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Classical scaling relationships for rheological quantities such as the μ(J)-rheology have
become increasingly popular for closures of two-phase flow modelling. However, these
frameworks have been derived for monodisperse particles. We aim to extend these
considerations to sediment transport modelling by using a more realistic sediment
composition. We investigate the rheological behaviour of sheared sediment beds composed
of polydisperse spherical particles in a laminar Couette-type shear flow. The sediment
beds consist of particles with a diameter size ratio of up to 10, which corresponds to
grains ranging from fine to coarse sand. The data was generated using fully coupled,
grain resolved direct numerical simulations using a combined lattice Boltzmann–discrete
element method. These highly resolved data yield detailed depth-resolved profiles of the
relevant physical quantities that determine the rheology, i.e. the local shear rate of the
fluid, particle volume fraction, total shear and granular pressure. A comparison against
experimental data shows excellent agreement for the monodisperse case. We improve
upon the parameterization of the μ(J)-rheology by expressing its empirically derived
parameters as a function of the maximum particle volume fraction. Furthermore, we
extend these considerations by exploring the creeping regime for viscous numbers much
lower than used by previous studies to calibrate these correlations. Considering the
low viscous numbers of our data, we found that the friction coefficient governing the
quasi-static state in the creeping regime tends to a finite value for vanishing shear, which
decreases the critical friction coefficient by a factor of three for all cases investigated.
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1. Introduction

The fluid mediated transport of granular sediment is a key process for the mass movement
in a geophysical but also an engineering context (e.g. Frey & Church 2011). The transport
typically occurs along a slope or by a fluid flow shearing the sediment (Jerolmack
& Daniels 2019) and can lead to bedform evolution, such as ripples and dunes, even
for laminar flow conditions (Lajeunesse et al. 2010). This consideration allows us to
characterize sediment transport in laminar flows in terms of the rheology to investigate
the fluid–particle mixture’s deformation behaviour in shearing flows (Aussillous et al.
2013; Houssais et al. 2016; Kidanemariam 2016; Vowinckel et al. 2021). All these
studies justified their approach by comparing the results with data previously obtained
in rheometer studies with dense suspensions of neutrally buoyant particles (e.g. Morris
& Boulay 1999; Boyer, Guazzelli & Pouliquen 2011). For these classical rheological
investigations, a shear rate γ̇ is applied to a dense granular material suspended in a fluid
with viscosity ηf to investigate the total shear stress τ acting on the fluid–particle mixture
in the shearing direction and the imposed particle pressure pp in the wall-normal direction.
The total shear comprises hydrodynamic and frictional interparticle stresses, with the latter
becoming more important with increasing particle volume fraction φ (Gallier et al. 2014;
Guazzelli & Pouliquen 2018; Vowinckel et al. 2021).

In this regard, two types of rheometer set-ups are possible. On the one hand, the
volume-imposed rheometry confines the suspension by shearing walls with constant gap
size (e.g. Morris & Boulay 1999). While Morris & Boulay (1999) were investigating
shear induced migration to begin with, they were also able to measure the effective
shear and normal viscosities, ηs = τ/ηf γ̇ and ηn = pp/ηf γ̇ , respectively, and to derive
empirical correlations for these two quantities as functions of φ. On the other hand, a
pressure-imposed rheometer, where a constant confining pressure is applied to a movable
upper wall, allows for the dilation of the dense suspension under shear (e.g. Boyer
et al. 2011; Dagois-Bohy et al. 2015). For laminar viscous flows, i.e. a Stokes number
St = ρpγ̇ d2

p/ηf smaller than 10 (Bagnold 1954; Ness & Sun 2016), where ρp is the particle
density and dp is the characteristic particle diameter, this measure allowed Boyer et al.
(2011) to define a macroscopic friction coefficient μ = τ/pp that depends on the viscous
number J = ηf γ̇ /pp. Based on this, the authors were able to propose empirical correlations
for μ(J) and φ(J) that distinguish between stress contributions from particle contact and
hydrodynamic interactions. This framework has become known as the μ(J)-rheology. In
this article, we will follow the nomenclature of Guazzelli & Pouliquen (2018) and use the
symbol J rather than Iv for the viscous number to distinguish it more clearly from the
inertial number defined for highly inertial granular flows.

The pressure-imposed rheometry also allows for the analogy to sediment transport,
where the imposed particle pressure pp at some depth in the sediment bed is equal to
the submerged weight of the overlying grains (Aussillous et al. 2013; Maurin, Chauchat
& Frey 2016; Vowinckel et al. 2019a). This analogy is important for two-phase fluid
sediment transport modelling (Jenkins & Hanes 1998; Hsu, Jenkins & Liu 2004),
where the fluid–particle mixture is treated as two separated continua with interconnected
conservation laws of mass and momentum (Ouriemi, Aussillous & Guazzelli 2009). The
empirical correlations of the μ(J)-rheology can provide the constitutive equations needed
to close this set of equations (Chauchat et al. 2017; Lee & Huang 2018; Lee 2021).
Unfortunately, the empirical correlations μ(J) and φ(J) involve parameters that are not
universal but were calibrated against the experimental data of Boyer et al. (2011) in
the dense regime with non-vanishing shear (0.4 < φ < 0.58 and J > 10−6). It has been
pointed out by Revil-Baudard et al. (2015), who investigated sheet-flow processes under
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turbulent flow conditions, that these correlations need adjustments for more dilute systems,
whereas Houssais et al. (2016) investigated viscous numbers as low as J ≈ 10−9 and found
that the grains were still moving under creeping conditions even for these extremely low
shear rates. It remained unclear, however, if this was a particle property or an effect
originating from the curvature of the annular flume employed in this study. Hence, for
cases where the modelled flow conditions exceed the range of the calibration data, the
μ(J)-rheology can even lead to ill-posed problems as reported by Barker et al. (2015),
who then proposed an extension to tackle this problem (Barker & Gray 2017).

To increase the robustness of the μ(J)-rheology for two-phase fluid models, more
work is needed to derive more universal constitutive equations (Denn & Morris 2014;
Pähtz et al. 2019). A good starting point will be to address the coefficients that enter
the models of the μ(J)-rheology and are known to depend on the particle properties.
For the critical state of very low shear rates and dense systems, i.e. low J and large
φ, the frictional interparticle forces may become large enough to inhibit grains sliding
past one another. This quasi-static regime is determined by the particle properties critical
friction coefficient μ1 and maximum particle volume fraction φm. For example, Boyer
et al. (2011) reported μ1 = 0.32 and φm = 0.585 for the monodisperse case, but it has
been shown by Tapia, Pouliquen & Guazzelli (2019) for pressure-imposed rheometry that
these two quantities decrease with increasing particle roughness. For obvious reasons, the
critical volume fraction may also depend on the grain size distribution of the sediment as
smaller particles can fill the void interstitial pore space provided in-between larger grains
(Guazzelli & Pouliquen 2018). This aspect has thus far been neglected in the framework
of the μ(J)-rheology. In fact, most of the studies use sediment compositions of uniform
grains, where the standard deviation of the grain size distribution is smaller than 10 %.
However, neither is this variance in grain size distribution large enough to see appreciable
effects of polydispersity on the sediment transport (Biegert, Vowinckel & Meiburg 2017),
nor does this variance reflect the grain size distribution of fluvial sediments.

In this regard, it is important to acknowledge that natural sediments are by no means
monodisperse or bidisperse, but obey a certain continuous grain size distribution. For
example, according to ISO 14688-1:2002, cohesionless sand grains can range from 0.063
to 2 mm in diameter. This calls for an extension of the μ(J)-rheology towards more
realistic polydisperse sediment compositions.

As a first step, bidisperse suspensions were investigated in volume-imposed rheometers.
For this scenario, the effective viscosities were reduced as compared with the
monodisperse case (Chang & Powell 1994; Gondret & Petit 1997). In these studies, the
non-uniformity of the bidisperse grains was up to dp,max/dp,min = 13.75, where dp,max and
dp,min are the maximum and minimum diameter of the grains, respectively. The critical
volume fraction that indicates the quasi-static regime was also increased from φm = 0.585
for the monodisperse case (Boyer et al. 2011) to φm = 0.64. Consequently, models for φm
in bidisperse volume-imposed rheometry were proposed by Dörr, Sadiki & Mehdizadeh
(2013) and Mwasame, Wagner & Beris (2016) that can also be applied to polydisperse
systems (Pednekar, Chun & Morris 2018).

As a next step, two-dimensional (2-D) discrete element method (DEM) simulations
with grains of continuous polydispersity have been carried out where the fluid drag was
approximated by Stokes drag and lubrication (Trulsson, Andreotti & Claudin 2012; Ness &
Sun 2016) and the variation of the grain size was kept constant at dp,max/dp,min = 3.0 and
1.4, respectively. A recent study by Amarsid et al. (2017) extended these considerations
to a lattice Boltzmann method (LBM)–DEM for simulations in two dimensions for
dp,max/dp,min = 1.67. Since, however, the focus of these studies was to investigate the
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transition from the viscous to the inertial regime, polydispersity was merely added to
prevent artificial crystallization of the densely packed scenario, and its role on the rheology
was not discussed. To the knowledge of the authors, three-dimensional (3-D) simulations
with a systematic focus on the degree of polydispersity in pressure-imposed rheometry or
even sheared sediment beds have not been considered yet. The present study addresses this
issue.

We employ the open-source simulation framework WALBERLA (Bauer et al. 2020a) to
carry out fully coupled particle-resolved direct numerical simulations of sediment beds
sheared by a laminar Couette-type flow in the viscous regime, i.e. St < 10. To this end,
we utilize the combined LBM–DEM of Rettinger & Rüde (2017) and Rettinger & Rüde
(2020). This extends our pore-resolved simulations of fluid flow through porous media
(Fattahi et al. 2016; Gil et al. 2017; Rybak et al. 2021), and is in line with previous
erosion studies using a similar methodology (Derksen 2011; Rettinger et al. 2017). We
follow the approach by Vowinckel et al. (2021) to compute time-averaged, depth-resolved
profiles to quantify the stress exchange between the fluid and the particle phase. This
allows for a systematic simulation campaign of different sediment grain size compositions
under exact control of the flow conditions and eradicates potentially unwanted effects from
curved sidewalls, as present in existing laboratory experiments. The highly resolved data
yields all the relevant quantities, i.e. particle volume fraction, shear rate, total shear and
granular pressure, to infer the rheology of the polydisperse fluid–particle mixture down to
viscous numbers of J ≈ 10−9. The investigated sediment beds have a non-uniformity of
dp,max/dp,min up to a factor of 10, which corresponds to a variety typically encountered
in fluvial sediments of lowland rivers (e.g. Kuhnle 1993; Frings 2008). The rather large
disparity of the grain sizes is achieved using the efficient parallelization scheme of Eibl &
Rüde (2018). These studies ultimately allow us to derive a robust parameterization strategy
of the classical μ(J)-rheology to account for the sediment polydispersity by linking the
non-uniformity to the critical volume fraction φm and propose a straightforward extension
to creeping flow conditions that recovers the original μ(J)-rheology for higher shear
rates.

The paper is structured as follows. We first provide a brief summary of the numerical
framework in § 2 and the simulation set-up in § 3. We then infer the pressure-imposed
rheology and validate our simulation approach in § 4 by comparing the monodisperse case
with the experimental data of Boyer et al. (2011) and Houssais et al. (2016), including
the classical empirical correlations of the μ(J)-rheology (Boyer et al. 2011). Finally, we
utilize the data from our simulation campaign to present extensions of the μ(J)-rheology
for polydispersity and creeping flow in § 5 and § 6, respectively.

2. Numerical method

For the numerical studies presented here, we couple the LBM for fluid flow with a
DEM to account for particle interactions of polydisperse, spherical grains. This approach
has proved to be accurate and efficient for geometrically fully resolved particle flow
simulations and has been thoroughly validated in Rettinger & Rüde (2020). Therein, a
detailed presentation and discussion of the method is given. We briefly summarize the key
aspects for completeness here. All parts of the employed numerical scheme are contained
in the open-source high-performance framework WALBERLA (cf. Bauer et al. 2020a), and
its implementation can be found in the official software repository (https://walberla.net/).
A sketch of the numerical scheme is presented in figure 1.
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ωp,i

up, j

xp, j

dp, j

ωp, j

up,i
xp,i

dp,i

Figure 1. Schematic representation of the coupled LBM–DEM approach for fully resolved particulate flow
simulations. The orange circles depict two colliding spheres, i and j. The underlying uniform grid is used for
the LBM, which simulates the fluid flow inside the fluid (light blue) cells. The solid (light brown) cells, whose
centres are contained inside the particles, do not carry fluid information.

2.1. LBM
The LBM is a relatively recent approach for the simulation of viscous fluid flow.
It describes the evolution of particle distribution functions (p.d.f.s) on a uniform
computational grid and thereby fulfils the macroscopic Navier–Stokes equations.
A detailed overview of the theory and various approaches can be found in Krüger et al.
(2017). For the present studies, we employ the D3Q19 two-relaxation-time model of
Ginzburg, Verhaeghe & d’Humieres (2008). The relaxation times, connected via the
parameter Λ = 3/16, determine the kinematic fluid viscosity νf and allow for accurate
flow simulations. The local fluid pressure pf and velocity uf are obtained via zeroth- and
first-order moments of the p.d.f.s in a fluid cell. Commonly, all quantities are expressed
in a normalized LBM unit system, the so-called lattice units, which results in the cell size
	x = 1, the time step size 	t = 1 and a reference fluid density of ρf = 1. These will be
used in the remainder of this work.

2.2. DEM
The motion of a spherical particle i can be described by the Newton–Euler equations

mp,i
dup,i

dt
= F p,i = F col

p,i + F hyd
p,i + F ext

p,i, (2.1)

Ip,i
dωp,i

dt
= T p,i = T col

p,i + T hyd
p,i . (2.2)

Here, mp,i = ρpVp,i is the mass of the particle of density ρp and volume Vp,i, and
Ip,i = (mp,id2

p,i)/10 is the moment of inertia for a sphere of diameter dp,i. The temporal
change of the particle’s translational velocity is thus given by the acting forces F p,i, with
contributions from the collisions F col

p,i , the hydrodynamic interactions F hyd
p,i and external

sources F ext
p,i . Similarly, the angular velocity changes according to the acting torque T p,i,

due to collisions and hydrodynamic interactions. These equations, together with the
particle’s position, are integrated in time via a velocity Verlet scheme (Wachs 2019) with
a constant time step size 	tp = 	t/10. Consequently, 10 particle simulation time steps
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are carried out within one fluid time step, which improves the overall accuracy of particle
interactions and the efficiency of the simulation.

The collision forces and torques are determined via a DEM that assumes a soft contact
between overlapping rigid particles (cf. Cundall & Strack 1979). In our case, the normal
and tangential collision components are given by a linear spring–dashpot model, similar
to Costa et al. (2015) and Biegert et al. (2017). Following van der Hoef et al. (2006), the
spring and damping coefficients of the normal collision model, kn and dn, are determined
via the dry coefficient of restitution edry, a material parameter that is here chosen to be
0.97 (Vowinckel et al. 2021), and the collision time Tc. The latter is chosen according
to the findings in Rettinger & Rüde (2020) as Tc = 4d̄p	t/	x, where d̄p is an average
particle diameter, and ensures an adequate temporal resolution of the collision. As shown
in Thornton, Cummins & Cleary (2013), the spring and damping coefficient of the
tangential model are related to the ones of the normal direction via Poisson’s ratio νp,
such that kt = κpkn and dt = √

κpdn, with κp = 2(1 − νp)/(2 − νp). The magnitude of the
tangential collision force is limited by the Coulomb friction, determined as a product of the
friction coefficient μp and the absolute value of the normal collision force. In the present
simulations, we use νp = 0.22 and μp = 0.15 as reported in Joseph & Hunt (2004).

The external force is given as the gravitational and buoyancy forces due to the
gravitational acceleration g, i.e. F ext

p,i = (ρp − ρf )Vp,ig.

2.3. Fluid–particle coupling
To establish the coupling between the fluid and the granular phase in an accurate manner,
we follow Rettinger & Rüde (2020) and distinguish between resolved and unresolved
hydrodynamic forces to compute F hyd

p,i and T hyd
p,i . For the resolved part, we use the

LBM-specific momentum exchange method as proposed by Aidun, Lu & Ding (1998) to
apply an explicit mapping of the particles onto the computational grid. This is achieved by
flagging cells with their centres contained inside of particles as solid, effectively removing
them from the fluid domain (cf. figure 1). This results in a sharp interface between the fluid
and solid phase, along which no-slip boundary conditions for the fluid are applied. Here,
we use the central linear interpolation scheme of Ginzburg et al. (2008) that allows for
second-order accurate results by including information about the exact surface position.
The momentum exchanged locally with the particle due to its no-slip boundary condition
is then integrated over the whole particle surface, as in Wen et al. (2014). Following Ladd
(1994), this measure determines the resolved part of the fluid–particle interaction force
F fp

p,i and torque T fp
p,i acting on this particle, which are averaged over two consecutive fluid

time steps for improved stability. Solid cells that are no longer occupied by the particle
due to its motion are converted back to fluid cells. Additionally, the otherwise missing
p.d.f. information is restored in these cells with an approach similar to Dorschner et al.
(2015), using density and pressure tensor information from surrounding fluid cells and the
particle’s velocity.

As shown in Rettinger & Rüde (2020), this approach is able to reliably and accurately
predict the resolved part of the fluid–particle interactions of single spheres. For two
approaching particles, however, the mesh resolution of the narrow gap between the
particles’ surfaces is usually too coarse to fully resolve the strong lubrication interaction
originating from the fluid that is being squeezed out of the gap of size δn. For those cases,
a lubrication correction model must be applied that accounts for these unresolved forces
(Nguyen & Ladd 2002; Biegert et al. 2017). Thus, the total hydrodynamic interaction force
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and torque on a particle i is here computed as

F hyd
p,i = F fp

p,i + F lub,cor
p,i , (2.3)

T hyd
p,i = T fp

p,i + T lub,cor
p,i . (2.4)

These lubrication correction forces and torques explicitly account for the pairwise
lubrication forces and torques due to relative normal, tangential translational and tangential
rotational velocities, and are given in Rettinger & Rüde (2020). As suggested by validation
studies therein, the normal and tangential lubrication corrections are only active for
δn < 2	x/3 and δn < 	x/2, respectively. As these corrections scale as F lub,cor

p,i ∝ δ−1
n and

T lub,cor
p,i ∝ ln(δn), they would grow to infinity for vanishing gap sizes. Hence, a calibrated

lower limit of δlub
n,min = (0.001 + 0.000035dp,i/	x) dp,i/2 is applied in their calculation.

3. Simulation description

In this section, we detail the set-up of the simulation, including the generation of the
sediment beds, the physical parameterization, the description of the computational set-up
and, finally, the evaluation of relevant rheological quantities.

3.1. Set-up description
The general scenario is to consider linear shear flows with a constant shear rate γ̇ = Uw/hf
across sediment beds of polydisperse, spherical particles (cf. figure 2), where Uw is the
velocity of the moving top wall, hf = Lz − hb is the clear fluid height, Lz is the vertical
extent of the domain and hb is the height of the sediment. To this end, we generate a grain
size distribution with diameter values for Np particles by sampling from a log-normal
distribution, defined by the parameters μLN and σ 2

LN . Those parameters are related to the
desired mean μX and variance σ 2

X of the distribution via

μLN = ln

⎛
⎝ μ2

X√
μ2

X + σ 2
X

⎞
⎠ and σ 2

LN = ln

(
1 + σ 2

X

μ2
X

)
, (3.1a,b)

which yields the mean diameter

d̄p = 1
Np

Np∑
i=1

dp,i. (3.2)

Note, that we decided to use the arithmetic mean diameter for the parameterization
instead of the median diameter dp,50 as it is also well-defined for bidisperse grain size
distributions. As will be detailed in § 3.2, we target a numerical resolution of the mean
diameter of d̄p/	x = 20. Especially for large variances, care must be taken to maintain a
reasonable numerical resolution for all particle sizes including its smallest values. Hence,
we dismiss diameter values below 10 cells to guarantee a reasonable resolution of the flow
field around the particles.

The statistical properties of the polydisperse sediments including the ratio of largest
to smallest diameter in the bed, given by dp,max = maxi dp,i and dp,min = mini dp,i, can be
found in table 1. Note that μX was chosen below 20 for strong polydispersity to compensate
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Lx

hb

hf
Uw

g
Lz

Figure 2. Sketch of physical set-up as a side view, including a slice of the initial flow field above the
sediment bed.

Case Np μX σ 2
X d̄p dp,max/dp,min dp,50 h0

b/d̄p

mono 26 112 20 0.1 20.00 1.15 20.00 17.10
poly-10 24 486 20 10 20.02 3.43 19.78 17.00
poly-50 19 404 19.5 50 20.00 7.87 18.72 17.02
poly-100 14 464 17.5 100 20.27 9.74 17.60 16.77

Table 1. Parameters and properties of the different sediment beds, where length scales are expressed in lattice
units.

for the lower limit of admissible diameters and to obtain d̄p/	x ≈ 20. We also use a
log-normal distribution, albeit with a much smaller variance, for the monodisperse case as
encountered in experimental studies (Boyer et al. 2011; Aussillous et al. 2013) to prevent
an artificially close packing observable in perfectly mono-sized sphere beds.

Subsequently, the initial sediment beds for the main simulations of a fully coupled
fluid–particle system are created by a precursor simulation without fluid. A constant
density ρp is assigned to the particles. Initially, they are placed inside a tall domain,
with a uniform spacing in all directions that prevents potentially large overlaps, and
given a random velocity. Due to gravity, they then settle on a plate of size Lx × Ly =
51.2d̄p × 25.6d̄p = 1024 × 512 cells, where Lx and Ly are the streamwise and spanwise
extent, respectively, of the horizontally periodic computational domain. The precursor
simulations are run until all particles have come to rest to yield the initial bed height h0

b
for the main simulation. This state is typically achieved after some minutes of simulation
time on a regular workstation. We noticed that this precursor simulation requires the same
physical parameters, such as gravitational acceleration and submerged weight, as in the
main simulation to prevent large accelerations followed by abrupt position changes in the
initial phase of the main simulation. Since h0

b can only be roughly estimated a priori, an
iterative procedure is applied to find the right number of particles Np necessary to achieve
comparable bed heights among the different runs. In all cases, the bed is generated to
obtain an initial bed height of approximately h0

b = 340, i.e. h0
b/d̄p = 17 (cf. table 1). This

requires around 26 000 particles for the monodisperse case to around 14 500 particles for
the strongly polydisperse set-up. A visualization of the generated sediment beds and the
diameter distribution for all four cases can be seen in figure 3.
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Figure 3. The four different set-ups and their diameter distribution (from (a,b) to (g,h): mono; poly-10;
poly-50; poly-100). Colouring of particles is according to the diameter with a logarithmic colour scale. See
table 1 for detailed information about bed configurations. Along the diameter distribution, the cumulative
distribution function (c.d.f.) based on a kernel density estimate is provided.

3.2. Physical parameterization
The main simulation is executed in a cuboidal domain of size Lx × Ly × Lz = 1024 ×
512 × 480 cells. The domain is completely filled with a viscous fluid, defined by the
kinematic viscosity νf and density ρf . Periodic boundary conditions are applied in
the streamwise (x) and spanwise (y) directions, while no-slip boundaries are applied at
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the particle surface as well as the top and bottom planes bounding the vertical direction
(z). The top plane is moving in the x-direction with a constant velocity Uw = 0.03 in
lattice units. The sphere packing is initialized by the results from the precursor simulations
to prescribe h0

b. We fix all particles with a vertical centre position smaller than 3/4d̄p
throughout the simulation to form a bottom roughness. This measure prevents artificial
slipping of the complete bed over the bottom plane (Biegert et al. 2017; Jain, Vowinckel &
Fröhlich 2017). A linear shear profile is assigned to the fluid above the sediment bed as an
initial condition (cf. figure 3).

Apart from the density ratio ρp/ρf , we characterize the sediment mobility by the Shields
parameter Θ as follows:

Θ = τ

g(ρp − ρf )d̄p
, (3.3)

where τ = ρf νf γ̇ is the shear stress and g is the magnitude of the gravitational
acceleration. Additionally, we define a particle Reynolds number Rep = uτ d̄p/νf using
uτ = √

τ/ρf .
For those non-dimensional parameters, we choose Θ = 0.5, Rep = 0.76 and ρp/ρf =

1.5 in all simulations to have comparable results. The value of the Shields parameter is
well above the expected threshold for incipient motion, given as Θc ≈ 0.12 by Ouriemi
et al. (2007), to ensure an adequate mobility of the particles. This results in a bulk
Reynolds number based on channel properties, Reb = Uwhf /(2νf ), of around 14 and a
Stokes number, St = ρpd̄2

pγ̇ /ηf , of around 0.85, which makes the simulations fall into the
viscous regime (Bagnold 1954). Due to the low Reynolds number, we obtain a laminar
Couette-like flow profile in the bulk region above the bed, where τ is constant. Finally, we
define the reference time scale as tref = d̄p/Uw. We explicitly note that the set of physical
parameters of the simulations is determined using the initial values of the bed and the fluid
height, since hb becomes a result of the simulation and varies over time when the sediment
bed dilates under shear, as will be detailed in § 3.3.

To ensure an accurate resolution of fluid–particle interaction, a numerical resolution of
approximately 20 cells per mean diameter is chosen in all simulations, i.e. d̄p/	x ≈ 20
(Costa et al. 2015; Biegert et al. 2017; Rettinger & Rüde 2017, 2020). Since such a
high resolution inherently renders the present numerical simulations computationally
challenging, a performance-optimized implementation of the numerical methods as well
as efficient communication routines must be applied to stay within adequate runtimes
without exhausting computational resources (Eibl & Rüde 2018; Bauer, Köstler & Rüde
2020b). The details of our simulation approach are presented in Bauer et al. (2020a). The
approach has successfully been applied in previous large-scale studies of particle-resolved
simulations (e.g. Rettinger et al. 2017; Götz et al. 2010), where its excellent performance
on high-performance computing clusters has been demonstrated. Specifically in the
present work, each simulation run is executed for 48 hours on 7680 processes on the
SuperMUC-NG supercomputer at LRZ in Garching, Germany. The resulting 2.5 × 108

grid cells, simulated for around 9 × 106 time steps in each case, make the studies at hand
one of the largest and computationally most costly simulation campaigns of polydisperse
sediment beds reported in the literature.

Movies of the simulations are provided as supplementary material, available at https://
doi.org/10.1017/jfm.2021.870, together with relevant simulation results.
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3.3. Evaluation procedure for simulation data
Since the goal of the present study is to investigate the rheological behaviour of sediment
beds in the framework of the μ(J)-rheology, we have to obtain the values for pp, μ = τ/pp
and J = ηf γ̇ /pp. These quantities can be determined from vertical profiles of γ̇ and φ

(Houssais et al. 2016; Vowinckel et al. 2021). From the numerical simulations, we obtain
high-fidelity data of individual particle positions and velocities, as well as flow velocities
as a function of time and space. To process the data for robust rheological interpretations,
we apply spatial and temporal averaging.

As a first step, we perform spatial averaging and analyse it over time to determine
the initialization period needed to obtain a statistically stationary state. This measure
ensures that transient effects such as the dilation of the granular packing under shear
and the initial sorting of the polydisperse grains are excluded from the statistical analysis
(cf. Appendix A). We subdivide the domain into binned averaging volumes of size
V0 = Lx × Ly × 	x, stacked vertically upon each other. In order to obtain the vertical
particle volume fraction profile at a specific time t, we make use of the particle diameter
and its centre coordinates. The horizontal planes between the stacked V0 slice each sphere
into several sphere segments, whose volume Vs can be determined analytically. We then
add up all the volumes of the sphere segments within a V0 and divide this accumulated
particle volume

∑
Vs by the total averaging volume |V0| to obtain the particle volume

fraction φ(z, t), where z the discrete vertical centre coordinate of the respective V0. As
a next step, we apply a central moving average of width 10	x, which corresponds to
half of the mean particle diameter. This measure is needed to even out the layering at
the subparticle scale that introduces fluctuations within horizontally averaged profiles
(Vowinckel et al. 2021).

From these vertical profiles and with linear interpolation, we can evaluate the bed height
hb(t) given as the vertical position, for which φ(hb, t) = 0.1 (Kidanemariam & Uhlmann
2014). Note that other authors have used different threshold values for this definition
(Houssais et al. 2016; Biegert et al. 2017), but due to the sharp gradient of the profile at the
interface region, the actual value to determine hb does not have an impact on our analysis
of rheological quantities. The temporal evolution of the bed height due to the movement
of the top particle layer is illustrated in figure 4. It can be seen that when increasing the
polydispersity of the bed, fluctuations in hb become larger and also, on average, the bed
expands more.

Based on these evaluations, we define an instant of time that marks the beginning of our
averaging time, t0. As mentioned above, this is done to exclude the initial dilation phase
of the sediment bed and, in particular, possible morphological effects due to vertical grain
size segregation for the polydisperse cases, see Appendix A. Hence, no significant changes
in the rheological quantities nor the local particle size distributions are observed during
the evaluation period. The temporal averaging windows for the different cases are stated
in table 1 and visualized in figure 4 as grey shaded areas. The slightly different end times
originate from the different total run time of the simulations.

These considerations finally allow us to obtain the time-averaged particle volume
fraction as

〈φ〉t(z) = 1
t1 − t0

∫ t1

t0
φ(z, t) dt, (3.4)

where the angular brackets indicate averaging in time as implied by the subscript t.
Similarly, we evaluate the time-averaged bed height and state it in table 2.

Analogously, we perform the spatial and temporal averaging of the streamwise fluid
velocity uf . We define an indicator function Γ being 1 in the fluid and 0 otherwise,
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Figure 4. Bed height hb as a function of time extracted from the instantaneous vertical volume fraction profiles
for all simulation set-ups. The grey area depicts the region used for temporal averaging. For cases (a) mono,
(b) poly-10, (c) poly-50 and (d) poly-100.

Case [t0, t1]/tref 〈hb〉t/d̄p τ/(g(ρp − ρf )d̄p) φm

mono [2250, 12 824] 17.36 0.506 0.631
poly-10 [7494, 13 264] 17.33 0.502 0.645
poly-50 [7500, 12 674] 17.59 0.519 0.669
poly-100 [7402, 11 991] 17.52 0.526 0.697

Table 2. Sediment bed and flow quantities extracted from the simulation data, together with duration of the
time-averaging period.

that separates the fluid from the particle phase to compute so-called intrinsic spatial
averages (Vowinckel et al. 2017, 2019b)

〈uf 〉V(z, t) = 1∫
V0

Γ dV

∫
V0

Γ uf (x, y, z, t) dV, (3.5)

where the subscript V of the angular brackets now indicates spatial averaging. This is
again followed by a central moving average. Temporal averaging as in (3.4) finally yields
〈uf 〉V,t, the vertical fluid profile consecutively averaged over space and time. We note that
we observed temporal fluctuations in the instantaneous flow profiles within the bulk of the
sediment bed, i.e. where the fluid and particle velocities are very small. Those fluctuations
presumably originate from ongoing sorting effects inside the bed that appear over long
time spans (Ferdowsi et al. 2017). As such, longer simulation times would be desirable to
increase the temporal averaging window and obtain a more robust statistical steady state. It
was shown by Vowinckel et al. (2021), however, that unsteady effects are negligible when
analysing the rheological properties in the viscous regime.

We obtain the local shear rate as the spatial derivative of 〈uf 〉V,t. Owing to the spatial
heterogeneity of our polydisperse sediment beds that may still be subject to ongoing
sorting, we decided to use the absolute value of the local shear rate, i.e. |γ̇ |, as a robust
measure to compute the rheological quantities (Madraki et al. 2017). The actual shear
stress τ is extracted from the bulk region of the flow, where it is constant due to the
linear flow profile. The normalized shear stress values of all cases are reported in table 2,
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Figure 5. Spatially and temporally averaged profiles of different quantities for the monodisperse case. The
dashed horizontal line represents the bed height. The solid horizontal line is at z = 5d̄p and all profile data
below is discarded in further analysis. The data of the vertical profiles for all simulation runs are provided as
supplemental material.

which are close to the target Shields number of 0.5. The granular pressure, on the other
hand, is obtained from 〈φ〉t via

pp(z) = (
ρp − ρf

)
g
∫ ∞

z
〈φ〉t(z′) dz′. (3.6)

This definition is in line with the one proposed by the two-phase model of Aussillous et al.
(2013) and successfully used in the analysis of Vowinckel et al. (2021). Note that we do not
introduce an artificial confining pressure P0 at the top wall as suggested by Houssais et al.
(2016), because our simulation data yield full information of vertically resolved porosity
profiles across the entire depth of the channel. These data allow for a straightforward
computation of the vertical profiles of μ and J. The final profiles of the relevant quantities
are exemplified in figure 5 by showing the results for the monodisperse case. In this figure,
the granular pressure is normalized by Ptot = (ρp − ρf )g

∫∞
0 〈φ〉t(z′) dz′, which is the total

submerged weight of the sediment bed. The complete data sets for all four simulation cases
can be found in the supplementary data. Looking at the particle volume fraction profile, a
layering is visible near the bottom plane (figure 5a), which is due to the ordered structure
induced by the spheres mounted to the bottom plane. Therefore, we discard the data from
the lower parts of the bed, i.e. where z < 5d̄p, to exclude potential artefacts induced by the
boundary condition of the bottom roughness.

We can directly obtain the maximum solid volume fraction φm from the particle volume
fraction profile. To this end, we evaluate its average in the bulk region of the bed, i.e.

φm = 1
5d̄p

∫ 10d̄p

5d̄p

〈φ〉t(z) dz. (3.7)
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Its value for the different set-ups is given in table 2. As expected, φm increases with
polydispersity since the voids between larger particles can be filled by smaller particles.
The maximum packing fractions are close to the values commonly reported in the literature
for random close sphere packings with log-normal size distributions (Farr 2013; Brouwers
2014).

For brevity, we will omit the indication of the averaging operator and use φ instead of
〈φ〉t to denote the averaged particle volume fraction for the remainder of the work.

4. Rheology of monodisperse sediment beds

4.1. Rheological model for dense suspensions
The rheology of monodisperse, neutrally buoyant, spherical particles in a viscous fluid
has been assessed experimentally by shearing walls that impose a constant volume on the
fluid–particle mixture (e.g Krieger & Dougherty 1959; Morris & Boulay 1999; Stickel
& Powell 2005; Guazzelli & Morris 2011). This approach is commonly referred to
as volume-imposed rheometry. The scenario has been extended to a pressure-imposed
rheometry, where a constant confining pressure is applied on the top wall that
remains movable in the vertical direction. This measure allows us to investigate the
dilation/consolidation of a granular suspension under varying shear (e.g. Boyer et al. 2011;
Dagois-Bohy et al. 2015; Tapia et al. 2019). As already laid out in the introduction, this
scenario bears a straightforward analogy to the shearing of sediment beds. Hence, the
pressure-imposed rheometry and the corresponding empirical correlations derived from
the rheological experiments to predict the macroscopic friction and the particle volume
fraction as functions of the viscous number J = ηf γ̇ /pp are the focus of this work.

Using their experimental apparatus, Boyer et al. (2011) followed the argument of Cassar,
Nicolas & Pouliquen (2005) to show that the rheology of the fluid–particle mixture is
governed by J. Based on these considerations, Boyer et al. (2011) proposed the following
empirical correlations as a rheological model, which became known as the μ(J)-rheology
and reads in its most general form:

μ(J) = μ1 + μ2 − μ1

1 + Jf /J︸ ︷︷ ︸
μ f (J)

+ aμJ1/2 + bμJ︸ ︷︷ ︸
μh(J)

, (4.1)

φ(J) = φm

1 + (KnJ)1/2 . (4.2)

The macroscopic friction coefficient, thus, has the two contributions, μ f and μh, from
frictional-contact-based and hydrodynamic stresses, respectively. The expression of μ f

was originally proposed by Jop, Forterre & Pouliquen (2005) and Cassar et al. (2005)
while studying submarine granular flow down an inclined plane. Notably, the parameter
Jf represents the value of J for which μ f = (μ2 + μ1)/2, i.e. the average of μ1 and μ2.
This parameter can therefore be understood as the transition from a frictional dominated
to a more suspended regime where binary particle collisions prevail and the role of
hydrodynamic stress becomes increasingly important. The parameters μ1 and φm are
particle properties that represent the minimum friction and maximum particle volume
fraction, respectively, for J → 0, i.e. the jamming point of the dense suspension when the
granular flow ceases. According to Cassar et al. (2005), μ2 is the maximum value for the
friction coefficient at higher shear rates, whereas, this value serves as the threshold that
distinguishes the two contributions from particle contact and hydrodynamic interactions
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in the framework of Boyer et al. (2011). The coefficients aμ = 1, bμ = 5/2φm can be
determined from the analytical solution for effective viscosities of dilute suspensions
originating from Einstein (1905), and Kn is a parameter that has been determined
empirically by best fit to experimental data (Morris & Boulay 1999; Boyer et al. 2011).

For the sake of the arguments that follow, we decided to deviate from the commonly
encountered notation of Jf , which has previously been denoted as I0 (e.g. Cassar et al.
2005; Boyer et al. 2011; Houssais et al. 2016) or J0 (e.g. Guazzelli & Pouliquen 2018;
Vowinckel et al. 2021).

4.2. Existing model parameterizations
In the work of Boyer et al. (2011), viscous numbers in the range J ∈ [10−6, 10−1] were
investigated. Since limJ→0 μ f (J) = μ1 and limJ→0 φ(J) = φm, the parameters μ1 = 0.32
and φm = 0.585 were obtained within the lower limit of J. Additionally, the parameters
μ2 = 0.7 and Jf = 0.005 were determined by fitting to the experimental data. The
coefficient Kn was evaluated as Kn = 1 by Boyer et al. (2011), whereas Morris &
Boulay (1999) found a value of Kn = 0.75 in their experiments on shear-induced particle
migration.

Recently, further experimental studies of an annular flume set-up with monodisperse
spheres were reported by Houssais et al. (2016) and Tapia et al. (2019), which differ
most notably in the range of measured J values. In Houssais et al. (2016), a sediment
bed of monodisperse spheres was sheared by a laminar Couette flow to obtain values of
J ∈ [10−9, 10], which extended the data range to significantly lower J. This study revealed
a novel regime for μ, labelled as the creep regime and it is discussed in more detail in § 6.
To provide a comparison with (4.2), Houssais et al. (2016) decided to exclude these low
J-values from their analysis to obtain fitted coefficients for the region J ∈ [3 × 10−5, 2]
that show very good agreement with the results of Boyer et al. (2011).

In contrast, Tapia et al. (2019) investigated a region of J ∈ [3 × 10−4, 10−1] to
address the effect of particle roughness on the rheology of dense suspensions. For
that reason, they used slightly roughened (SR) and highly roughened (HR) spheres
in their experiments. Instead of fitting the complete Boyer model (4.1), these authors
suggested a simplified scaling, which only contains the

√
J term close to the jamming

transition and used this approach to determine the friction factor at the jamming
point by extrapolating their data. This approach worked very well for the given range
of J, but it also required a fitting of the coefficient aμ that was, thus, found to
be different from the Einstein formulation. Following the reasoning given in Tapia
et al. (2019), they assumed a constant μ f which implies μ1 = μ2. This effectively
removes the second term of μ f from (4.1) and, thus, Jf is not required for this
analysis.

A summary of the values that have been reported in the literature and discussed in
the preceding paragraphs is given in table 3. Note that the particles used in all of these
experimental studies were monodisperse spheres.

4.3. Comparison with simulation results
In an effort to compare our simulation results against experimental data of
pressure-imposed rheometry, we evaluate our data following the procedure described in
§ 3.3 to extract all rheological quantities as vertical profiles through the sediment bed (cf.
figure 5). Combining the data from these profiles, we are able to investigate μ and φ as
functions of J within the range J ∈ [10−9, 103]. This analysis is shown in figure 6 for the
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Work range of J μ1 μ2 Jf aμ bμ φm

Cassar et al. (2005) [10−5, 10−1](*) 0.43 0.82 0.0027(*) 0 0 —
Boyer et al. (2011) [10−6, 10−1] 0.32 0.7 0.005 5

2 φm 1 0.585
Houssais et al. (2016) [3 × 10−5, 2] (†) 0.27 0.52 0.0012 5

2 φm 1 0.589
Tapia et al. (2019) (SR) [3 × 10−4, 10−1] 0.37 μ1 — 5.45 0 0.584
Tapia et al. (2019) (HR) [3 × 10−4, 10−1] 0.36 μ1 — 5.16 0 0.565

Table 3. Summary of previous work in the context of the μ(J)-rheology, (4.1), together with the reported
coefficients. The symbol (*) indicates the values for J and Jf were adapted to match our definition of the
viscous number and the symbol (†) indicates the range used for fitting.

10−2

10−1

100

101

102

103

data Boyer et al.
data Houssais et al.
data present simulation

coefficients Boyer et al.
coefficients Houssais et al.
coefficients Morris & Boulay

10−9 10−7 10−5 10−3 10−1 101 103

10−9 10−7 10−5 10−3 10−1 101 103

0

0.5

1.0

J

μ

φ/φm

(b)

(a)

Figure 6. Rheological quantities ((a), μ; (b), φ) as a function of viscous number J for a monodisperse sediment
bed. Data from the present monodisperse simulation is shown, together with experimental data from Boyer et al.
(2011) and Houssais et al. (2016). Additionally, curves of (4.1) and (4.2) are shown, parameterized as proposed
by Boyer et al. (2011), Houssais et al. (2016) and Morris & Boulay (1999) (cf. table 2).

monodisperse case. In panel (a) of this figure, the macroscopic friction factor μ is given
as a function of the viscous number J. For comparison, we plot our data together with
the experimentally obtained data from Boyer et al. (2011) and Houssais et al. (2016), as
well as the proposed parameterization therein of the μ(J) model (4.1) as summarized in
table 3. Panel (b) of the same figure shows our data for the particle volume fraction φ over
J normalized by φm, and the predictions using (4.2) with the coefficient Kn from Boyer
et al. (2011) and from Morris & Boulay (1999).
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Comparing our simulation results of μ(J) with the existing experimental data shows
a very good agreement, in particular with the data from Houssais et al. (2016) over
the complete range of J. Consequently, the simulation data is well predicted by the
parameterized models (4.1) for J > 10−5. This range is in agreement with the values
used in these experimental studies to calibrate the coefficients μ1, μ2 and Jf . For lower
values of J, our data underestimates the two correlations, which confirms the creep
regime reported by Houssais et al. (2016) and visible in their data. In this regime,
the plotted parameterizations of the model predict that μ levels off to a constant
value, whereas the available data shows another significant shift towards a lower level
of μ.

The simulation results for φ(J)/φm match well with the experimental data of Boyer
et al. (2011), normalized by φm = 0.585, and Houssais et al. (2016), normalized by
φm = 0.589. The latter shows some significant scatter, originating from the five distinct
experiments varying the Shields numbers. Excellent agreement between our data and
the rheology model is observed for the range J ∈ [10−9, 1], which contains the range
of viscous numbers used in Boyer et al. (2011) to parameterize the model. For larger J,
the simulation data exhibits smaller φ values than either of the models. In this range,
we observe a more rapid decrease of φ from φm to 0. This region corresponds to the
interface between the densely packed sediment bed and free flow region. The deviations
reflect the difficulty in using the empirical correlation of Boyer et al. (2011) in the
extrapolated region of a more dilute regime (Vowinckel et al. 2021). By comparing the
two parameterizations, we see that the parameter Kn in (4.2) controls the viscous number
range of this transition region. We note that the value of φm, used for the normalization of
our simulation data, is 0.631 and thus larger than the ones from other studies. As already
noted in § 3.3, our value of φm is close to the one reported for a random sphere packing
which can be expected since it is obtained from the bulk region of the sediment bed,
i.e. the region of vanishingly low shear rates and, consequently, small viscous numbers.
This is in contrast to other studies (Boyer et al. 2011; Vowinckel et al. 2021), where
stronger shearing was applied that led to a notable dilation of the suspension and, thus,
a decrease in φm. Furthermore, Singh et al. (2018) observed a strong influence of the
interparticle friction coefficient μp on φm for sheared systems and found values of φm
that are similar to ours for a friction coefficient of μp = 0.15. To focus on the general
behaviour of the φ(J) relation rather than the limiting value, which is therefore different
in our simulation but also in existing studies, we always present and analyse the normalized
φ values in this work. This also effectively removes the dependence on φm from the φ(J)

model (4.2).
In summary, our data of the monodisperse case agrees well with existing experimental

data and previously derived parameterizations of the rheology model. This overall
confirms the validity of our simulation approach for densely packed sediment beds in shear
flow and enables further predictive simulations. These studies will feature polydisperse
set-ups for direct comparison with the monodisperse models. Furthermore, we observe a
systematic shift in μ towards lower values for J < 10−5, also present in the experimental
data of Houssais et al. (2016). This range, however, was not addressed by Boyer et al.
(2011) nor Houssais et al. (2016) and is thus not contained in the existing rheological
model. In the following section, we will evaluate and enhance the parameterization of the
empirical coefficients in (4.1) for the effects of polydispersity by focusing on the collisional
and hydrodynamic regime for J ∈ [10−5, 102]. We then proceed in § 6 to study the creep
regime in more detail and propose an extended model that is able to capture the observed
behaviour.
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5. Rheological model for polydisperse sediment beds

5.1. Simulation results
We now apply the same analysis as for the monodisperse case in § 4.3 for the additional
three set-ups of polydisperse sediment beds summarized in table 1 that reflect different
degrees of polydispersity as indicated by the variance of the grain size distribution. This
analysis again yields μ and φ as functions of J and is shown in figure 7.

Similar to figure 6, figure 7(a,c,e,g) shows the macroscopic friction factor μ from our
data together with the model parameterizations from Boyer et al. (2011) and Houssais
et al. (2016). For increasing polydispersity, we observe a decrease of μ within the range
J ∈ [10−5, 100]. Note that μ and J are plotted on logarithmic scales, i.e. even small
deviations that become visible in this range are large in actual values, as can be seen in the
respective insets. All cases reproduce the creep regime for J < 10−6, as already observed
for the monodisperse case. This effect becomes slightly more pronounced with increasing
polydispersity.

Figure 7(b,d, f,h) shows our data for the particle volume fraction φ over J normalized by
φm, and model parameterizations from Boyer et al. (2011) and Morris & Boulay (1999).
There, the drop from φm to 0 occurs at lower values of J when the polydispersity is
increased, which results in a shift by up to one order of magnitude in J for poly-100
compared with mono. An interesting feature emerges for values of φ around J ≈ 10−4

that can be seen most prominently for the poly-100 case where values larger than φm are
observable. We found this to be a result of vertical sorting of the polydisperse sediment,
where finer sediments from the topmost sediment layer translate to and accumulate in a
lower layer, thereby increasing the particle volume fraction in this region.

Summarizing, increasing the polydispersity of the sediment bed while keeping all other
physical parameters constant has a distinct effect on μ and φ as functions of J. As a result,
the agreement between the simulation data and the existing model parameterizations by
Boyer et al. (2011), Houssais et al. (2016) and Morris & Boulay (1999) deteriorates with
increasing polydispersity. In the following, we will enhance the parameterization of the
rheological model in (4.1) and (4.2) for the effects of polydispersity by focusing on the
frictional and hydrodynamic regime for J ∈ [10−5, 102]. For now, we exclude the creep
regime for the remainder of this section to provide a consistent comparison with the
analyses of Boyer et al. (2011) and Houssais et al. (2016). However, we will study this
regime in more detail in the subsequent section, § 6.

5.2. Effect of polydispersity on model parameterization
In order to improve the parameterization of (4.1) and (4.2), we evaluate the parameters
μ1, μ2, Jf and Kn determined from fits of our simulation results to reveal trends as a
function of increasing polydispersity. To this end, we apply a fit of (4.1) and (4.2) to our
data. We follow the reasoning of Boyer et al. (2011) and determine μ1, μ2 and Jf as
free parameters, while keeping aμ = 5/2φm and bμ = 1 to recover the Einstein relation
for the effective viscosity of dilute suspensions. Similar to Houssais et al. (2016), we
apply the fit over the range J ∈ [10−5, 102] and exclude the values for lower J to focus
on the regimes dominated by frictional and hydrodynamic stresses. Owing to the large
value range over several orders of magnitude, we fit ln(μ) to J instead of μ directly. The
resulting coefficients are reported in table 4, and the corresponding plots are additionally
presented in figure 7. We explicitly note that φm is extracted from our simulation results as
a quantity of the individual sediment bed and is not fitted here.
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Figure 7. Rheological quantities ((a,c,e,g), μ; (b,d, f,h), φ) as a function of viscous number J for the four
different set-ups (from (a,b) to (g,h): mono, poly-10, poly-50, poly-100). Colour and style as in figure 6.
Additionally, best fits as explained in § 5.2 are given as orange curves. The insets in (a,c,e,g) magnify the
region of small viscous numbers, using a linear axis for μ.

Comparing the case mono with Boyer et al. (2011), our values for μ2 and Jf are almost
identical, and Kn also agrees very well, but we found a value for μ1 that is closer to the
results of Houssais et al. (2016). This could be attributed to the material parameters that
enter our particle contact algorithm described in § 2.2, such as the restitution coefficient
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Equation (4.1) Equation (4.2)

μ1 μ2 Jf Kn

present fits:
mono 0.253 0.704 0.0059 1.165
poly-10 0.247 0.577 0.0041 1.743
poly-50 0.204 0.367 0.0006 3.896
poly-100 0.193 0.301 0.0002 4.982

others:
Morris & Boulay (1999) — — — 0.75
Boyer et al. (2011) 0.32 0.70 0.0050 1
Houssais et al. (2016) 0.27 0.52 0.0012 —

Table 4. Coefficients applied for the equations of the μ(J)- and φ(J)-rheology for the curves shown in
figure 7, with φm from table 2. The fits are obtained using data of J ∈ [10−5, 102].

and friction coefficient, which are parameters that are not reported by either one of these
experimental studies.

For increasing polydispersity, the friction coefficients μ1 and μ2 decrease, while Kn
increases. Additionally, Jf changes in the four cases as well, although the values remain
on a very low level for all cases. A significant shift was detected from Jf = 0.0042 to Jf =
0.0006 for the cases poly-10 and poly-50, respectively, whereas Jf remains on this lower
level for poly-100. Owing to the large range of J, it is challenging to precisely determine
the exact value of Jf via curve fitting.

In the case of φ, the fitted curves reproduce the position and extent of the drop from
φm to 0 particle volume fraction very well. This is achieved by increasing Kn for larger
polydispersities, resulting in significantly larger values than given by Morris & Boulay
(1999) and Boyer et al. (2011). Slight deviations of the simulation data from the fitted
correlations can still be seen for J ≈ 102 where the curves predict values larger than those
present in the data.

Generally, the fitted curves plotted in figure 7 show a very good agreement with the
simulation results for the range of viscous numbers considered here. This confirms our
assumption that an adequate parameterization of the existing models for μ(J) and φ(J)

allows for an extension that takes polydispersity into account. In a next step, we attempt to
formalize the observed trends in the obtained coefficients as functions of polydispersity.

5.3. Model parameterization as a function of polydispersity
From the fits to the four different simulated cases, we find that the coefficients entering
(4.1) and (4.2) depend on the polydispersity of the sediment bed. The parameters μ1 and
μ2 decrease when the polydispersity is increased, whereas Kn increases. Even though Jf
seemingly decreases with increasing polydispersity, we refrain from interpreting these
values as an actual trend due to the aforementioned difficulties in its determination.
Based on these findings, we aim to extend the existing rheological model to incorporate
polydispersity in a general way and without individual calibration or fitting. As such, it
becomes readily applicable in macroscopic simulations and can significantly improve the
predictions of the rheology of polydisperse sediment beds.

To this end, we have to select a parameter that characterizes polydispersity in a
concise way. A set of possible parameters can be found in table 1, namely the variance
of the underlying log-normal distribution as well as the diameter ratio dp,max/dp,min.

932 A1-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.870


Rheology of sediment beds: effects of creep & polydispersity

0.25

0.20

μ1

0.75

0.50

0.25

μ2

0.0050

0
0.61 0.64 0.67 0.70 0.61 0.64 0.67 0.70

0.61 0.64 0.67 0.70 0.61 0.64 0.67 0.70

0.0025Jf

5.0

2.5

0

Kn

φmφm

(b)(a)

(c) (d )

Figure 8. Fitted coefficients (blue) from table 4 as a function of parameter φm, which is used to describe
polydispersity. Additionally, the correlations (5.2)–(5.5) are included as orange lines.

It is also reported in table 2 that these parameters directly influence the maximum particle
volume fraction φm that indicates the jamming condition. Here, we choose φm to be the
characteristic parameter as it is already present in the existing rheological framework as
a key parameter. This choice of the governing parameter is in line with recent work by
Pednekar et al. (2018) and the quantity can be obtained in a robust manner from either the
vertical profile of the particle volume fraction or from φ(J) as J → 0. For an a priori
determination of φm, a reasonable estimation can be obtained by assuming a perfect
log-normal distribution and making use of available packing fraction predictors (e.g.
Farr 2013; Brouwers 2014). Alternatively, for our specific case of a truncated log-normal
distribution, the relation

φm = 0.000633 σ 2
X + 0.635 (5.1)

can be used to approximate φm as a function of the variance σ 2
X . Note, however, that this

empirical correlation is specific to the grain size distributions used in the present study
and different types of sediments may require adjustments of this empirical correlation.
Previous studies on dry granular flows have suggested accounting for polydispersity by
using the weighted arithmetic mean of the particle diameter in the definition of the inertial
number (Tripathi & Khakhar 2011). Since this geometric quantity does not appear in the
definitions of the μ(J)-rheology framework, we identified φm as the more suitable measure
to account for polydispersity of dense suspensions in a quantitative manner. In figure 8,
the fitted coefficients are plotted as a function of φm.

In a next step, a functional expression for each parameter is determined which describes
the dependence on φm. For the three parameters with a clear trend, we assume a linear
dependence on φm. This is the strongest assumption we can justify based on the number of
data points available. For Jf , we refrain from further assumptions and use the average of
the fitted values, while also reporting its standard deviation. A sensitivity study revealed
that the dependence on the exact value of Jf is only weak, so that solely its order of
magnitude, which is captured well by the average, has a significant effect. This justifies
the model simplification and keeps the number of coefficients to a minimum. Applying a

932 A1-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

87
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.870


C. Rettinger, S. Eibl, U. Rüde and B. Vowinckel

linear regression, the resulting correlations for each parameter are given as

μ1 = −0.980 φm + 0.872, (5.2)

μ2 = −6.157 φm + 4.554, (5.3)

Jf = 0.0027 ± 0.0024, (5.4)

Kn = 60.490 φm − 37.008. (5.5)

The above relations are plotted as orange solid lines in figure 8 as well, exhibiting a
reasonable agreement with the values determined by individual fits.

For a quantitative comparison, we assess the predictive power of the rheology model
(4.1) and (4.2) to reproduce our observed simulation results using the parameters μ1, μ2,
Jf and Kn proposed by Boyer et al. (2011), Houssais et al. (2016) and Morris & Boulay
(1999), as well as the ones found by the individual fits performed in § 5.2 and compare
them against the prediction using the parameterization given by the calibrated expressions
(5.2)–(5.5). To this end, we compute the R2 value as a measure to quantify the agreement
between observations o and a prediction model m as

R2 = 1 −
∑

i(oi − mi)
2∑

i(oi − ō)2 , (5.6)

where ō is the average value of all observations. The maximum R2 = 1, thus, indicates
perfect agreement between the model prediction and the observations, whereas smaller
values mean lower agreement.

The R2 values are reported in table 5, where again we use the logarithmized data to
compute R2 for μ due to its large value range. Note that we evaluated the R2 for the range
of J ∈ [10−5, 102], which corresponds to the value range used for fitting and excludes the
creep regime. For μ(J), the parameterizations from Boyer et al. (2011) and Houssais et al.
(2016) offer a fairly good predictive quality for the monodisperse case and then deviate for
increasing polydispersity, which is in line with our previous observations. This is improved
when applying the fitted coefficients which produces an almost perfect agreement in all
four cases. Our expressions for μ1, μ2 and Jf , (5.2)–(5.4), yield a performance very similar
to the fitted parameters. In particular, this shows that the results are rather insensitive to the
actual choice of Jf as the values differ by one order of magnitude in the case of poly-100,
which can be seen as an additional justification for assuming a constant Jf . The same
findings regarding the predictive quality can be reported for the particle volume fraction
φ. The individual fits and the correlation for Kn, (5.5), yield very good agreement for
all the cases, whereas the parameterization by Boyer et al. (2011) and Morris & Boulay
(1999), i.e. Kn = 1 and Kn = 0.75, respectively, are not as accurate.

From these results, we conclude that our approach of including the effect of
polydispersity via a functional dependence of the coefficients on φm successfully improves
the macroscopic rheology models. Since the maximum particle volume fraction already
appears in the original model, this strategy can readily be integrated and applied in
macroscopic modelling approaches. Owing to its simplicity, the proposed correlations
should be used with care for different bed compositions as they might yield φm-values
outside the studied range that may lead to unrealistic values for μ1, μ2 or Kn.

For μ(J), however, the region of small J, and accordingly small μ, values cannot be
captured via the present formulation of (4.1). As such, the applicability would be limited to
cases with J > 10−5. To solve this issue, the model for μ(J) has to be extended to explicitly
account for the creep regime as will be detailed in the next section. The model for φ(J),
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R2(ln(μ(J))) R2(φ(J)/φm)

others present others present

case Boyer Houssais fit correlation Boyer Morris fit correlation

mono 0.990 0.994 0.998 0.997 0.994 0.985 0.995 0.995
poly-10 0.990 0.995 0.999 0.998 0.981 0.961 0.996 0.995
poly-50 0.984 0.992 0.997 0.997 0.923 0.889 0.993 0.993
poly-100 0.977 0.988 0.996 0.993 0.892 0.852 0.995 0.994

Table 5. The R2 values for different parameterizations of the rheology model, (4.1) and (4.2), evaluated with
respect to the simulated data for J ∈ [10−5, 102], thus excluding the creep regime. Present contributions consist
of individual fits for each case with coefficients from table 4, and the novel correlations (5.2)–(5.5) taking into
account polydispersity. Bold indicates the most relevant data.

on the other hand, correctly predicts a constant value of φm for these small viscous
numbers and is thus already applicable to this regime without further modifications.

6. Rheological model for creep regime

6.1. Evaluation of the creep regime
The creep regime is characterized as a slow deformation of granular material under very
low shear rates. In terms of the μ(J)-rheology, this becomes evident by a macroscopic
friction factor that does not level off to a constant value in the frictional regime, but
decreases to even smaller values for lower and lower viscous numbers. Assessing this
regime is challenging, because it requires very low viscous numbers. In fact, to the
knowledge of the authors, the only experimental campaign that was able to investigate
the rheology of the creep regime for granular flows immersed in a viscous shearing fluid
is the study of Houssais et al. (2016), who reported values down to J = 10−9. However,
their results are subject to a substantial amount of scatter in this range due to the general
difficulty of measuring such small J and μ in an experimental apparatus that cannot
be fully shielded from external disturbances and may touch the sensor accuracy of the
measurement instruments. Additionally, this study was carried out in an annular flume
that introduces some artefacts due to the curved sidewalls. In our simulations of a straight
horizontal domain with no sidewalls being present and the ability to control and evaluate
the set-up very accurately, these experimental imperfections are not an issue. Despite
the differences in the experimental set-up of Houssais et al. (2016) and our numerical
simulation, we confirm the observation of the creep regime in our simulation data, as seen
in figure 7, albeit with less scatter. This is true not only for the monodisperse case, that
yields very good agreement with the experimental data of Houssais et al. (2016) across the
entire range of J (figures 6 and 7a), but also for all other cases considered (figure 7c,e,g).

Houssais et al. (2016) perceived creep as localized, intermittent particle motion for
which a description with temporally averaged quantities like J and μ might be less
appropriate. To gain more insight into the dynamics of the creep regime and its
mechanisms, we turn to the instantaneous but still spatially averaged profiles of J.
These are visualized over time in figure 9 for all four simulated cases. Note that the
displayed vertical region is restricted to z ∈ [5, 15]d̄p to better focus on the creep regime.
Furthermore, we plot the viscous number in terms of log10 J due to its large value
range. In all cases, we observe a short start-up phase which is followed by a statistically
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Figure 9. Temporal evolution of vertical J-profiles. Due to the range of values, we plot log10(J) to indicate the
order of magnitude and choose the colour scale to focus on very low viscous numbers. For cases (a) mono, (b)
poly-10, (c) poly-50, (d) poly-100.

stationary state with temporal as well as vertical fluctuations. These steady fluctuations
agree qualitatively well with the ones reported for hard particles by Bouzid et al. (2015),
who carried out 2-D simulations of sheared dry systems in the quasi-static limit. This
observation is in line with the particle properties used in our study, where the restitution
coefficient and the particle friction were chosen to reflect silica grains. Similar to the
results by Bouzid et al. (2015), no burst-like behaviour can be observed in figure 9. On the
contrary, Bouzid et al. (2015) observed such intermittent motion only for soft particles with
restitution coefficients as low as 0.1, which could then be better described by a non-local
rheology (e.g. Kamrin & Koval 2012).

Recently, Gillissen & Ness (2020) showed that temporal fluctuations of J, rather than
its average, characterize the creep regime for inhomogeneous flow conditions. These
fluctuations are seen as the reason why the μ(J)-rheology by Boyer et al. (2011),
derived for homogeneous conditions, fails to capture the creep regime. Even though our
considered set-up is a homogeneous shear flow, we also observe significant fluctuations
in this region of the bed. We, therefore, follow the same argument and evaluate the
vertical root-mean-square (r.m.s.) profile Jrms. It is based on the deviations of the vertical
instantaneous J profiles from the temporally averaged one, evaluated over the same time
span as the temporal average (excluding the initial start-up phase, cf. table 1).

This analysis of the vertical profiles of J and Jrms is shown in figure 10 for the four
simulated cases. We observe that for viscous numbers above 10−6 (mono) to around 10−5

(poly-100), the fluctuations are smaller than the average J. This is in agreement with
results reported by Gillissen & Ness (2020) for homogeneous shear, and thus similar flow
conditions. Furthermore, this range corresponds to the viscous numbers, for which the
existing μ(J)-rheology was found to agree well with our simulation data (see § 5). Turning
towards the creep regime, corresponding to the lower layers of the bed, the fluctuations
exceed the averaged value by around two orders of magnitude. This was not observed by
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Figure 10. Vertical profiles of the time-averaged J and the r.m.s. value of its fluctuations, evaluated over the
same time span [t0, t1] as the temporal averaging given in table 1. For cases (a) mono, (b) poly-10, (c) poly-50
and (d) poly-100.

Gillissen & Ness (2020) for the case of homogeneous shear flow, as they could not access
such small viscous numbers, so that the focus of this study was on inhomogeneous, and
rather distinct, flow conditions of a Kolmogorov flow. Interestingly, our evaluation also
shows that the fluctuations surpass the average at larger viscous numbers of around 10 as
well. This coincides with the bed load transport layer at the fluid–sediment interface and is
the region where the particles move along the bed’s surface in an intermittent fashion, as
they temporarily get trapped between particles and then proceed to slide or roll over them.

While the magnitude of these fluctuations thus might provide additional insight into
the mechanisms of the creep regime, we note that the development of such rheological
models is still an active field of research (Gillissen & Ness 2020). In particular, information
about these fluctuations is usually not available in two-phase models and would require
additional closure relations to be applicable there. Instead, we focus on the steady-state
rheology and aim to include the creep regime as an extension to the existing μ(J)-rheology
in the next sections.

6.2. Extension of model to creep
Since the data by Boyer et al. (2011) did not access such low viscous numbers, the
description of this regime is, hence, lacking in the μ(J)-rheology. To this end, we follow
the reasoning of Cassar et al. (2005) and Jop et al. (2005), and define a creep regime in
addition to the frictional and hydrodynamic regime. Similarly to the frictional regime, this
brings a lower and an upper limit of macroscopic friction, so that there remains a smooth
transition in-between the different regimes. This yields the following extension of (4.1) to
adequately capture the creep regime in the rheological framework:

μ(J) = μ0 + μ1 − μ0

1 + Jc/J︸ ︷︷ ︸
μc

+ μ2 − μ1

1 + Jf /J︸ ︷︷ ︸
μ f

+ 5
2
φmJ1/2 + J︸ ︷︷ ︸

μh

. (6.1)
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Figure 11. Macroscopic friction factor μ as function of viscous number J. The legend is as in figure 7. In
addition, the fit of the extended model, (6.1), is shown in green. The insets show a magnified view for low values
of J using a linear y-axis. For cases (a) mono (μ0 = 0.087, Jc = 1.39 × 10−6), (b) poly-10 (μ0 = 0.082, Jc =
8.01 × 10−7), (c) poly-50 (μ0 = 0.080, Jc = 1.44 × 10−6) and (d) poly-100 (μ0 = 0.076, Jc = 1.55 × 10−6).

In comparison with the original model of Boyer et al. (2011), (4.1), we have shifted the
lower limit of the macroscopic friction from μ1 to μ0, whereas μ1 becomes the upper limit
of the creeping regime that centres around the viscous number of the creep regime, i.e. Jc.
The proposed extension (6.1) recovers the original formulation (4.1) by choosing Jc = 0
or μ0 = μ1. We explicitly note that we here aim to model the rheological behaviour for
very small, but non-zero viscous numbers, i.e. J → 0. This quasi-static, but still dynamic,
regime might thus be different from the static case at J = 0 (Perrin et al. 2019).

6.3. Testing the extended model for the creep regime
Similar to § 5.2, we apply curve fitting to find appropriate values for the newly introduced
coefficients μ0 ∈ [0, 1] and Jc for all simulations conducted. To this end, we extend the
range of J to the full range observed in the simulations, i.e. J ∈ [10−9, 102]. Since the
extended formulation (6.1) is meant as an extension of the classical μ(J)-rheology (4.1),
we keep the values of the previously determined coefficients μ1, μ2 and Jf as reported in
table 4. This also effectively prevents possible overfitting.

The results are shown in figure 11, together with the existing parameterizations of the
original model and the fits from § 5.2. The obtained coefficients are given in the caption
of this figure. In all cases, the fit of the extended model (green line) is able to follow the
shift to the creep regime and reproduces our simulation data very well, especially for the
extended range J ∈ [10−9, 10−5]. We also note that the curves of the extended model and
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the fit from § 5.2 (orange line) collapse for J > 10−4, where the extension term μc for the
creep regime effectively evaluates to μ1 and thus reduces to the original model. Analysing
the trend of the values determined for the two new parameters μ0 and Jc, we again notice
a decrease in the friction coefficient μ0 with increasing polydispersity. This decrease,
however, is less significant than before for μ1 and μ2 and a difference of only around 10 %
can be seen between the monodisperse case and the one with strongest polydispersity.
Generally, μ0 is approximately three times smaller than μ1. Determining the parameter Jc
faces similar challenges as discussed for Jf before which thus shows no clear trend with
polydispersity. It is obvious, however, that its value averages out around 10−6, which is
more than three orders of magnitude smaller than Jf and confirms the physical meaning of
Jc discussed above to describe the average value of J for the creep regime.

Due to the observed marginal sensitivity of μ0 and Jc on the polydispersity, and the
general difficulty of measurements for the creep regime, we do not attempt to express
a functional dependence on φm as in the previous section. In order to obtain a general
parameterization of the creep-extended model, we instead propose to use the following
expressions, evaluated as the average of the fitted coefficients:

μ0 = 0.082 ± 0.004, (6.2)

Jc = 1.30 × 10−6 ± 2.91 × 10−7. (6.3)

We evaluate the performance of our creep-extended rheology model by computing the
R2 for the different empirical correlations over the entire range of J ∈ [10−9, 103]. For
that, we compare: (i) (4.1) with the parameters of Boyer et al. (2011); (ii) (4.1) with
the parameters of Houssais et al. (2016); (iii) (6.1) with the parameters given in table 4
and figure 11; and (iv) (6.1) with the parameters given by correlations (5.2)–(5.5) and
(6.2)–(6.3). The resulting R2 values are given in table 6. In comparison with the existing
model parameterizations of Boyer et al. (2011) and Houssais et al. (2016), but also to
the previously developed polydisperse model from § 5.3, the creep-extended rheology
outperforms all other available correlations. The fact that we observe an almost perfect
match for both the fit and the correlations, confirms the validity of our approach to account
for polydispersity.

For completeness, we also show the R2 values for φ(J) over the extended range of J, in
contrast to the limited range used in table 5. From there, we see that the creep regime does
not influence the predictive performance of the polydispersity-extended φ(J) model from
§ 5, since it is the region of constant particle volume fraction and thus already covered by
the model (4.2). Overall, the parameterization of the creep-extended rheological model via
the proposed correlations yields R2 values larger than 0.992 for all here considered cases
for both, μ and φ, and without any further calibration. This is a significant improvement
on the previous rheology model and its parameterizations.

7. Conclusion

In this work, we studied the rheological properties of polydisperse, densely packed
sediment beds in a laminar shear flow through particle-resolved direct numerical
simulations. This was achieved by large-scale 3-D simulation domains using an efficiently
coupled LBM–DEM to fully resolve all relevant scales in space and time. In particular,
particle collisions are modelled by linear spring–damper models in normal and tangential
directions, with a Coulomb-like friction model. Additionally, a lubrication model is
applied for short-range hydrodynamic interactions. Four different sediment beds were
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created in a precursor simulation ranging from monodisperse to strongly polydisperse with
a maximum to minimum diameter ratio close to 10. As a key feature, the non-uniformity
of the sediment yields increasing values for the maximum packing fraction. The beds
consisted of up to 26 000 particles, and the flow conditions were chosen to obtain several
layers of mobile particles. As such, the present simulations are one of the most extensive
numerical studies on mobile polydisperse sediment beds.

From the simulation results, we obtained depth-resolved spatially and temporally
averaged profiles of rheological quantities. These enabled us to study the impact of
polydispersity on the scaling of the macroscopic friction coefficient μ and the particle
volume fraction φ as a function of the viscous number J, i.e. the μ(J)-rheology. We
compared our results with previous experimental studies of dense suspensions of neutrally
buoyant spheres and sheared sediment beds of inertial particles and found excellent
agreement for the monodisperse case. Owing to the wide value range of the viscous
number, J ∈ [10−9, 103], and the highly resolved data, we were able to enhance the
μ(J)-rheology and its parameterization for the effects of polydispersity and creeping
flow. The effect of polydispersity has so far not been investigated for continuous
grain-size distributions, and we addressed this issue by focusing on the frictional and
hydrodynamic regimes. Based on our systematic simulation campaign, we derived an
improved parameterization of the rheological model of Boyer et al. (2011) that explicitly
accounts for polydispersity. This was achieved by expressing the two coefficients μ1 and
μ2, and the free parameter Kn as functions of φm. The parameter φm is already present in
the original rheological model and is here determined as the maximum observable packing
fraction for a log-normal grain size distribution with a given variance, which determines
the degree of polydispersity.

The effect of creep has so far been reported in Houssais et al. (2016) only, but this
regime was excluded from the discussion of the rheology in this study. Our results confirm
the existence of a creeping regime that is distinctively different from the well known
frictional and hydrodynamic regimes at higher viscous numbers (Boyer et al. 2011). For
vanishing shear, the macroscopic friction levels off to a quasi-static, creeping state that
yields values of μ, which are substantially lower than the frictional regime would suggest.
This observation gave rise to the idea to enhance the μ(J)-rheology to explicitly account
for the creep regime following the argument of Jop et al. (2005). This was done at
the cost of introducing two additional parameters. However, we remark that these new
parameters are physically based quantities related to particle properties as they express
the quasi-static friction for the creeping state and the characteristic viscous number that
describes the transition from the frictional to the creeping regime. These two parameters
were determined by fitting the extended empirical correlation to our simulation data, and
we found them to be less dependent on the maximum particle volume fraction. Compared
with the frictional regime, the friction coefficient of the creeping regime is reduced by a
factor of three.

Finally, our study demonstrates that particle properties that enter the μ(J)-rheology
framework may change the entire system’s rheological properties. Since the scaling laws
obtained so far involve several idealizations and particular choices for the sediment
material used, more work will be needed to explore the effects of different particle and flow
properties on the rheological behaviour of sheared sediment beds. Additionally, strongly
inhomogeneous particle size distributions might require a more local description of the bed
composition to accurately describe the rheology of the sediment. This highlights another
benefit of our simulation approach, where such changes can be made with ease, allowing
for efficient parametric studies.
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Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.870.
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Appendix A. Vertical size segregation

For polydisperse sediment beds that are exposed to shear stress, it is known that a vertical
size segregation sets in (e.g. Ferdowsi et al. 2017). Consequently, larger particles move
to the top of the bed while smaller particles descend to lower sediment layers. A similar
phenomenon, the ‘brazil nut effect’, can be observed in dry granular beds subjected to
vibrations (Rosato et al. 1987).

We study the dynamics of this vertical sorting by assessing the composition of the
topmost layers of the bed. To this end, we define that particles with a vertical centre
of mass position above htop = 15.5d̄p belong to the bed’s top region, which is roughly
2d̄p below the average sediment bed height 〈hb〉t (cf. table 2). We then sort these Ntop

p

topmost particles according to their diameters into bins of size d̄p/5. Evaluating the size
distribution over time, we are able to investigate the size-based segregation in this top layer.
This evaluation is shown in figure 12 for equally spaced time steps throughout the complete
simulation, i.e. t ∈ [0, 12 000] tref . Since such an effect is not present in the monodisperse
case, we exclude it from these discussions.

In all cases, we see a qualitatively similar behaviour. The smaller size fractions, relative
to the overall diameter distribution, decreases in number over time. These particles, thus,
move to lower layers of the bed and the smallest particles almost vanish completely from
the top layers. This process is initially very pronounced but then slows down gradually.
At the same time, the number of larger particles increases in the upper layer, although
the absolute change is significantly weaker than for the smaller ones. All these changes
in the composition primarily happen during the initial stage of the simulation, so that a
steady state develops after t > 6000 tref . This indicates that the fast segregation process,
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Figure 12. Temporal evolution of the top region’s bed composition for the polydisperse cases, evaluated as
the diameter distribution of the particles contained therein at distinct time steps t/tref . For cases (a) poly-10,
(b) poly-50 and (c) poly-100.

as described by Ferdowsi et al. (2017), is already completed. Therefore, we do not expect
further strong morphological changes during the second half of the simulation from which
we obtain the data for our evaluations (cf. table 2). Since the present study focuses on
sheared polydisperse sediments under well-developed conditions, this initial run-up phase
was excluded from the statistical analysis presented in §§ 4–6. We additionally verified
that all lower layers are hardly affected by the segregation process since they exhibit a
diameter distribution that is close to the one of the entire sediment bed, given in figure 3.
This allows us to regard the majority of the bed as a homogeneous packing, simplifying
the analysis.
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