inthe form-sense.
24
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Also, by construction, e*k? = kg““, where k#™ is the reproducing kernel for the closed subspace int(u, 1) ™* C #*(u).

Hence, for any finite subset, {z1,- -+ ,z,} C D, if we consider any finite linear combination of Szegé kernels,

n
h= Z ciks,,

i=1

then
0< ZC_iCjk”M(Zi,Zj)
= > e (kM)
u
= qp(h,h) < qp(h, h)
= ZC_iCjQB(kZ,"ij)
= Zc_,»cjk“c(zi,zj).
That is,

0 < [k*"(zis2j))1<i.j<n = Lap (kz k2 )] < [aB (ko kz)] = [k (20 2)],

so that k#" < k%¢, and by Aronszajn’s inclusion theorem, int(u, 1) “# is contractively contained in % (qqc) which is in
turn contractively contained in #* (u). Hence, if e is the first embedding into #* (g4 ) and e; is the second embedding
into #*(u), the composite embedding, e = ezeq : int(u, 1) ™ < F*(u) is again a contractive embedding and it must
be isometric since int(u, 1) ™ is a closed subspace of #Z* (). It follows that e; must be an isometric embedding. Indeed,
if there is a unit vector x so that ||e;x|| < 1 then

U= lxll = llex]l < [lealllesx[| < 1.

Similarly e, must be isometric on the range of e;. On the other hand, since int(qqc, ) = #F(qqc) N F*(A) is dense
in Z*(qac) and #*(qqc) is contractively contained in #* (1), we must have that int(q,e, 1) € int(u, 1) € Rane;.
Hence, by the previous argument, since int(quc,4) € Rane; is dense in #Z"(q,c) and e; is isometric on the range of
e, e 1 1 (qae) — F () is also an isometric inclusion. In conclusion, int(u, 1) ™ and #*(q4.) are both closed
subspaces of #* (), int(u, 1) ™ is a closed subspace of Z* (q,¢) and int(que, 4) € int(u, A) is dense in Z* (g4 ) so that
int(u, )™ = Z*(qac)- It follows that g = qp on Hp so that by Lemma 4.13 and the uniqueness of representation of
closed forms, D = B. ]

Corollary 4.14  If u, A > 0 are finite, positive and regular Borel measures on 0D and q,, is the densely—defined positive quadratic
form associated to u with form domain A(D) C H?(A), then the space of u—Cauchy transforms decomposes as the orthogonal
direct sum,

T (W) =X (Qac) ® X7 (q5).
In particular, Z* (q5) N int(u, 1) = {0}.

Proof By Proposition 4.11 and Theorem 3.8, we have that the identity operator on #*(u) decomposes as
I, = eqce). +egel,

and " (qqc) = int(u, 1) ™ is a closed subspace of #* () so that the contractive embedding, e, : ¥ (qac) — F+ (1)
is an isometry. Hence, P, = eq4c€},.. is an orthogonal projection onto the range of e, and hence Py = I — P, = esej is
the projection onto the orthgonal complement of Ran e, in Z* (). It follows that ey is also an isometric embedding and
that we can identify #* (qqc), # *(qs) with the ranges of these isometric embeddings so that

T (W) =X (ac) ® I (a5).
|
Corollary 4.15  Let p, A be positive, finite and regular Borel measures on the unit circle. The Lebesgue decomposition of u with
respect to A, [t = flqe + s, coincides with the Simon—Lebesgue decomposition of q,, with form domain Dom q,, = A(D) in H*(2),
Gy = Qac + Qs in the sense that Gae = Q. and s = q, if and only if int(u, A) is V¥ —reducing.

Remark 416 More generally, one can apply the methods of this section to construct a Lebesgue decomposition for pairs
of positive kernel functions k, K on the same set, X, see Appendix A.
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Example 4.17 (Lebesgue measure on the half-circles.) As before, let m,. denote normalized Lebesgue measure restricted
to the upper and lower half-circles. These are mutually singular measures so that m, = m.. is the singular part of m.
with respect to m_, and yet by Example 4.9, int(my, m_) # {0}, so that q; = qy,, has a Simon-Lebesgue decomposition
G+ = Qae + q, in H?(m_), where g is non-trivial, by Theorem 4.12. Moreover, in this example, 71_ is extreme, so that
H?*(m_) = L*(m_). This means that while the quadratic form, q,, associated to u, with dense form domain, A(D) C
L?(m_) = H?*(m_) has non-zero absolutely continuous part, if we instead define the form domain of q, to be Dom q, =
€ (0D), then, with this form domain, q,, has vanishing absolutely continuous part (since the decompositions of q, and u
always coincide in this case, see Remark 3.9). This shows, that in dealing with these unbounded positive quadratic Toeplitz
forms, the choice of form domain is crucial!

4.2 Lebesgue decomposition for arbitrary measures

The question remains: If 4, 4 > 0 are arbitrary, how can we construct the Lebesgue decomposition of y with respect of 4
using reproducing kernel theory and their spaces of Cauchy transforms? If A is non-extreme, or more generally if int(u, A)
is V,,—reducing, Theorem 4.5 provides a satisfying answer. However, as Proposition 4.7, Example 4.9 and Theorem 4.12
show, the intersection of the spaces of £ and A Cauchy transforms cannot be reducing in general, and that there are examples
of pairs of positive measures y, 4, for which int(u, 1) cannot be equal to, or even contain, the space of Cauchy transforms
of any non-zero positive measure.

By Theorem 3.12, we do know that if 4 = puge + s is the Legbesgue decomposition of y with respect to A, that
Hae <gk A so thatint(uge,A) C int(u, ) € int(u, )™ = F*(qgac). The final result below provides an abstract
characterization of the Lebesgue decomposition for arbitrary pairs of positive measures.

Theorem 4.18  If u = g + iy is the Lebesgue decomposition of p with respect to A and Gy = Gqc + Qs is the Simon—Lebesgue
form decomposition of q, in H*(A) then Q. < Gac. Moreover, Z'* (lac) is the maximal RKHS, H(k), in D with the following
property: H(k)NF+ () C int(u, A) is dense in H(k), H(k) C F* () is contractively contained, and if e : H (k) < F*(u)
is the contractive embedding, then ee” is V,,—Toeplitz. Equivalently, q,,,. is the largest closeable Z—Toeplitz form bounded above
by qu.

Moreover, if ey = ey, and e; = e, then I,, = eje] + eye5. Hence, we can identify I+ (uac) with the operator-range space
R(e1) and F* () with R(ey) = R€ (e1), the complementary space of '+ (Uac) in the sense of deBranges and Rovnyak and

%+(ﬂ) = %+(ﬂac) + %+(ﬂs)-
Proof This follows from the definition of g4, Theorem 1.4 and Theorem 4.1. [ |

Remark 4.19 In the case where the complementary space decomposition of Z* (1) = Z* (uac) + #* (us), appearing in
the above theorem statement, is not an orthogonal direct sum, this yields a corresponding decomposition of the quadratic
form q,,

qﬂ = qﬂuc + qﬂs’ (43)
where q,,. < Guc and q, = qgc + Q5 is the Simon-Lebesgue decomposition of q,,. In this case, the decomposition of

Equation (4.3) is an example of a ‘pseudo-orthogonal’ Lebesgue decomposition of q,, as recently defined and studied in
(11].

The previous theorem is, while interesting, admittedly not very practical for construction of the Lebesgue decom-
position of y with respect to A. A simpler, albeit somewhat ad hoc, approach using our reproducing kernel methods
is simply to ‘add Lebesgue measure. Namely, if pqq;0 is the absolutely continuous part of ¢ with respect to 4, then
Hac:a = Hac;a+m — Mac;m and both A + m and m are non-extreme so that Theorem 4.5 applies.

A Lebesgue decomposition of positive kernels

Let K be a fixed positive kernel function on a set, X. Given any other positive kernel, k, on X, we can associate to it
the densely-defined and positive semi-definite quadratic form, qx : Dom qz X Dom qx — C, with dense form domain
Dom qg := V yex Kx in H(K),
ax (Kx, Ky) =k(x,y).
One can then apply B. Simon’s Lebesgue decomposition of positive quadratic forms to qx. Such a Lebesgue decomposi-

tion of positive kernels was first considered in [12, Section 7, Theorem 7.2]. The theorem below provides some more details

about this decomposition.
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Theorem A.1  Let k, K be positive kernel functions on a set, X. If qy. is the densely-defined positive quadratic form of k in H(K),
as defined above, with Simon—Lebesgue form decomposition Gy = Ggc + Qs, then there are positive kernels, kK and k* on X, so
that Gge = Gglac), Gs = Qgs, k = kK + k*, and

H(k) = H(KC) @ H(K®).

Moreover, H(k%°) = int(k, K) ™% = (H(k) N H(K))"'I¥, and ife : int(k, K) < H(K) is the (closed) embedding, then
Jac = Qeer

In the above, int(k, K) := H (k) N H(K).

Proof Leth := )", c;K, be any finite linear combination of the kernels K, {x; 1 € X. Then, since qu¢c < qg, we
obtain that

Zc_icjk(xi,xj) = ZC_iCjCIk(xiaxj)
Qk(h’ h) = Qac(h, h) >0,

where
0< Qac(h» h) = ZC_iCanc(Kxi, Kx,-)'
It follows that
kae (x, y) = Qac (Kx, Ky),

defines a positive kernel function on X so that 0 < k¢ < k. Similarly, k*(x, y) := qs(Kx, K) defines a positive kernel
function on X so that 0 < k® < k, and since qx = quc¢ + G5, We obtain that k4¢ + k¥ = k.

By definition, qq. is the largest closeable quadratic form bounded above by qy. In particular g, = qp is the positive
form of some densely-defined, self-adjoint and positive semi-definite operator D, so that Zy := \/,cx Ky is a core for
VD. (Here, \/ denotes non-closed linear span.) If e : int(k, K) C int(k, K) ¥ < H(K) is the densely-defined and closed

embedding, let A := ee”. We claim that A = D. First, A > 0 is self-adjoint, hence closed, and since e is trivially a multiplier,
we obtain that

aA(K, Ky) = ('K, €Ky ), = (KL KD), = k" (x, y),
where k" denotes the reproducing kernel of the subspace int(k, K)™% C 3{(k), the closure of the intersection space,
int(k, K) in H (k). In particular, since k7 = Pnky, where Pn : H(k) — int(k, K)~¥ is the orthogonal projection, it
follows that k" < k, and hence that q4 < qi. Since q4| Jx 1s closeable, it follows, by maximality of the Simon-Lebesgue
decomposition, that g4 < qp. This inequality implies that kK" < k%€ as positive kernels on X.

Now suppose that # € Dom D € H(K) and choose h,, € Hx = \/ cex Kx so that h, — hand \Dh,, — VDh. (This
can be done since Dom D is a core for VD.) If h,, = ZT:"I ¢j(n)Kx;(n), a finite linear combination, then note that

;111%27 Z cj(n) <‘/5Kx, ‘/BKXJ(”)>K

lim Z cj(n)k(x,x;(n)) = lim g, (x),

(Dh)(x)

where
g = Z cj (kL) € H(k) € H(k).
Moreover,
Ignlifae = " cilmc; (m)k“ (xi(n), x;(n))
i,j

_ <\/5hn, vm,,>K — |VDhl%,

so that the sequence (g,) € H (k%) is uniformly bounded in norm. Since g, (x) — (Dh)(x) pointwise in X, this and
uniform boundedness imply that g,, converges weakly to the function Dh. Since Hilbert spaces are weakly closed, the
function Dh € H (k%) € H(k),and also Dh € JH(K) so that Dh € int(k, K) € F(k"). Hence Dh € H(k%°) and

IDRlzec = VDA

Letj; : H(k") < FH (k%) andj, : H(k9) — FH(k) be the contractive embeddings. Thenj := j,j; : H (k") — H(k)
is the isometric embedding of the subspace H (k™) C H (k) into H (k). It follows that j; must be isometric and j, must be

isometric on the range of j; in H(k4¢).
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We claim that Ranj; is dense in (k) so that j, and j, are both isometries. Define a linear map, V' : FZ{¢ :=

Vixex k§¢ — H(K) by
vk = VDK,,

and extending linearly. Since
(kKGN e = K (x,y) = <\/5Kx, \/BKy>K,
it follows that V is an isometry and extends by continuity to an isometry from 3 (k“¢) onto the closure of VD Hx in H(K),

which we also denote by V. Since Hy is a core for VD, V is onto Ran \/57”.”"( in H(K). If there exists a g € H (k%)
orthogonal to Ran D C F(k“€), then choose a sequence g, = Z;n:"l cj(n)kdc = € FH¢ sothat g, — g and calculate,

xj(n)
for any 2 € Dom D, that

0 =<(g,Dh)ac = lirrln (gn, Dh) ac
= lirrln Z cj(n) <kzjc(n), Dh>ka(‘
J
= h;ln; ¢; () (DR)(x;(n)

= 11’11n Z cj(n) <Kx_,-(n)’ Dh>K
J

J

= lim <Z cj (n)\/BKxj(n), \/Bh>
K

- lirrln<Vgn,\/5h>K
= <Vg, \/Bh>K .

This proves that Vg € Ran \/B_HIHK is orthogonal to \/BDom D. However, Dom D is a core for \/5, so that \/BDom D
is dense in Ran VD. This proves that Vg = 0, and hence g = 0. In conclusion, Ran D C Ranj; € H (k%) is dense in
FH (k%) so that both j; and j, are isometric embeddings. That is, (k™) embeds, as a closed, dense subspace of F{(k%),
which embeds isometrically into H (k) and we conclude that (k") = F(k%°) so that k" = k% and qp = qa. By the
uniqueness of Kato’s Riesz representation of closed, positive semi-definite forms, D = A as closed operators.

The fact that k = k%“ +k*, implies thatif e, : FH(k9C) < H (k) is the isometric embedding and es : H(k*) — H (k)
is the contractive (and injective) embedding, that I = e,ce€,. + ese;. Hence egel = I — P, so that H(k*) also embeds
isometrically in H (k) as the orthogonal complement of FH (k“€). [
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