Parasitology

Supplement to Parasitology 1992

Chemotherapy and the immune system

EDITED BY L. H. CHAPPELL & M. J. DOENHOFF

CAMBRIDGE UNIVERSITY PRESS

Subscriptions may be sent to any bookseller or subscription agent or direct to the publisher: Cambridge University Press, The Edinburgh Building, Shaftesbury Road, Cambridge CB2 2RU. Subscriptions in the USA, Canada and Mexico should be sent to Cambridge University Press, Journals Department, 40 West 20th Street, New York, NY 10011–4211. All orders must be accompanied by payment. The subscription price of volumes 106 and 107, 1993 is £225 (US \$440 in the USA, Canada and Mexico), payable in advance, for ten parts plus supplements; separate parts cost £20 or US \$40 each (plus postage). Japanese prices for institutions (including ASP delivery) are available from Kinokuniya Company Ltd, P.O. Box 55, Chitose, Tokyo. Second class postage paid at New York, NY and at additional mailing offices. POSTMASTER: send address changes in USA, Canada and Mexico to Parasitology, Cambridge University Press, 110 Midland Avenue, Port Chester, New York, NY 10573–9864.

ISBN 0 521 44835 2

© Cambridge University Press 1992

The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

Printed in Great Britain by the University Press, Cambridge

Parasitology

Volume 105 Supplement 1992

Chemotherapy and the immune system

EDITED BY
L. H. CHAPPELL AND M. J. DOENHOFF

Contents

Preface: Positive interactions between anti-		Anti-LFA-1 (anti-CD 11a) and anti-	
infection drugs and the immune		ICAM-1 (anti-CD54)	S17
response: an emerging paradigm	S1	Cytokines as targets for mediators of	
List of southibutions	S3	immunosuppression	S18
List of contributions	53	MHC blocking peptides	S18
Towns a second data as a second day		References	S18
Immunomodulatory agents in the	0.5		
laboratory and clinic	S5	Cyclosporin A: antiparasite drug,	
Introduction	S5	modulator of the host-parasite	
Biologic response modifiers and the concept	0.7	relationship and immunosuppressant	S25
of adjuvants	S7	Summary	S25
Adjuvants of gram-negative origin	S7	Introduction	S25
Development of LPS derivatives with		Protozoa	S25
reduced or non-pyrogenicity	S7	Antiprozoal activity of cyclosporin A	S26
Adjuvants of gram-positive origin	S7	Immunomodulation of protozoan infections	
Other adjuvants	S8	by cyclosporin A	S27
Cytokines	S8	Leishmaniasis	S27
Interferon-gamma (IFN-γ)	S8	Trypanosomiasis	S28
Interleukin-1 (IL-1)	S8	Giardiasis	S29
Interleukin-2 (IL-2)	S9	Theileriosis	S29
Interleukin-3 (IL-3)	S 9	Combined antiprotozoal and	02
Interleukin-4 (IL-4)	S9	immunomodulatory effects of	
Interleukin-5 (IL-5)	S9	cyclosporin A	S29
Interleukin-6 (IL-6)	S10	• •	S29
Tumor necrosis factor alpha (TNF-α)	S10	Toxoplasmosis	
Granulocyte-macrophage colony stimulating	Ţ	Avian coccidiosis	S29
factor (GM-CSF)	S10	Other microorganisms	S30
Mechanisms involved in non-specific		Helminth infections	S30
pathogen destruction and/or inhibition	S10	Anthelmintic activity	S30
NO-mediated pathogen alteration	S10	Trematodes	S30
Oxidative burst	S11	Cestodes	S34
Inflammatory response	S11	Nematodes	S35
Immunosuppressive drugs	S12	Immunomodulatory activity of CsA in	
Cytotoxic agents (antimetabolites and		helminth infections	S35
alkylating agents)	S12	Combined immunomodulatory and	
Azathioprine (Aza)	S12	antiparasitic activity of CsA	S35
RS-61443 and mycophenolic acid (MPA)	S12	Cyclosporin-binding proteins and possible	
Bredinin (BR) = mizoribine	S12	mode of anthelmintic action	S36
Brequinar sodium	S13	Conclusions	S36
Cyclophosphamide (Cy)	S13	Acknowledgement	S37
Methotrexate (MTX)	S13	References	S37
Corticosteroids	S13		
Deoxyspergualin	S13	Immune-dependent chemotherapy of	
· · ·		schistosomiasis	S41
T-cell directed immunosuppresive drugs	S14	Summary	S41
Cyclosporin A and FK506	S14	Introduction	S41
Rapamycin	S16	Demonstration of the immune-dependence of	
Monoclonal antibodies	S16	chemotherapy using immunosuppressed	
Anti-CD4	S17	mice	S41
Anti-IL-2R	S17	Praziquantel-induced exposure of surface	
MAb against allelic MHC class II gene	~	antigens: an explanandum for immune-	
products	S17	dependent chemotherapy	S42
Anti-TCR	S17	Praziquantel-exposed surface antigens	S42

Contents iv

Further characterisation of two antigens		Immune-dependence of chemotherapy in	0.50
involved in PZQ/antibody synergy	S44	leishmaniasis	S73
Enhancement of schistosomicidal drug		Immunocompetence and chemotherapy	S73
activity in vaccinated mice	S45	Combined immunochemotherapy	S74
Conclusions and future prospects	S45	Conclusion and outlook	S75
Acknowledgements	S46	Acknowledgements	S76
References	S46	References	S76
Diethylcarbamazine (DEC):		Interactions between chemotherapy and	
immunopharmacological		immunity in bovine theileriosis	S79
interactions of an anti-filarial drug	S49	Summary	S79
Summary	S49	Introduction	S79
Diethylcarbamazine (DEC) and other anti-		Chemotherapy of theileriosis	S79
filarial drugs	S49	Immunology of theileriosis	S80
DEC has an indirect mode of action on		Infection-and-treatment	S81
filarial parasites	S50	Conclusions	S82
The microfilaricidal effect of DEC is		Acknowledgements	S82
independent of a specific antibody		References	S82
response	S51		
The effect of DEC does not require		Viruses, chemotherapy and immunity	S85
complement	S51	Introduction	S85
DEC effects on arachidonic acid metabolism		Antiretroviral agents	S85
may be the primary mode of action	S52	Interferons	S87
DEC-mediated changes to vasculature	S53	Acyclovir	S89
DEC promotion of host cell adhesion	S54	Ganciclovir	S90
DEC enhancement of platelet and		References	S90
granulocyte killing	S54		
Immunological side-effects of DEC		Chemotherapy and immunity in	
administration	S55	opportunistic parasitic infections in	
T-cell reactivity after chemotherapy	S56	AIDS	S93
Conclusions	S56	Summary	S93
Acknowledgements	S57	Introduction	S93
References	S57	The immune defects in AIDS	S93
		Pneumocystis carinii	S94
Malaria: drug use and the immune		Toxoplasma gondii	S95
response	S61	Cryptosporidium spp.	S95
Introduction	S61	Microsporidia spp.	S96
Depression of leucocyte function by		Isospora belli	S96
antimalarial drugs	S61	Leishmania spp.	S96
Anti-drug antibody responses	S62	Other protozoa	S97
Drug-induced antibody responses	S62	Helminths	S98
Chemoprophylaxis and the immune		Sarcoptes scabiei	S98
responses to vaccines	S63	Conclusion	S98
Chemoprophylaxis and acquired immunity to		References	S98
malaria	S63		
Immune dependence of chemotherapy	S65	Hypothesis: impaired immunity as a	
Future considerations	S67	factor which contributes to the	
Acknowledgements	S68	spread of drug-resistance	S103
References	S68	Summary	S103
		Introduction	S103
Interactions between immunity and		The evidence	S103
chemotherapy in the treatment of		Mechanisms	S104
the trypanosomiases and		Conclusions	S104
leishmaniases	S71	Acknowledgements	S105
Summary	S71	References	S105
Introduction	S71		
Immune-dependence of chemotherapy in		Endpiece	S107
African trypanosomiasis	S71		