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PRIME NUMBERS IN SHORT INTERVALS AND 
A GENERALIZED VAUGHAN IDENTITY 

D. R. HEATH-BROWN 

1. Introduction. Many problems involving prime numbers depend on 
estimating sums of the form ^A(«) / (n ) , for appropriate functions 
f(n), (here, as usual, A(n) is the von Mangoldt function). Three distinct 
general methods have been used to estimate such sums. The earliest is 
due to Vinogradov (see [13, Chapter 9]); the second involves zero-
density bounds for Dirichlet L-functions (see [8, Chapters 15 and 16] 
for example); and the third, due to Vaughan (see [12] for example) uses 
an arithmetical identity as will be explained later. The second and third 
methods are much simpler to apply than the first. On the other hand 
Vinogradov's technique is at least as powerful as Vaughan's and occasion
ally more so. In many cases Vaughan's identity yields better bounds than 
the use of zero-density estimates, but sometimes they are worse. The 
object of this paper is to present a simple extension of Vaughan's method 
which is essentially as powerful as any of the techniques mentioned 
above, to discuss its general implications, and to apply it to the proof of 
the following result of Huxley [4], which has previously only been 
within the scope of the zero density method. 

THEOREM. For any fixed & in the range 7/12 < û ^ 1, and y = xû, 

(1) £ A(n)~y. 
x—y<nSx 

It follows that there is always a prime number between x — y and x, if x is 
large enough. 

One significant feature of our proof is that there is no explicit mention 
of zeros of f(s); it is not necessary to discuss hypothetical zeros off the 
critical line. None the less Vinogradov's zero-free region for f (s) plays a 
crucial role just as before. 

Although it is not strictly relevant to the present paper, it may be of 
interest to observe at this point that, contrary to the impression gained 
from following the historical development of the subject, it is possible to 
prove Huxley's theorem without recourse to Vinogradov's zero-free 
region. Littlewood's estimate 

i A ̂  log log ( 3 + M) / . / , , - _ M 
! - ^ > > log(3+|7|) <™* + ^ > - ° > 
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suffices, providing that one uses the "log-free" zero-density theorem 

N(a, T) « r ( 1 2 / 5 + t ) ( 1- ' \ 

(for any e > 0), which follows from [7]. However this last bound has no 
counterpart in the approach we shall consider in the present paper. 

It is of interest to compare our method with that used by Hoheisel 
[3]. There too an identity (similar to (2) in fact) was employed, and 
mean-value estimates were applied directly to the resulting Dirichlet 
polynomials, without introducing N(ay T). 

2. Vaughan's identity and its generalization. Let /*(») be the 
Mobius function and define 

Mx(s) = M(s) = E M W » " * , 

N(s) = E A(w)fT*. 

We then have 

(2) f '(s)/f(s) = f'(s)M(s) + t(s)M(s)N(s) 

+ ( f ' W / f W + N(s))(l - Us)M(s)) - N(s). 

On picking out the coefficient of n~s on each side one obtains Vaughan's 
identity, namely 

£ A(n)f(n) = Si- S*- S8, 

where 

Si = Z) M(W) Z (log n)f(tnn), 
m^-X X<mnSx 

S2 = Z /*(w)A(») Z f(mnr), 
m,n^X X<mnrSx 

Sz = Z A(m)c(n)f(mn)} 
m,n>X 

X<mn^x 

with 

(3) c(») = E /*(<*)• 

The sums 5i and 52 may be estimated by considering expressions of the 
shape 

(4) J^amJ2f(mn)J 
m n 

in which the range for n is 'long'. On the other hand the sum 5 3 is a bilinear 
form of the shape 

(5) Y<lLambnj(mn), 
m n 
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in which neither m nor n can be 'too big'. Various methods may be 
applied to bound the St. The quality of the estimates depends on the 
function /(•)» of course, but also on the ranges of the variables m, n 
above, and it is this latter point with which we are concerned here. 
There is a considerable amount of flexibility in applying Vaughan's 
identity. For example, the three variables occurring in S2 can be re
grouped for part of their ranges so as to produce a bilinear form of the 
type (5). Moreover the identity may be iterated so as to apply it to the 
A( • ) functions occurring in 52 or 53. Similarly a modified identity may be 
applied to the M(* ) function. One may then try to regroup the variables 
of summation so as to produce expressions of types (4) and (5) with the 
most efficient ranges possible. The net result of all these manipulations 
(see [2, Lemmas 2 and 3] for example) is a mess. 

We shall therefore use the following trivial identity (which is not, 
strictly speaking, a generalization of Vaughan's). 

LEMMA 1. For any integer k ^ 1 we have 

(6) rwr(s) = E (-iy-1(k)ns)i-Y(s)M(sy 

To apply Lemma 1 to the sum 

5 = £ A(n)/(»), 

for example, one chooses Xk ^ x and picks out the relevant coefficients 
of n~s. The last term on the right hand side of (6) therefore makes no 
contribution, since 

(7) Ç(s)M(s)-l = Zc(n)n-\ 
n>X 

with c(n) as in (3). On splitting up each range of summation into inter
vals N < n S 2iV, one finds that 5 is a linear combination of O((log x)2k) 
sums of the form 

(8) £ (log fli)/i(»*+i) • • • V>(n2k)f(nin2. . . n2*), 
wi€ Ii ,n\ri2.. .nzk^-x 

in which It = (Nu 2Nt]% YiNt < x} and 2Nt ^ X if i > k. (Some of 
the intervals It may contain only the integer 1.) By choosing k to be 
large, and X to be a small power of x, one may bring the part of the sum 
(8) involving the 'unknown' coefficients M ( ^ 0 as closely under control 
as one likes. 

We illustrate this by an example. Assume that f(n) = 0 for n ^ x/2 
whence we may take 1 1 ( 2 ^ ) > x/2, if the sum (8) is to be non-empty. 
Let 2 ^ u ^ v S z ^ x and suppose that u2 g z, 12Suz2 S oc and 
218x ^ v*. Choose k = 3 and X = x1/z g z. Suppose firstly that N< è z 
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for some i (necessarily i ^ 3). Then one may group the remaining 
variables together to produce a sum of type (4) (possibly with a weight 
log n included) for which n ^ z. On the other hand, if Nt < z for all i, 
we may group the variables in (8) so as to produce a bilinear form of 
type (5) with u S m ^ v. To do this we show, by contradiction, t ha t 
some product P of the TV/s lies in the range u S P S fl/64. Certainly 
we may assume for each individual Ni t ha t either Nt < u or v/64c < 
Ni < z. Suppose the lat ter case occurs 5 times. T h e remaining Nf, being 
less than u, may be formed into t (say) products P, all lying in the range 
u < P < u2

} together with a factor Q (say) for which 1 ^ Q ^ u. (Q 
could be an empty product .) We now find tha t 

uz2 ^ 2~7x < f i Ni^ Qu2tzs ^ uzs+t, 

on using the bounds u2 ^ z and \2Suz2 ^ x. I t follows t ha t 5 + t è 3. 
We then have, since u < P ^ z;/64 is ruled out, 

x>Y\Ni^ (z//64)s+* ^ (V64)3 ^ x, 

on using the bound z/3 ^ 218x. This contradiction shows t ha t it is always 
possible to produce a bilinear form of the required shape. T h e result we 
have jus t proved is a version of [2, Lemma 3]. 

The reader should have little difficulty in proving similarly the 
the following al ternat ive result; t h a t if f(n) = 0 for n ^ x / 2 , and uv ^ 
xl~1/k, then one may pu t (8) either into the form (4) with n ^ x/(uv), or 
into the form (5) with u < m S 22kx/v. These are essentially the shapes 
of the sums tha t arise from Vaughan 's identi ty, which is therefore 
included in our method. 

In practice it is often the case t ha t the ranges for (4) and (5) produced 
by Vaughan 's identi ty are the most suitable, so t ha t Lemma 1 gives no 
advantage . However, and this is an impor tan t point, the expression (8) 
may potentially be est imated by considering double sums 

m,n 

or trilinear forms 

J2 ambncTf(mnr), 
7ti,n,r 

for example. 
I t is easy to compare the result of Vinogradov's method with the 

expression (8). In place of the constraint 2Nt ^ X for i > k, Vinogradov 
has 

Ui UP-

This condition is far more cumbersome, bu t nevertheless yields similar 
conclusions to those t ha t follow from Lemma 1. 
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As far as the zero-density method is concerned, we remark only that 
the relation (7) plays a crucial role in the zero detection procedure (see 
[8, Chapter 12] for example) and that Jutila's device [6] of choosing X 
to be small corresponds to our taking k to be large. The connection 
between the two techniques, though not perhaps immediately apparent, 
is none the less quite strong. 

Finally in this section it should be mentioned that the identities 
discussed here all have their origins in the work of Hoheisel [3], where 
the first result of the type (1) was obtained. (See also [1].) 

3. Huxley's theorem : preliminaries. Our proof of Huxley's Theorem 
will depend on the evaluation of the sums (8) by Perron's formula. We 
will then have a mean value of Dirichlet series to estimate, and this will 
be achieved using Montgomery's mean-value theorem and Huxley's 
version of Halâsz's lemma. To this extent our treatment has much in 
common with the earlier methods. However we avoid the use of zero-
density theorems and the explicit formula for \l/(x). 

We shall assume that y and x — \ are integers (there is no loss in 
doing this) and that x7/l2

 = y = x/2. We then apply Lemma 1 with 
f(n) = 1 for x — y < n ̂  x and f(n) = 0 otherwise, and we take 
k = 5, X = xl,b. There are then O((\ogx)10) expressions of the shape 
(8). We shall prove that, for a suitable range of y, each expression 
(2 say) is of the form 

(9) 2 = yE(x) + O(y(\ogx)-n) 

for some function E(x) depending on the particular 2, but independent 
of y. It will follow that 

(10) £ A(n) = yE0(x) + 0 (y (log x)~l). 
x—y<nSx 

EQ(X) may then be found by taking y "large" and applying the Prime 
Number Theorem. 

We first consider the case in which some Ni in (8) satisfies Nt = #1/2> 
necessarily with i _̂  5. Here elementary methods suffice to establish 
(9). Suppose firstly that N\ = xl/2\ then 

(11) 2 = £ dm £ lpg», 
M<mS cM N<n^ 22V 

x—y<mnSx 

where c = 29, N = Nu MN ^ x, and \dm\ ^ d9(w). (Here, and later, 
dk(m) denotes the coefficient of mrs in {Ç{s))k.) Moreover, we may 
suppose that MN > 2_11x, for otherwise 2 = 0 and (9) holds trivially. 
We now observe that the inner sum of (11) is 0 for m = (x — y)/(2N) 
or m = x/N\ it is 

-log(-) +o(2^) +0(logx) 
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in the range 

and otherwise it is « (1 + y/m) log x. Thus 

(12) 2 = y ^ dmnCl\og (x/m) + 0\y2x~l ^ d<i{m)m~1) 

+ o f (log*) E *»(»*)) +0(y(logx)i : ( I )rf9(m)m-1) , 

where 

Mi = Max (M, x/(2N)), M2 = Min (cM, x/N), 

and ^2 ( 1 ) runs over the two intervals 

(13) (x - y)/N <m S x/N 

and 

(x - y)/(2N) <m S x/(2N). 

Clearly the first term on the right hand side of (12) may serve as yE(x) 
in (9), so it remains to bound the error terms. Here the following lemma 
will be useful. 

LEMMA 2. For any fixed integer k ^ 1 and any fixed e > 0, we have 
dk(m) <<C mt and 

J2 dk(m)«M€(logM)k-\ 

The second statement of the lemma may be found in [10] for example, 
and the first statement follows from the second. Now, since M « x 1 / 2 

and y ^ x7/12, the first two error terms in (12) will each be O(;y(log x)~n), 
providing that y ^ x(log#)~48, as we now assume. Moreover the same 
will be true of the third error term, if N ^ yz/2x~1/2> since then y/N è 
(x/N)in. However if N is larger, of order x for example, it might seem 
that a single term m — \ could yield a contribution » 1 to ^ ( 1 ) . 

We avoid this difficulty by the following trickery. In Section 2 it 
was explained that the various ranges of summation were to be split up 
into intervals N < n g 2N. In the case of a variable n{ with k < i S 2k 
we necessarily take N = X2~j for some integer j . However for i ^ k we 
are free to choose N = x21/2~j. Then, if the range (13), say, is non
empty, we must have \/2~ = 2 % - 1 + 0(yx~l) for some integer m. 
However it is an elementary fact of Diophantine approximation that 

V 2 - 2 
2 »<r2 
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for any integers p, q 5* 0. Consequently we see that N2 <<C yx if ]T)(1) is 

non-empty. Then, since Lemma 2 yields d$(m) <<C ra1/2, we have 

X)(1) « (1 + y/N)(x/N)-1/2 «;y1/4:x;-1/4 + yX-1/2N~1/2 

« y / 4 x ~ i / 4 « (log*)-12 

as required. (Recall that we may assume y ^ x(logx) - 4 8 and N ^ 
yZ/2x-i/2 here.) We have now established (9) in the case Ni ^ x1/2. If 
Ni ^ x1'2 with 2 ̂  i ^ 5 the treatment is similar, except that now 

\dm\ ^ d9(m) logx, 

and the evaluation of the inner sum in (11) is slightly different. 
We turn now to the sums 2 in which Nt :§ x1/2 for each i. In the case 

just considered, we put the sum into the form (4), by uniting all the 
variables bar one. Such a technique is too crude for the present situation. 
It is not sufficient to consider S as a bilinear form for example. Indeed 
we shall make use of the fact that Nt ^ xl/b for 5 < i ^ 10, so clearly 
the corresponding variables may not be put together. 

In considering 2 it is natural to use the Dirichlet series 

ft(s) = 2 ai{n)n~\ 
Ni<n^2Ni 

with ai(n) = log n, di(n) = 1 for 2 ^ i ^ 5 and a*(w) = ix{n) other
wise. We also write 

F(s) = IlMs) = Zcnn-S, 

say, where 

(14) \cn\ ^ dio(n) log*. 

We use Perron's formula in the following guise: 

. ri/2+tTi , 
- L us*i= £>{u) + O^rf'llog^p1), 
L'Kl •/ 1/2— iT\ $ 

where 7\ ^ 2 and S (u) = 0 for 0 < u < 1 and = 1 for w > 1. We may 
assume that IlNi ^ x 2 - n , since otherwise 2 = 0 and (9) holds trivially. 
Thus cn ?* 0 only for 2~nx ̂  n ^ 210x, and we find that 

(15) ^-.J F(,)ï V—Zl-ds 
L'Kl •/ 1/2—fn * 

= S + O(T1~
1Z \cn\ • llogg I"') 

+ o(rr1ZW-|iog£^ J ! |"1) . 
\ n I » I / 

Now let A be a fixed (small) positive quantity and take 7\ =x5/12~A, 
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y ;> x7/12+2A. The first error term in (15) is then 

(16) « rr^(iog*) £ d10(n)\x - «r1 « rrV+ A / 2 (log xf 
n 

« ^ ( l o g x ) - 1 1 , 

on applying Lemma 2 with e = A/2. A similar analysis applies to the 
second error term of (15). It remains therefore to consider the integral 
on the left of (15). The main term yE(x) will come from a short sub
range |Im (s) | ^ To, where To is defined in (19) below. We note that, for 
Re (s) = i 

\F(s)\ « £»~ 1 / 2 ta l « (logx)Zn-l/2d10(n) « x1/2(logx)10, 

by (14) and Lemma 2. Moreover we have 

m\ * ' ~ <* ~ yy = i**"^ + C(|5|x-3/23;2), |Im (5)| ^ To, 
U ' 5 \0(x-1!2y), |Im (5)| ^ T0. 

Hence 

8) ~ M F ( ^ L ^ - ^ 5 
Z7TZ •/ 1/2-iTo S 

= y 5 ^ I F(5)^ s -^ + 0(7V*-3/2;yy/2(log x)10) 
Z7TZ •/ 1/2-tTo 

providing that T0 depends only on x and that 

y ^ xr0~2(logx)~21. 

Finally we deal with the range |Im (s)\ ^ T0 by means of the following 
lemma, whose proof is given in the next section. 

LEMMA 3. We have 

I * \F(h + it)\dt«xll\\ogx)-12 

uniformly for 

(19) exp ((logx)1/3) = To ̂  T ^ Tx = x5/12~A, 

providing that every factor f)(s) of F(s) has Nj ^ xin. 

4. Huxley's theorem: the mean-value of F(s). In this section we 
shall prove Lemma 3. We shall need Montgomery's mean-value theorem, 
the Halâsz lemma and Vinogradov's zero-free region. 

We begin by writing F(s) = Fi(s)F2(s), where F2(s) is the product 
of those factors fj(s) for which Nj ^ xA/5. Since 

l/i(i + it)\ « ^ 1 / 2 logx; \fS + it)\ « N^\ (j ^ 2), 
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we have 

\Ft& + it)\ « Z 1 / 2 l o g x , 

where Z is the product of Nj for Nj ^ xA/5. Thus 

(20) /

IT riT 

\F{\ + it)\dt « Zll\\ogx) I \Fx{\ + it)\dt. 
m %J m 

We proceed to bound the integral on the right (/, say) by a sum over 
0(T) well spaced points tn; that is to say, we have 

I«Z\Fi(h + itn)\, 
n 

where T ^ tn ^ 2T, and 

(21) \tm - tn\ ^ 1, (tn * n). 

For each factor fj(s) of Fi(s) let 

We proceed to show that <r(j, n) cannot be too close to 1. We shall treat 
the case j > 5, for which 

/,(*) = I^W»"' 
n 

The case j ^ 5 would be very similar. Our starting point is the formula 

Î,(i + it) = ^-. I (Uh + it + *))-%*^—-ds 
Lltl */ c-iT/2 S 

+ 0(Nj
1,2T-1logx)+0(l)1 

where c = § + (logx) - 1 ; this follows from Perron's formula as given by 
Titchmarsh [11, Lemma 3.12]. In the region 

1 - v S Re (s) S i + c, |Im (s) - t\ S T/2, 

where T £ Tlt T £ t £ 2T, and 

r, = caogro-^'Oogiogro-i/», 

(here C is a numerical constant), we have 

1/f (s) « (log D«; 

this follows from [11, Theorem 3.11] in conjunction with the Vinogradov-
Korobov estimate in the form given by Richert [9]. (This is the form in 
which we use Vinogradov's zero-free region.) We may now move the 
line of integration to Re (s) = § — rj, and use the above bound to obtain 

Mi + it) « ( l o g x ) W / 2 - " + NÎ*T-i)% (j > 5). 
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(In fact precisely the same result may be obtained in the case j rg 5.) 
However it follows from (19) that T ^ T0 ^ x11 è Nf. Moreover, 
since Nj ^ xA/5, we see that 

iV/ 2 è (log*)4, 

whence, if x is large enough, 

so that 

(22) a (J, n) ^ 1 - v/2. 
We now split the available range for a(j,n) into O(logx) ranges 

Jo = ( - o o , i ] and 

Then we divide the points tn into classes C(j, I) (not necessarily disjoint) 
according to the value (or values) of j for which a(j, n) is maximal and 
the value of / for which <r(j,n) £ 11- Since there are O(logx) classes, 
there must exist some class for which 

/«(log*) E |ft(i+*'0|. 

However, for / G C(j, /) we have 

î i(* + n)\ = n^/ ( i'w)_i /2 ^ n^t' /L ^ yi/L> 
where Y is the product of Nj for iV^ > xA/5. Now, to simplify notation, 
let 

a = l + L=T' f(s)=fAs), N = Nj and R = fOJ,l). 

In case / = 0 we have / « log x, so that Lemma 3 follows from (20), 
since z ^ (xA/5)10, so that z1/2 T ^ x5/12. If / ^ 1 we renumber the points 
tn so that 

C(j,l) = {tn:l ^ n£R\. 

Then 

(23) / « (F"- 1 / 2 )# logx, 

while 

(24) l /G + iOl » # ' - " ' 

for 1 ^ n ^ 7?. Moreover we note that, by (22), cr ^ 1 — ry/2. 
We are now in a position to apply the standard mean and large values 

techniques, using the ideas introduced by Montgomery [8] in connection 
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with bounds for N(<r, T). (Our notation, in particular the use of ucr — J", 
is intended to make the relationship clearer.) We apply the above 
mentioned methods to the Dirichlet polynomial 

where 

k l ^ (logx)%(n). 

If N è T3/b we choose g = 2, and otherwise we take any integer g such 
that 

T4/b < N° < r6/5. 

Since N ^ xA/5, it follows that g is bounded in terms of A. The mean-
value estimate ([8, Theorem 7.3] with Q = l , x = 1*5 = 1) then yields 

RNKU-l) « (J* + ^ ) ( l o g » ) E k | 2 » - 1 -

However 

<*,(»)» ^ <J,»(n)f 

whence, from Lemma 2, we have 

(25) E|aw |*n-1<<(log*)A i . 

Here A\, and later Ai, Az etc., are constants depending at most on A. 
It follows that 

R « (TN"1-™ + N«2-2*>)(logx)l+Ai. 

In the range § ^ a ^ f we therefore have 

(26) * « ^ 4 - 4 , ^ ^ 1 + ^ N^Tv\ 

Alternatively we may use Halasz's lemma in the form given by Huxley 
[4, (2.9)]. This yields, on applying (25), 

R « (TNd«-^ + i V ^ - ^ H l o g x ) ^ . 

Consequently, for the range f g a g 1, we also have (26). 
If N ^ 77 / 5 then (26) becomes 

R«T1
12^/5(\ogx)AK 

Combining this with (20) and (23) it follows that 

/ . 
2T |7?(i + it)\dt« zll,Y*-1',T1

1,tl~)'i(\ogx)»Al 

T 

« z1/ ,(*z-1)'-1/ ,ri"<w)/60og *)2+As 

« x ^ c r ^ ' ^ - y - ' O o g x)2+^3 « *1/2-2A(1-')/5(iog x)2+A= 
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since 7\ = x5/12~A and Z ^ (xA/5)10. On using 1 - a ^ TJ/2 we see that 

x - 2 A ( l - , ) / 5 ( l o g x ) 2 + A 3 <<C ( l o g x ) - 1 2 , 

and the estimate required for Lemma 3 follows. 
There remains the case N è 7\3/5. Providing that A < 1/12 this means 

that N > xl/b, whence / ( • ) = /;•(•) with j ^ 5. Recall also that the case 
N ^ xin has already been dealt with in Section 3. From the usual 
analysis of Perron's formula (see [11, Lemma 3.12] for example) we have 

£ n~l'2~U = 2Vi) *<* + * + 
v (N+ M)s - N* 

s) as 
N<n^N+M 6WI */ n-iT/2 S 

+ 0(Nl/2T-1logx)+0(l), 

for M g N, M = \ + (logx)-1 and T g t g 2T. Moving the line of 
integration to Re (5) = 0 yields 

w - 1 / 2 -* ' l 
« f5r/2 If(* + *«)l n r — 1 + ^'VMog* + 1. 

J T ,0 I - I - I f /!# I T/2 \ + \ t — U\ 

We may take M = N to bound /,(£ + i£) for 2 ^ 7 ^ 5, or use partial 
summation to bound / i ( | + i/). In either case, Holder's inequality 
produces, in view of (24), 

« (iogx)8{ J if(* + iu)\* t r n ! rd« + *tf*r-4+*} 
v * 7 3T/2 W=i 1 ~r \tn — u\ ) 

« (log x)13{ T + RN2T% + R}, 

by Ingham's fourth power moment estimate for f ( | + ^)> (see [11, 
(7.6.1)] for example). We now deduce that either 

TV4-2 « (iogx)l3(7V2:r-4 + i) 
or 

R « 7W2-4*(logx)13 

« rii+3<2-4*>/5(iog*)13 

« 2" i12(l-0-)/5< 

In the latter case Lemma 3 follows as before. In the former case either 
T « ^ - " ( l o g x)4, whence 

R « T «Nl-«(\ogxy « ^ " " ^ ( l o g x ) 4 « T^-'XsQogx)*, 
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or a ^ 7/12, whence 

R«T« Tx « Txw-v\ 

and in each case Lemma 3 again follows. Note that the argument here 
would fail if N were too close to x. 

5. Conclusion. From (15), (16), (17) aid Lemma 3 we have 

2 = yE(x) + O(y(\ogx)~n) 

as claimed, uniformly for 

X7/12+2A ^ y ^ y0 = xT0-
2(\ogx)-n. 

The formula (10) then follows, and it remains to find EQ(X). By the 
Prime Number Theorem, in the form 

\p(x) = x + 0(x exp(— (logx)1/2)), 

we see that 

\p(x) - \p{x - y0) = y0E0(x) + O(y0(\og x)~l) 

= 3/0 + O(xexp{-(logx)1 / 2}). 

Thus£o(x) = 1 + O(Oogx)-1), and (1) follows. 
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