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TAMARKIN–TSYGAN CALCULUS AND CHIRAL POISSON
COHOMOLOGY

EMILE BOUAZIZ

Abstract. We construct and study some vertex theoretic invariants associ-

ated with Poisson varieties, specializing in the conformal weight 0 case to the

familiar package of Poisson homology and cohomology. In order to do this

conceptually, we sketch a version of the calculus, in the sense of [12], adapted

to the context of vertex algebras. We obtain the standard theorems of Poisson

(co)homology in this chiral context. This is part of a larger project related to

promoting noncommutative geometric structures to chiral versions of such.

§1. Introduction

1.1 Motivation

In the celebrated paper (see [10]), the authors construct a sheaf of differential graded

vertex algebras on any smooth C-variety, M, referred to as the chiral de Rham complex.

This promotes the classical de Rham complex to a richer object of vertex theoretic nature,

and this process of promotion is now traditionally referred to by the somewhat vague term

chiralization, with the objects being chiralized then referred to as classical. We adopt this

language throughout. If M is endowed with some additional structure, one may be able to

define variations on the classical package of de Rham or Hodge cohomology. Relevant to

this note are the case of Poisson varieties, and the so-called Poisson (co)homology studied

in [3], [9]. These provide rather subtle invariants of Poisson varieties which, according to

a theorem of Brylinski (cf. [3]), reduce to de Rham cohomology when the Poisson form

is nondegenerate. Given the chiralization of the de Rham complex from [10], one might

then ask whether one can chiralize Poisson (co)homology. This is the question animating

this note. The classical Poisson (co)homology package is formulated very neatly in terms

of Gerstenhaber algebras and their modules, and our approach to chiralization is based on

this. In particular, we introduce the notion of a Gerstenhaber vertex algebra in order to do

this, which has the advantage of allowing us to obtain the basic theorems of chiral Poisson

(co)homology rather easily.

In more concrete terms, we produce in this note certain infinite dimensional invariants

of a Poisson variety, naturally graded by conformal weight. These invariants reduce

to cohomology of the chiral de Rham when the Poisson form vanishes and Poisson

(co)homology in conformal weight 0. We also identify the fixed points of the homotopical

S1 action coming from the chiral de Rham differential, dchdR, and prove an analogue of the

theorem of Brylinski (see [3]) showing that these invariants vanish in non-zero conformal

weight when π is non-degenerate. We view this note as a part of a larger set of questions

regarding when Tamarkin–Tsygan calculi can be chiralized, the case of matrix factorizations

was treated in the paper [2], where some general expectations are also sketched. A genuinely
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752 E. BOUAZIZ

noncommutative case would be very interesting in our opinion, and this note can be seen

as a first-order approximation to such in the case of almost commutative algebras.

In the following subsections, we recall some definitions and theorems in the classical case,

so that the reader can compare with their chiral versions introduced later in this note.

1.2 Recollections on Gerstenhaber algebras

We begin with the abstract definition of a Gerstenhaber algebra and a module for it, so

the reader familiar with the classical calculus of polyvectors, in particular the Schouten–

Nijenhuis bracket and the action of polyvectors on forms, should bear these in mind.

Definition 1.1. Let A be a graded super-commutative C algebra, equipped with a

super Lie bracket on the grading-shifted vector space A[1], denoted { ,}. We call it a

Gerstenhaber algebra if in addition for all homogeneous a,b,c ∈A, we have

{a,bc}= {a,b}c+(−1)(|a|−1)|b|b{a,c},

where |a| and |b| denote the weight of a and b, respectively.

Remark. Let us unpack the above a little. A[1] is the graded vector space with

underlying vector space A, and grading shifted, so that an element a ∈A has degree |a|−1

in A[1]. It follows that the operators {a,−} have weight |a| − 1. Furthermore, the Jacobi

identity takes the following form, writing εa,b := (−1)(|a|−1)(|b|−1), we have

εa,c{a,{b,c}}+ εb,a{b,{c,a}}+ εc,b{c,{a,b}}.

We often refer to the bracket { ,} as the Gerstenhaber bracket and Gerstenhaber algebras

as G-algebras.

Definition 1.2. A module for a G-algebra A, is a graded vector space, M, endowed

with the structure of a module over the underlying algebra of A, and a representation of the

super Lie algebra (A,{ ,}). For a ∈ A, the corresponding operators are denoted ιa and La,

respectively. We demand that ιa is of weight −|a|, and La is of weight 1−|a|. We further

demand the following compatibilities, which are to be understood as identities in the super

Lie algebra End(M)—for all a,b ∈A, we have:

• [La, ιb] = ι{a,b}.

• Lab = ιaLb+(−1)|a|ιbLa.

Remark.

• Note that the above definition implies the following identity of operators in End(M)—for

a,b ∈A, we have:

[La,Lb] = L{a,b}.

• Note further that setting La := {a,−} and ιa := a(−), we obtain the adjoint representation

of A on itself (with the negative grading).

As mentioned above, a motivating example is that of polyvectors on some smooth space.

Let M denote a smooth C-variety, and let ΘM denote the exterior algebra on the tangent

sheaf TM , which we refer to as the sheaf of polyvectors. This is a graded-commutative

sheaf of algebras with product the exterior product. In degrees less than or equal to 1, the

underlying sheaf is OM ⊕TM . The sheaf TM acts by Lie derivatives on OM , and is endowed

with a bracket [ , ] coming from the commutator of vector fields. If v is a vector field and f
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a function, let us write Lv(f) for the Lie derivative. Then we have the following well-known

and simple lemma.

Lemma 1.1. The bilinear operation { ,} defined on OM ⊕ TM by {v,f} = −{f,v} :=

Lv(f) and {v1,v2} := [v1,v2] extends uniquely to a Gerstenhaber bracket on the graded-

commutative algebra ΘM , referred to as the Schouten–Nijenhuis bracket.

Proof. One notes that the product is of the appropriate degree and then extends in the

only possible way, noting that elements of degree at most 1 generate ΘM .

Hinted above is the fact that the sheaf of forms, ΩM , can be endowed with the structure

of a module for the G-algebra ΘM . We state this now as a lemma.

Lemma 1.2. ΩM has the structure of a module for the G-algebra ΘM . For v a polyvector,

the operator ιv is the natural contraction arising from the equivalence T ∗
M = Ω1

M . The

operators Lv are defined as [ddR, ιv] := Lv.

Proof. This is a standard fact.

Remark. Often, the Lie derivative Lv is defined without reference to the de Rham

differential ddR, and the formula [ddR, ιv] = Lv is then the so-called Cartan formula.

Motivated by the above, we now define (following [12]) the structure of a calculus.

Definition 1.3. A triple (A,M,∂) consisting of a G-algebra A, a module M for A, and

a degree 1 differential ∂ on M is called a calculus if, for all a ∈A, we have

[∂,ιa] = La.

We have immediately the following corollary.

Corollary 1.1. The triple (ΘM ,ΩM ,ddR) is a sheaf of calculi on M.

Remark. The purpose of the language of [12] is really to deal with noncommutative

versions of the above, namely the so-called Hochschild calculus. For more on these

constructions the reader can further consult [7]. We say nothing of chiral versions of this

in this note; however, the broader (and still imprecise) question of when Hochschild theory

might admit chiral enhancements was a major motivation for the writing of this note.

1.3 Poisson homology and cohomology

With the above formalism out of the way, we are now in a position to give a very fast

introduction to Poisson (co)homology. Let π be a Poisson form on M. It is standard that

this is equivalent to an element of ΘM of cohomological degree 2 satisfying {π,π}= 0. One

then obtains a cohomological differential {π,−} := ∂π on ΘM (cf. the work of Lichnerowicz

in [9]), and a corresponding homological differential Lπ on ΩM (cf. the work of Brylinski

in [3]).

Remark. Note that the differentials are of the appropriate degree because π is a degree

2 element. Furthermore, note that the differentials square to zero because of the relation

{π,π}= 0; for example, we have

2L2
π = [Lπ,Lπ] = L{π,π} = 0.

Definition 1.4. The hypercohomology of these complexes are denoted H∗
π(M) and

Hπ
∗ (M), and referred to as Poisson cohomology and Poisson homology, respectively.
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Example. We unpack the definition of ∂π := {π,−} a little. If f is a function on M,

then, writing π locally as
∑

i,j πi,j∂i∂j , we find

∂π(f) =
∑
i,j

πi,j(∂i(f)∂j −∂i(f)∂j).

This is the Hamiltonian vector field associated with f. We further have ∂π(∂k)= ∂k(πi,j)∂i∂j ,

and these together determine the differential entirely. We see then that the zeroth

cohomology is given by the space of functions whose associated Hamiltonian vanishes, and

the first cohomology is given by the space of vector fields preserving π infinitesimally,

modulo the subspace of Hamiltonians of functions.

Note that one has
[
ddR, Lπ

]
= 0, whence one can form the Z/2-graded totalization

(ΩM ((u)),uddR +Lπ) of the mixed complex (ΩM ,Lπ,ddR). Here, u is a formal variable

of cohomological degree −2.

Definition 1.5. The hypercohomology of this totalization is denoted Hπ
∗ (M)S

1

.

The reader is referred to [11, §1] for an explanation as to this notational choice.

Remark. It is essentially formal that the construction above implies that the tuple

(H∗
π(M),Hπ

∗ (M),ddR)

forms a calculus.

Let us see some examples to get a better feel for these constructions;

Example.

• Let M = C2 with coordinates (x1,x2) be equipped with the standard symplectic form

dx1dx2, considered as the Poisson form π = ∂1∂2. One easily confirms that the Poisson

homology complex is isomorphic to the de Rham complex of C2 flipped upside down,

whence we see that Hπ(M) ∼= C[2] in this case. Similarly, we compute Hπ(M) ∼= C[0].

Note that in this case the answer is just (a regrading of) the de Rham cohomology of M,

this is generalized by Brylinski in [3] to all symplectic manifolds, and the argument of

Brylinski is sketched below.

• Let M =P2. Then a Poisson form π is equivalent to a section of the anticanonical bundle

OP2(3), so is given by a cubic. Note that {π,π}=0 is automatic as ΘM vanishes in degree

3 in this case. Then one confirms that Hπ(M)∼=HdR(M); indeed, the spectral sequence

corresponding to the stupid filtration has E1 page the Hodge cohomology of P2, so there

is no room for any differentials and it collapses. A similar argument works for any smooth

projective variety whose Hodge numbers are concentrated on the diagonal.

• Consider the example of M =C2 with coordinates xi and equipped with the form π :=

x2∂1∂2. This is an analytic local model for local Poisson surfaces constructed from the

data of a curve Σ with a nonvanishing vector field ξ, together with a line bundle, L. Such a

datum specifies a C∗-equivariant Poisson structure on the total space of L. In the example

of M = C2, the C∗ action corresponds to giving x2 weight 1. Let us first compute the

Poisson homology of (C2,π). We see immediately that Hπ
2 = 0 and Hπ

0
∼=C[x1]. There is

an evident map C[x1]dx1 →Hπ
1 , which one can prove directly is an isomorphism. A slicker

way to do this is as follows: one notes that the Euler vector field, η, for the C∗ action

constructed above, is in the image of the map π : Ω1
M → TM ; indeed, η = x2∂2 = π(dx1).

https://doi.org/10.1017/nmj.2022.1 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2022.1


TAMARKIN–TSYGAN CALCULUS AND CHIRAL POISSON COHOMOLOGY 755

A simple computation now confirms that we have[
Lπ, dx

1
]
= Lη.

Now, Lη is simply the grading operator on homology, we deduce that all the homology

comes from the weight 0 subspace, and thus the above is proved. We caution the reader

that it is not a general fact that a connected algebraic group acting on the Poisson

variety (M,π) must act trivially on Hπ(M); indeed, one can take π = 0 in which case one

is dealing with Hodge cohomology, on which the group can certainly act nontrivially for

(say) an affine M. By the above argument, this is true if the infinitesimal action is given

by Hamiltonians of functions on M. This is in fact a formal consequence of the calculus

structure, as we are acting on homology classes by vanishing cohomology classes (see [3,

(3.4)] for some related discussions).

In general, Poisson (co)homology is somewhat difficult to compute; it is not even known

when it is finite (cf. [4] for results in this direction); nonetheless, one can compute it in the

case that π is nondegenerate; and in all cases, one can compute the totalization Hπ
∗ (M)S

1

.

Lemma 1.3. (Brylinski [3]). If π is nondegenerate, then we have Hπ
∗ (M)∼=Hd−∗(M),

where d is the dimension of M. Similarly, we have H∗
π(M)∼=H∗(M).

Proof. We deal with the case of homology. Let ω be the symplectic form corresponding

to π. Brylinski shows that the associated symplectic Hodge-∗ operator (which obviously

induces an isomorphism between the graded sheaves Ω∗
M and Ωd−∗

M ) intertwines the

differentials ddR and Lπ, whence the lemma is proved. The case of cohomology follows

similarly.

Lemma 1.4. There is an isomorphism Hπ
∗ (M)S

1 ∼=H∗(M)((u)).

Proof. Noting that the operator ιπ is nilpotent, this is immediate from the identity

eιπddRe
−ιπ = ddR+Lπ. This is a special case of the identity eadxy = exye−x, itself a special

case of the Baker–Campbell–Hausdorff formula.

We state now the main Poisson theoretic results of this note, and some definitions

regarding chiral objects can be found in the next sections. These results are direct analogues

of the computation in the case of nondegenerate Poisson forms and the computation of S1-

invariants above.

Theorem 1.5. If (M,π) is a smooth Poisson variety, then there is an associated triple,

((Θch
M ,∂ch

π ),(Ωch
M ,Lch

π ),dchdR), satisfying the axioms of a sheaf of vertex calculi. Furthermore,

we have the following basic computations:

• De Rham invariants. The hypercohomology of the S1-fixed points are identified with

Hch(M)((u)), the 2-periodization of the hypercohomology of the Ωch
M with vanishing

differential.

• Brylinksi-type theorem. If π is nondegenerate, then the hypercohomology of (Θch
M ,∂ch

π ) and

(Ωch,Lch
π ) vanish in conformal weight greater than 0.

§2. Chiral calculus

2.1 Chiral polyvectors

We assume familiarity with the basic theory of vertex algebras, and the reader may

consult [10] for an introduction. The vertex algebras with which we deal are all super such,
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and we adopt the convention where all commutators are assumed to be super-commutators,

vertex algebras are assumed to be vertex super-algebras, and so on. Furthermore, we

assume our vertex algebras are Z≥0-graded by conformal weight and further endowed with a

cohomological Z-grading. We assume this as part of the structure, but abusively write vertex

algebra nonetheless. If v is a vector in a vertex algebra, we denote by |v| its cohomological

weight and by Δ(v) its conformal weight. We also assume that the reader is familiar with

the construction of the chiral de Rham complex, Ωch
M , as given, for example, in [10]. This

is a sheaf of vertex algebras graded by conformal weight and cohomological degree. The

conformal weight 0 subspace is the sheaf ΩM of forms. There is a differential dchdR on Ωch
M ,

whose definition is recalled below. If v is a vector in a vertex algebra, we define the i -modes

v(i) by

Y (v,z) =
∑
i

v(i)z
−1−i

as usual, where Y is the state-field correspondence. dchdR is a derivation with respect to all

the (i)-modes, so that [dchdR,v(i)] = (dchdR)(i). If M is Calabi–Yau, there is a vector Q ∈ Ωch
M

such that Q(0) = dchdR. Throughout, the xi denote étale local coordinates on the variety

M. Ωch
M is then étale locally generated by vectors xi

0,y
i
1,φ

i
0,ψ

i
1, where lower subscripts

denote conformal weight, x,y are bosonic in cohomological weight 0, and φ,ψ are fermionic,

respectively, of cohomological weights 1 and −1. The reader can consult the formulae of

[10] to see the relevant transformation formulae and commutation relations.

Remark. With respect to notation, we remark that unbracketed lower subscripts denote

conformal weight, and bracketed ones denote modes of vectors, so that, for example, (yi1)(0)
is the operator of differentiation with respect to the vector xi

0.

Ωch
M is a vertex operator algebra (that is to say, admits a Virasoro vector) for any smooth

M and an N = 2 such in the Calabi–Yau case (cf. [10]). In this latter case, Q is locally

expressed as
∑

i y
i
1φ

i
0. Regardless of whether Q is globally well defined, its 0-mode Q(0) :=

dchdR is. We record this below as a definition, referring to [10] for a proof that this operator

is well defined.

Definition 2.1. The operator dchdR, expressed in local coordinates as

(
∑
i

yi1φ
i
0)(0),

is referred to as the chiral de Rham differential.

The sheaf of chiral polyvectors, denoted Θch
M , is defined by regrading Ωch

M , so that the

generating φ-vectors are now of conformal weight 1, and the ψ vectors of conformal weight

0. We further take the negative of the cohomological grading, so that the local vectors

ψj now have cohomological weight 1. When care is needed, we denote the corresponding

vectors ψ̄ and φ̄.

Lemma 2.1. The conformal weight 0 subspace of Θch
M is the sheaf ΘM .

Proof. This is easily confirmed.

Remark. This apparently trivial adaptation hides some slight subtleties, and the

formulae of [10] now imply that Θch
M is no longer endowed with a Virasoro vector compatible
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with its conformal grading, unless M is Calabi–Yau. Happily, in the CY case, Θch
M is still

endowed with an N =2 structure (cf. [5]). We note here that, as remarked in [10], all objects

exist canonically as gerbes .

Definition 2.2. On a formal D-disc ΔD, we define the vector Q̄ ∈Θch
ΔD of conformal

weight 2 by

Q̄= yi1φ̄
i
1.

Lemma 2.2. The 0-mode of this vector is invariant under the action of Aut(ΔD), and

so Q̄(0) is defined on Θch
M for any smooth M. It is a derivation with respect to all the (i)

products.

Proof. This follows from the formulae of [10].

Remark. In the absence of the global vector Q̄, we nonetheless write Q̄(0) for the

corresponding 0-mode, which always exists according to the above lemma.

2.2 Brackets and chiral Poisson cohomology

We want to introduce some additional structure to Θch
M . Now, in the case of Ωch

M , we

know that the weight 0 subspace is endowed with a canonical differential, which extends

to the whole space Ωch
M . The weight 0 subspace of Θch

M is endowed with the structure of a

G-algebra, and we would like some analogue of this on the whole space Θch
M . Assuming for

simplicity that M is Calabi–Yau, recall that the differential dchdR comes from the vector Q.

What is crucial is that Q is of conformal weight 1, cohomological degree 1, and satisfies

Q2
(0) = 0. We have the corresponding vector Q̄ ∈ Θch

M , which is now of conformal weight 2

and cohomological weight −1. Some thought tells us that the operator (Q̄(0)v)(0) is now of

conformal weight Δ(v) and cohomological weight |v|+1, so that it has some chance of being

the desired bracket on the weight 0 subspace. We thus define some operators as follows.

Definition 2.3. We define the Gerstenhaber i -products on Θch
M , v⊗w �→ v{i}w, by

v{i}w := (Q̄(0)v)(i)w.

Lemma 2.3. The product v⊗w �→ v{0}w restricts on the conformal weight 0 subspace

to the usual Gerstenhaber bracket of polyvector fields.

Proof. v{0} = (Q̄(0)v)(0) acts a derivation with respect to all (j)-products, in particular

with respect to the (−1)-product. We must then verify (ψ̄i
0){−1}x

j
0 = (−xj

0){−1}ψ̄
i
0 = δij .

This follows immediately from

(Q̄(0))0(ψ̄
i
0) = (yi1)0 = ∂xi

0
,

(Q̄(0)x
i
0)0 = (−φ̄i

1)0 =−∂i
ψ̄0
.

Finally, note that the products ψ̄0
i
{0}ψ̄0

j
= 0, for all i and j, as follows from

(yi1)(0)ψ̄0
j
= ∂xi

0
ψ̄0

j
= 0.

Remark. The construction of the Gerstenhaber operations,

v⊗w �→ v{i}w,
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is in the spirit of the work of Lian and Zuckerberg [8], and the product {0} is a special

case of the construction of [8]. Note, however, that [8] deals with the construction of a

G-algebra on the structure of the BRST complex associated with an N=2 vertex algebra,

which cohomology vanishes in conformal weights greater than 0, and it is really the higher

conformal weight Poisson (co)homology which interests us in this note.

We are now in a position to define the chiral Poisson cohomology complex. We state its

construction as a lemma.

Lemma 2.4. If π is a Poisson form, then the operator π{0} := ∂ch
π defines on Θch

M a

cohomological differential, which is moreover a derivation with respect to all (j)-products,

restricting to the Poisson cohomology differential on the subspace of conformal weight 0.

Proof. It is a derivation with respect to all (j) products because it is a 0-mode. We

compute

2(∂ch
π )2 = 2π2

{0} =
[
π{0},π{0}

]
:=

[
(Q̄(0)π)(0),(Q̄(0)π)(0)

]
,[

(Q̄(0)π)(0),(Q̄(0)π)(0)
]
= ((Q̄(0)π)(0)Q̄(0)π)(0).

Now, we note [
Q̄(0), (Q̄(0)π)(0)

]
= (Q̄2

0π)0 = 0,

whence we deduce that

((Q̄(0)π)(0)Q̄(0)π)(0) = (Q̄(0)(Q̄(0)π)(0)π)(0) := (π{0}π){0} = 0.

We have seen above that {0} restricts to the Gerstenhaber bracket on polyvector fields,

whence the induced map on the conformal weight 0 subspace is as claimed.

Remark. The above differential graded vertex algebra contains a large commutative

subalgebra, generated by the x and ψ variables. This is simply the algebra of functions on

the space of arcs into the super variety T ∗[−1]M . According to the results of [1], such has the

structure of a (shifted) Poisson vertex algebra, the Gerstenhaber products v⊗w �→ v{i}w,

for i≥ 0, recover this structure. For more on these constructions the reader is referred to [6].

Remark. The identity [π{0}, π{0} ] = (π{0}π){0} is the special case of a general identity

which is valid in any G- vertex algebra (to be defined below),

[
v{i}, w{j}

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
{i+j−k},

which is a form of the Borcherds identity for the super-commutator of modes in a vertex

algebra.

2.3 Gerstenhaber vertex algebras

We now explain how the above identity (∂ch
π )2 = 0 fits into the general framework of

what we call Gerstenhaber vertex algebras, or G-vertex algebras.

Definition 2.4. A vertex G- algebra is defined to be a vertex algebra V endowed with

bilinear operations of cohomological degree (−1), v⊗w → v{i}w, of conformal weight −i,

satisfying the following quadratic relations (with the vertex products).
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• Borcherds commutation identity,

[
v{i},w{j}

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
{i+j−k},

• Generalized derivation property,

[
v{i},w(j)

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
(i+j−k)

,

• Bracket of a product,

(v(i)w){j} =
∞∑
k=0

(−1)k
(
i

k

)(
v{i−k}vj+k+u(i−k)v{j+k}− (−1)k(v{i+j−k}u(k)+v(i+j−k)u{k})

)
.

Remark. The above three axioms are, respectively, the analogues of the formulas for a

Gerstenhaber module:

• [La,Lb] = L{a,b}.

• [La, ιb] = ι{a,b}.

• Lab = ιaLb+(−1)|a|ιbLa.

The above discussion can now be summarized in the following lemma.

Lemma 2.5. The products v ⊗ w �→ v{i}w := (Q̄(0)v)(i)w endow the sheaf of chiral

polyvector fields, Θch
M , with the structure of a G-vertex algebra.

Proof. All of the above identities follow from Borcherds–Jacobi identities by substitution

and commutation with Q̄(0). The only properties of Q̄0 which we required are that it be of

appropriate conformal weight (2) and cohomological weight (−1), and that Q̄2
(0) = 0. We

make explicit the proof in the case of the Borcherds commutation identity

[
v{i},w{j}

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
{i+j−k}.

First, take the classical Borcherds identity for Q̄(0)v and Q̄(0)w. We obtain by definition of

the {i} brackets that

[
v{i},w{j}

]
=

∞∑
k=0

(
i

k

)(
(Q̄(0)v)(k)(Q̄(0)w)

)
(i+j−k)

.

Now, by definition, we have

(v{k}w
)
{i+j−k} =

(
Q̄(0)((Q̄0v)(k)w))

)
(i+j−k)

,

so that it suffices to prove that we have

(Q̄(0)v)(k)(Q̄(0)w) = Q̄(0)((Q̄0v)(k)w)),

which follows immediately from[
Q̄(0),(Q̄(0)v)(k)

]
= (Q̄2

(0)v)(k) = 0,

as Q̄(0) is a derivation with respect to all (i) products and satisfies Q̄2
(0) = 0.
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2.4 Action on chiral forms

We are still lacking a definition of chiral Poisson homology. Recalling how the classical

Poisson homology can be defined neatly in terms of the structure on ΩM of a module for

the G-algebra ΘM , it is reasonable to expect that this can be done cleanly by constructing

on Ωch
M the structure of a module (to be defined) for the G-vertex algebra Θch

M .

Definition 2.5. Let V be a G-vertex module, and letM be a module for the underlying

vertex algebra of V, compatibly graded by conformal and cohomological weight. We say that

M is endowed with the structure of a G-vertex module for M if, for each v ∈ V , we are

given morphisms

v{i} :M −→M,

of cohomological weight 1−|v|− i and conformal weight 1+Δ(v)− i. Writing v(i) for the

endomorphisms of M coming from the structure of a vertex module, we demand further

the following compatibilities:

[
v{i},w{j}

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
{i+j−k},

[
v{i},w(j)

]
=

∞∑
k=0

(
i

k

)(
v{k}w

)
(i+j−k)

,

(v(i)w){j} =
∞∑
k=0

(−1)k
(
i

k

)(
v{i−k}vj+k+u(i−k)v{j+k}− (−1)k(v{i+j−k}u(k)+v(i+j−k)u{k})

)
.

Remark. In accordance with the classical case, we write v{i} := Lv
i and v(i) := ιvi . The

above compatibilities are the chiral analogues of the classical compatibilities between the

operators La and ιb in the definition of a vertex algebra module.

Recall that we had in the classical case the notion of a calculus, which involved, in

particular, a cohomological differential on the module M. Note also that in the example of

interest to us, where the module is Ωch
M , we already have a cohomological differential. The

following definition is now readily suggested.

Definition 2.6. A triple consisting of a G-vertex algebra V, a module M for it, and a

cohomological differential, ∂M , on M, are said to form a vertex calculus if, for all v ∈ V,j ∈Z,

the following chiral Cartan formulae hold:

Lv
j =

[
∂, ιvj−1

]
.

We wish now to show that Ωch
M forms a module over the G-algebra Θch

M , and that dchdR
enhances this to a vertex calculus. We make use of the following easy lemma, where we

write Lie(V ) for the Lie algebra of modes obtained from a vertex algebra V.

Lemma 2.6. There is an isomorphism of sheaves of Lie algebras, Lie(Θch
M )→Lie(Ωch

M ).

Proof. Dispensing of superscripts to unburden notation, and working formally locally,

we send the modes x(i),y(i) ∈ Lie(Θch
M ) to the identically denoted elements of Lie(Ωch

M ). We
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stipulate further φ̄(j) �→ φ(j−1) and ψ̄(i) �→ ψ(i+1). This can easily be checked to extend to

an isomorphism of Lie algebras.

Corollary 2.1. Ωch
M is a module for the sheaf of vertex algebras Θch

M .

Now, this tells us how to make sense of the contraction operators, and since we are in

any case expecting a vertex calculus, we may as well enforce the Cartan formulae in order

to define the Lie derivatives.

Definition 2.7. For v ∈ Θch
M a local section, the contraction operators ιvj are defined

to be the j -modes of the action of Θch
M on Ωch

M constructed above. The Lie derivative Lv
j is

defined to be
[
dchdR, ι

v
j−1

]
.

Remark. In [10], an action of changes of coordinates on a local model for Ωch is

constructed. The infinitesimal form of this action is recovered in the case where the local

section v ∈Θch
M is of conformal weight 0 by taking the associated operator L0.

We summarize the above in the following theorem.

Theorem 2.7. The chiral de Rham differential dchdR endows the module Θch
M -module Ωch

M

with the structure of a sheaf of vertex calculi.

Proof. Once it is shown that the operators satisfy the axioms of a representation of a

G-vertex algebra, it follows by construction that dchdR endows this with the structure of a

calculus. That the ι and L operators satisfy the requisite axioms can be checked explicitly.

Alternatively, we note that they can be checked inside the Lie algebra Lie(Ωch
M ), as the

operators v{} are themselves the modes of vectors, by their construction. Recall from above

that Lie(Ωch
M ) is isomorphic to Lie(Θch

M ), and so the identities follow from those in Lie(Θch
M ),

which simply state that Lie(Θch
M ) forms a G-vertex algebra.

Corollary 2.2. The operator
[
dchdR, ι

π
−1

]
= Lπ

0 , denoted henceforth Lch
π and referred

to as the chiral Poisson differential, is of square zero and cohomological degree −1. The

conformal weight 0 subspace reproduces the usual Poisson homology complex of [3]. There

is an additional differential, given by dchdR, which commutes with Lch
π .

The following definition-lemma summarizes the above discussion.

Definition 2.8. The hypercohomology

Hch
π (M) :=H∗(M,(Θch

M ,∂ch
π ))

is referred to as chiral Poisson cohomology. The hypercohomology

Hπ
ch(M) :=H∗(M,(Ωch

M ,Lch
π ))

is referred to as chiral Poisson homology .

Lemma 2.8. The formulae defined above endow the triple (Hch
π (M),Hπ

ch(M),dchdR) with

the structure of a vertex calculus.

Proof. Above, we have constructed everything on the sheaf level, and it formally

descends to the level of hypercohomology.
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§3. Chiral Poisson (co)homology

We now turn to the task of proving the expected basic theorems concerning chiral Poisson

(co)homology. As was mentioned in the introduction, Poisson (co)homology is a somewhat

subtle invariant of a Poisson variety (M,π), and as such, we of course cannot expect to

compute its chiral analogue too easily, as this chiral analogue is at least as intractable as

the classical version.

A benefit to the somewhat lengthy discussion above is that the basic expected properties

of chiral Poisson (co)homology can now be verified quite easily. We begin with the

identification of the fixed points of the S1-action.

Lemma 3.1. There is an isomorphism

Hπ,S1

ch (M) :=H∗(M,
(
Ωch

M ((u)),udchdR+Lch
π

)
)∼=H∗

dR(M)((u)),

in particular, there are no nonzero classes of strictly positive conformal weight.

Proof. Recall that Lch
π satisfies

[
dchdR, ι

π
−1

]
. Now, note that ιπ−1 is of even cohomological

degree −2 and further is locally nilpotent, as the cohomological degree is bounded below

on each fixed conformal weight piece of Ωch
M . It follows that

exp
( ιπ−1

u

)
is a well-defined operator on this 2-periodic complex. This conjugates the differential,

dchdR+u−1Lch
π ,

to the usual chiral de Rham differential. One then applies the results of [10] to note that

the resulting hypercohomology is simply HdR(M)((u)) in conformal weight 0.

We now prove the analogue of the theorem of Brylinksi [3] showing that these invariants

are really invariants of the singularities of the form π, which is to say that one obtains

nothing of interest when π is nondegenerate.

Theorem 3.2. If π is nondegenerate, then there is an isomorphism Hπ
ch(M) ∼=

Hd−∗
dR (M), placed in conformal weight 0, where d = 2n is the dimension of M. A similar

result holds for Poisson cohomology. In particular, there are no classes of nonzero conformal

weight.

Proof. Let ω be the symplectic form dual to π. If x is a point of M, then there are

formal coordinates around x where π is in standard Darboux form. (We caution the reader

that this is not true in the étale topology; indeed, it fails for the form d log(x1)d log(x2) on

C∗×C∗.)

Now, the machinery of Gelfand–Kazhdan formal geometry (see [10] for an introduc-

tion) implies that there is an associated torsor M̂ → M for the (pro-)group scheme

Symp(Δ2n,ωstd) of formal symplectomorphisms of the 2n-disc with its standard symplectic

form. The group Symp(Δ2n,ωstd) acts on (Ωch
Δ2n ,Lch

π ), and (Ωch
M ,Lch

π ) is obtained by

reduction along this torsor. Recalling that Brylinksi’s result computes the conformal weight

0 subspace, we are thus reduced to showing that the inclusion of the weight 0 subspace

(ΩΔ2n ,Lω−1
std

)−→ (Ωch
Δ2n ,Lch

ω−1
std

)

is a quasi-isomorphism.
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It suffices to handle the case of n= 1. Now, let x1,x2 be coordinates on Δ2. Consider the

vector

H := x1
1φ

2
0−x2

1φ
1
0 ∈ Ωch

Δ2 .

This has conformal weight 1 and cohomological degree 1. Observe now the following simple

identity:

H(0)(y
1
1ψ

2
1 −y21ψ

1
1) = xi

1y
i
1+φi

1ψ
i
1,

where of course we recognize xi
1y

i
1+φi

1ψ
1
1 as the Virasoro vector L. Let us note further that

we have, by construction of Lch
ω−1 , that

(y11ψ
2
1 −y21ψ

1
1)(1) = Lch

ω−1 .

Now, H(0) acts as a derivation with respect to all (j)-products, whence we compute[
H(0), Lch

ω−1

]
= L(1),

so that L(1) acts trivially on cohomology. Now, this operator is simply the (diagonalizable)

grading operator for the conformal grading, whence the theorem is established.

Remark. When M is Calabi–Yau such that the associated volume form volM is

compatible with π in the sense that Lπ(volM ) = 0, then the N = 2 algebra acts on Ωch
M

compatibly with the differential Lch
π . In particular, this is the case for symplectic varieties,

in which case there is, in fact, an N = 4 action, and the operator H above is induced from

this structure.

3.1 An example

We regret that we are not able to produce any genuinely nontrivial computations of chiral

Poisson homology as yet—nonetheless, we can still see that it is not a trivial enhancement

of its classical counterpart. Indeed, we have seen that there are no new invariants of (M,π)

produced in chiral Poisson homology when π is nondegenerate, and further that, regardless

of π, the S1-invariants produce nothing new either, so we had better check then that there

is at least some additional richness to Hch
π (M).

In order to do so, we return to the example of M = C2 equipped with the form π :=

x2∂1∂2. Recall that above we used the C∗ action on this Poisson variety to argue that

all the cohomology was the weight 0 subspace with respect to this action (because the

associated infinitesimal action is given by a Hamiltonian of a function with respect to π).

Now, one might hope that this argument could be applied to easily compute the chiral

Poisson homology of (C2,x2∂1∂2). The calculus developed in the previous section readily

implies that we have [
Lch
π , (dx1)(−1)

]
= Lη

0 ,

and, of course, Lη
0 is still the grading operator on homology. However, the weight 0 subspace

is now huge, as the annihilation vectors y2 and ψ2 are now of negative weight.

This at least cuts down the size of the space we must compute with somewhat, and, for

example, we can now compute the conformal weight 1 component. Let us enumerate the

C∗ weight 0 variables, and they are generated over C[x1
0,φ

1
0 ] by the vectors:

• x2
0ψ

2
1 in cohomological degree −1,

• x2
0y

2
1, φ

2
0ψ

2
0, x

1
1, y

1
1 in cohomological degree 0,
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• y21φ
2
0, φ

1
1 in cohomological degree 1,

• and vanishing in all other cohomological degrees.

We can compute by hand the following differentials:

• y21φ
2
0 �→ y11, φ

1
1 �→ x2

0y
2
1 +φ2

0ψ
2
1,

• x2
0y

2
1 �→ −ψ1

1, φ
2
0ψ

2
1 �→ ψ1

1, x
1
1 �→ x2

0ψ
2
1, y

1
1 �→ 0,

• and vectors of cohomological degree −1 map to 0 for trivial reasons.

Staring at the above one deduces that there is no cohomology in conformal weight 1 and

it is perhaps thus tempting to conjecture that the same is true in all nonzero conformal

weights. This is in fact false, and there are nonzero classes already in conformal weight 2.

One such is given by the vector

v := x1
1ψ

1
1 −x2

1ψ
2
1,

as the reader can confirm. Taking products of the above example, one thus sees that there

can be an arbitrarily long string of vanishing cohomology groups in conformal weights

1,2, . . . ,N before some nonzero classes show up.

Remark. When M is endowed with a π-compatible volume form, then there is a

Virasoro element L in (global sections of) Θch
M which represents a class in Hch

π (M), the

chiral Poisson cohomology. Now, the {0} product of this class acting on cohomology (resp.

the operator L0 acting on homology) give the gradings on cohomology and homology,

respectively, whence we see that this class is precisely the obstruction to nonzero classes of

nonzero conformal weight in the case of Calabi–Yau Poisson varieties.

Remark. It would be interesting to compute chiral Poisson homology in some (perhaps)

manageable cases of interest, for example, a simple Lie algebra g with its Kostant–Kirillov

form.

References

[1] A. Beilinson and V. Drinfeld, Chiral Algebras, Amer. Math. Soc. Colloq. Publ. 51, Amer. Math. Soc.,
Providence, 2004, 375 pp.

[2] E. Bouaziz, Semi-infinite non-commutative Hodge theory and LG-models, preprint, arXiv:1806.00854
[3] J. L. Brylinski, A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988),

93–114.
[4] P. Etingof and T. Schedler, Poisson traces, D-modules and symplectic resolutions, Lett. Math. Phys.

108 (2018), 633–678.
[5] V. Gorbounov and F. Malikov. Moscow Mathematical Journal. 4, 3 p. 729–779.
[6] R. Heluani, Florence lecture notes, available at https://w3.impa.br/∼heluani/
[7] M. Kontsevich, XI Solomon Lefschetz Memorial Series: Hodge Structures in Non-Commutative

Geometry , Contemp. Math. 462, Amer. Math. Soc., Providence, 2008.
[8] B. H. Lian and G. J. Zuckerman, New perspectives on the BRST algebraic structure of string theory,

Commun. Math. Phys. 154 (1993), 613–646.
[9] A. Lichnerowicz, Les Variétés de Poisson et Leurs algébres de Lie associée, J. Differential Geom. 12
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