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ON ASYMPTOTIC BEHAVIOR 
OF INDUCED REPRESENTATIONS 

LARRY BAGGETT AND KEITH F. TAYLOR 

1. Introduction. This paper is devoted to the proof of the following 
theorem. 

THEOREM 1.1. Let H be a closed subgroup of a connected Lie group G, 
let N denote the largest {closed) subgroup of H which is normal in all of G, 
and suppose that T is a unitary representation of H whose restriction to N 
is a multiple of a character x of N. Then every matrix coefficient of the 
induced representation UT vanishes at infinity modulo the kernel of UT 

providing that the following two conditions hold: 
i) N is almost-connected {finite modulo its connected component). 

ii) The subgroup Hk is uregularly related11 to the diagonal subgroup D in 
Gk for at least one integer k ^ k0j where ko is determined by G and H. 

Remark 1. We recall that two subgroups Gi and G2 are "regularly 
related", in the sense of Mackey, if the double coset space is countably 
separated. Also, the assertion that the subgroups Hk and D are regularly 
related in Gk is equivalent to the statement that the orbit space for the 
action of G, via the diagonal map, on {G/H)k is countably separated. We 
shall need condition ii) precisely in order to employ Mackey's tensor 
product theorem. 

Remark 2. We give below two examples which show the necessity of 
conditions i) and ii) or at least the necessity of some conditions like them. 

Remark 3. Conditions i) and ii) both hold in a variety of cases, some 
quite general. For instance, if H is an algebraic sub-group of an algebraic 
group G, and if H is the stability subgroup for the character x, then both 
conditions hold. For then N too must be algebraic (as a consequence of 
Proposition 2.1 below, for example) and therefore is itself almost con
nected. Also, the orbit space for the action of G on {G/H)k in this case is 
smooth because G is algebraic and the action is the restriction of a linear 
action. On the other hand, both of the examples below, which display the 
failure of conditions i) and ii), are nilpotent groups. Clearly these condi
tions are rather delicate. They are however easy to check in specific 
cases. 

Received October 10, 1980 and in revised form January 30, 1981. The work of the 
first author was partially supported by NSF grant MCS 77 01374 while that of the 
second was partially supported by NSERC grant A 3176. 

220 

https://doi.org/10.4153/CJM-1982-015-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-015-8


INDUCED REPRESENTATIONS 221 

Definition 1.2. Let U be a unitary representation of a locally compact 
group G. The projective kernel of Z7 is the closed normal subgroup of G 
consisting of the elements g of G for which JJQ is a scalar operator. It 
follows that if / and / ' are elements of the space of U, then the absolute 
value of the matrix coefficient (Ug(f), f) is constant on the cosets of 
the projective kernel. We shall say that the representation U vanishes at 
infinity, vanishes at infinity modulo its kernel, or vanishes at infinity 
modulo its projective kernel if and only if the absolute value of each of its 
matrix coefficients vanishes at infinity, vanishes at infinity modulo its 
kernel, or vanishes at infinity modulo its projective kernel. 

It is a conjecture of many experts that a locally compact group is of 
type I if and only if each of its irreducible representations vanishes at 
infinity modulo its projective kernel. Howe and Moore have made the 
initial step in verifying this. For, in [3], they show that each irreducible 
representation of an algebraic group does vanish at infinity modulo its 
projective kernel. Since algebraic groups are known to be of type I, 
their result supports the above-mentioned conjecture. The methods of [3] 
rely heavily on Mackey's theory and in particular on the tensor product 
theorem. Obviously we have borrowed this latter idea for our own 
purposes here. 

In [1], the authors showed that a representation of a connected Lie 
group, induced from a character of a connected, closed, normal sub-group, 
actually vanishes at infinity modulo its kernel. The theorem of this paper 
is then a direct generalization of the older one, both conditions holding 
when H = N and N is connected. The significance of the fact that these 
induced representations vanish at infinity modulo their kernels rather 
than just their projective kernels, i.e., that the projective kernel is com
pact modulo the kernel, is not yet clear to us. It does provide a slight 
improvement of the result in [3] for nilpotent groups. Indeed, one can 
argue by induction, à la Kirillov, to show that every irreducible represen
tation of a connected nilpotent Lie group is induced from a character of 
an algebraic subgroup. Then our present theorem applies and we can 
conclude that each irreducible representation vanishes at infinity modulo 
its kernel. (The result of [3] would only have implied the vanishing at 
infinity modulo the projective kernel.) 

Although our theorems are concerned at the outset with induced 
representations and not irreducible representations, it should be clear 
that they are formulated with the Mackey procedure in mind. A more 
obvious application of our ideas to Mackey's method can be found in 
Lemma D of [2]. 

1.3. Some Integral Formulas. Let G be a separable locally compact group 
with right Haar measure dg, and let m denote a probability measure on G 
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222 L. BAGGETT AND K. F. TAYLOR 

which is equivalent to Haar measure. Let p denote the Radon-Nikodym 
derivative of m with respect to Haar measure: m(E) = J E p(g)dg. 

If if is a closed subgroup of G and 0 denotes the natural map of G onto 
G/H, set M equal to the measure 0*(ra) on G/H projected by 0 from m: 

f f(s)Ms) = f f(8(g))dm(g) = f f(d(g))P(g)dg. 
** G/H u G ** G 

The measure /x is quasi-invariant for the action of G on G/H, and we 
write p for the function on (G/H) X G which satisfies: 

/ f(s o g)d»(s) = I p(s, g)f(s)d»(s) 
u G/H •* G/H 

for all g in G and all measurable functions/on G/H. 
Recall that any other quasi-invariant probability measure on G/H is 

equivalent to /x and that any such probability measure is 0*(m') for some 
probability measure m' on G which is equivalent to Haar measure. 

Now let k be a positive integer, and consider the measure space Gh 

equipped with the measure mk. We again write 0, somewhat ambiguously, 
for the projection of Gk onto (G/H)k, in which case the measure y? is 
0*(mk). We let G act, via the diagonal map, on (G/H)k: 

(su . . . , sk) o g = (si o g, . . . , sk o g). 

Denote by 12 the orbit space for this action and by a the projection of 
(G/H)k onto 0. Finally, let v denote the measure <r*(nk) on 12. Then, for 
any measurable function / on 12, we have 

f / ( « ) * ( « ) = f f(jr(z))dS(z) = f f(tr(fi(glt . . . . &))) 
[(G/H)*] J [Gk] 

|~ k 

i ) X dm*(gi, . . . , & ) = / /(cr(^(glf . . . , &))) f l Pfei) dgi. . . dgk. 

Of course 12 may well be a "bad" Borel space, in which case there will 
exist very few measurable functions on 12. We shall say that this action of 
G on (G/H)k is smooth if 12 is countably separated in its quotient Borel 
structure. 

1.4. Formula for an Induced Representation. We continue with the 
notation of the previous discussion. Fix a regular Borel cross-section y 
of G/H into G. See [4]. If T is a unitary representation of H acting in the 
Hilbert space X, we define the induced representation UT of G to act in 
the Hilbert space tensor product of L2(JLI) and X and to be given by 
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the formula 

(U,*(f ® *) , ( / ® *)) = f \p(s, g)]~1/2f(s o g)f(s) 
u G/H 

for/ in L2 (/*) and \p in X. 
Of course the equivalence class of the induced representation U* is 

independent of the choices of /x and 7. 
We conclude this introduction by giving two examples, the first show

ing the importance of condition i) in Theorem 1.1 and the second showing 
the importance of condition ii). 

Example 1.5. Let G be the four-dimensional group of real matrices of 
the form 

l t t z 
0 1 0 y 
0 0 1 x 
0 0 0 1 

and let H be the closed, normal, abelian subgroup defined by the relations 
t — 0, y is an integer, and x is an integral multiple of 2TT. We parameterize 
the elements of G by the natural quadruples (t, z, y, x), in which case H 
consists of the elements (0, 2, k, 2wn) for z arbitrary and k and n integers. 
The map 6, defined by 

0(fi,z,y,x) = foe2*",**), 

can be taken as the natural map of G onto G/H, G/H having been 
identified with R X T2. A cross-section 7 can then be defined by 

We choose /x to be the quasi-invariant probability measure 

(2T)-*'*e-(t2/»dtdadt3y 

on G/Hj and let x be the representation (character) of H defined by 

x(0, s, ky 2wn) = eiz. 

It follows from the formula in 1.4 that the projective kernel of the induced 
representation Ux consists of the elements (0, z, 0, 0). 

Now if/ is any nonzero element of L2(fx), the space of f/x, which is 
independent of the two circle variables (/(/, e2iria, eiff) = f(t, 1, 1)), then 

([^(0,<U,2irn) ] ( / ) . / ) = / l/(U-l)|2x 
0 RXTXT 

X ((*, 0, a, /9)(0, 0, *, 2wn)[(t, 0, a, 0)r1)(2w)-t',é-(,lmdtdedp 

= f \f(t, 1, Y)\Vm+2n\2^yv\-u%mdt = F(k + 2TT«). 
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where F is the nonzero Ll function on R defined by 

F(t) = ( 1 / 2 T T ) | / ( M , 1 ) | 2 6 - ^ 2 / 2 ) . 

Clearly then ([U(o,o,k,2irn)]( /)> / ) does not vanish as (0, 0, k, 2wn) tends 
to infinity, i.e., Ux does not vanish at infinity modulo its projective kernel. 

On the other hand, the action of G on (G/K)k is smooth for any integer 
k because H is normal. Of course the group N, which is the same as H 
here, is not almost-connected. 

This example shows the significance of assumption i). The next example 
shows that, even when both H and N are connected, the assumption that 
G act smoothly on (G/H)k cannot entirely be dropped. 

Example 1.6. Let G be the three-dimensional Heisenberg group modulo 
a discrete central subgroup. That is, as a manifold G is T X R2, where T 
is the unit circle in C and multiplication on G is given by, for (X, g, p), 
(\',<Z',£') ÇG, 

(A,<Z,£)(X',<Z',£') = (XXV"', <z +«z', £ + £'). 

Let H = {(1, 0, p): p £ R}, a closed subgroup of G. Then G/H can be 
identified with T X R and y: G/H —» G given by Y(X, q) = (X, q, 0) is a 
regular cross-section. The action of G on T X R is given by 

(X,g) • (\',q',p') = (XX'e-^+« ' \ (? + <?')• 

We want to investigate the action of G, via the diagonal map, on (G/H)k 

for various k to determine if it is smooth. 
The case k = 1 is trivial and without significance. When k = 2, the 

action is given by 

((Xi,gi),(x2 ,g2)) • (x , , g , , ^ / ) 

= ((\i\'e-ip'^+Q'\ qx + q')} (X2XV-'*'<«'+«'>, g2 + g'))-

Then (G/H)2 is the union of the two invariant Borel sets A and By where 

A = {((Xx, g), (X2, g)) : Xlf X2 Ç T, q G R} and 

£ = (G/tf)2 - 4 = {((Xx.gx), (X2,g2)) : q, * q2}. 

The Borel set {((X, 0), (1, 0)) : X Ç T} is a cross-section for the orbits 
in A and {(1, 0), (1, q) : q Ç R — 0} is a cross-section for £ . So the orbit 
space is countably separated and the action is smooth. 

The interested reader can now fill in the details of the case k = 3. 
There are several different kinds of orbits in (G/H)z which can be easily 
parametrized as above and then there is the set, 

C = {((Xi,g), (X2lg + a),(X8, q + 0)) : Xlf X2, X3 G T, <?, a, 0 6 R, 

a ^ 0, 0 7̂  0, a /0 irrational}. 
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This is an invariant co-null set in {G/H)z. The orbit of any point ((Xi, g), 
(X2, q + a) , (A3, q + P)) in C is 

{((X, s), (X2X1"
1X^^, 5 + a) , (X8Xr1X«'V, 5 + 0))}, 

where (X, /, 5) runs through T X R X R. The orbit space in question is, 
up to a null set, the same as the one for the action of G restricted to C. 
This orbit space is not countably separated. The details of showing this 
are messy and will be left to the reader. We remark only on the obvious 
similarity with the well known non-smooth action of R on T2. 

Thus, for k = 3, Hk is not regularly related to the diagonal in Gk for 
this group G, likewise for any larger k. In this connection the following 
remark is very significant: 

Remark 1.7. With G and H as in example 1.6 and x, the trivial character 
on H, Ux does not vanish at infinity. (The projective kernel is trivial.) 
This is easy to check. 

Thus, unwieldy as it is, the hypothesis that Hk is regularly related to 
the diagonal in Gk for suitable k, which appears in Theorem 1.1 is neces
sary or, at least, it cannot be totally eliminated. 

2. Proof of theorem 1.1. Let H be a closed subgroup of a connected 
Lie group G, and let N denote the largest subgroup of H which is normal 
in all of G. We have then N = C\Q^G {gHg~l). The following proposition 
may very well be a part of the Lie theory folklore. For completeness, 
however, we present a short proof in Section 3. 

PROPOSITION 2.1. There exists an integer k0, with h ^ 2(dIm//-dimiV+1), 
such that for almost all k0-tuples (gu . . . , gko) in GkQ we have that 

N= n (gtHgr1). 
1=1 

The integer ko of the last proposition is the one for which we must have 
the subgroups Hk and D regularly related in Gk for some k ^ k0, in 
Theorem 1.1. Only one such k is required. 

Proof of Theorem 1.1. Let G, H, N, and k be as in the above discussion. 
We suppose that w is a unitary representation of H whose restriction to N 
is a multiple of a character x of N. We assume that N is almost-connected 
and that the action of G, via the diagonal map, on (G/H)k is smooth. By 
Mackey's tensor product theorem [4], we may express the &-fold tensor 
power [C7T]®* of the induced representation UT as a direct integral over 
the orbit space 12 of (G/H)k under the action of G: 

[V]** S f © T"dv(0>). 
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Since v is the measure on 12 projected by a • 6 from the measure mk on 
Gk, see 1.3, it follows, by Schur's Lemma for instance, that [Z7T]®* is 
equivalent to a subrepresentation of the representation V given by 

J [G*] 

It is clear too that the kernel of U* is contained in the kernel of [f/*]®*, 
and also that the kernel of [J/']®* equals the kernel of V. We will be done 
then if we can show that the matrix coefficients for V vanish at infinity 
modulo the kernel of U*. 

Now it follows from Mackey's development of the tensor product 
theorem that the representation T(7(H01 0k)) is equivalent to an induced 
representation: 

7T 
?(0(01 Ok)) _ • i G k ( (01>-->QJc) • J W Jc ( K01,'",0k)\ 

where p(<?1 9k) is defined on p |L i ( g^g t - 1 ) by 

( 0 1 . . . . , g k ) 
k 

Hence F is equivalent to 

f e [ ind G
[ n U<^, ->) ] (p < n w))]d«»*(gi, • • • ,&)• 

^ [G*] 

It follows from the formula in 1.4 that the kernel of Ur is contained in N 
and that the commutator subgroup of N belongs to this kernel. We may 
as well factor out this kernel, in which case we may assume that N is an 
almost-connected, closed, normal, abelian subgroup of G. Thus write N 
as a direct product N = J A for J a compact central subgroup of G and A 
a closed, not necessarily normal, vector, subgroup. We represent the 
character x as a pair (a, X) for a in J and X in Â. Then the action of G on 
the character x is given by (a, X) • g = (a, X )̂, where the map g —> \° is 
an analytic map of G into the Euclidean space Â. 

Since the integer k is the one guaranteed by Proposition 2.1, we have 
that 

O (gtHgr1) = jV 

for almost all ^-tuples (gi, . . . , gk). The representation piSl 9k) is, for 
such a &-tuple, a multiple of a character of iV: 

Pn(" st) = flx(gi-1ngi)I, 
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where / denotes the identity operator on the space of 7r®k. Therefore V is 
equivalent to a multiple of the representation W defined by 

W=] ® [ind*° (x(01 ak))]dmk(gu . . . , gk), 

where x(01,""0k) is the character of N given by 

X(" n){n) = tlx(gr1ngi). 

It will suffice then to show that W vanishes at infinity on G. 
Let us show first that the matrix coefficients {Wn(f), f) vanish at 

infinity on N for any two elements / , / ' of the space of W. We let y 
denote a fixed regular Borel cross-section of G/N into G, and we write 
P for a probability measure on G/N which is equivalent to Haar 
measure. Then the Hilbert space for each of the induced representations 
in the integrand for Wcan be taken to be the space L2(P). Lett ing/, / ' 
be two elements of the space of W, i.e., two square-integrable functions 

from the measure space (Gk, mk) into the Hilbert space L2(P), we have 

(Wn(f),f) 
G ( (Q\,...,Çk) 

([ind*" {x
m nUf'igx, ..-, &)],/(*!. - . . , &))*.(« 

Xdmk(gh...,k) = f f [f'(gi,...,gt)Ks)[f(gi **)](*) 
U [Gk] U GIN 

X x(01 'k\y(s)n[y(s)r1)dP(s)dmk(g1, . . . , & ) 

u [Gk] *> G/N 

X f l x(Zi-1y(s)n[gr1y(s)]-1)dP(s)dmk(gh . . . , & ) 

= f f t/'(gi. ••- .&)](*) [ / (g i . - - . .&) IW 

x n xferSwnfgrVwr1) n pfo)<tei • • • dgkdP(S) 

= f f [f(y(s)gu ..., y(s)gk)](s)U(y(s)gh ..., y(s)gk)](s) 
U GIN U [Gk] 

X f i x(grxngt) f i p (7 ( î ) ( , ) [» (7 ( î ) ) f e • • • dgkdP(s) 
1 = 1 y = l 

/ , 
X1'1 ek)(n)F,f,n(gl gk)dgl...dgk, 
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where F(ftf) is defined on Gk by 

F(r,n(gu • • • ,g*) 

= f [f'(y(s)gl, . . . , y(s)glc)](s)[f(y(s)gli . . . , ?(*)&)](*) 

x f i p ( 7 W f t ) [ » ( 7 W ) ] ^ ( 5 ) , 

and where ô denotes the modular function on G. 
Writing the elements of N as products n = ja for j in J and a in A, 

we have 

\(Wja(f')J)\ 

If k I 
\ J [Gk] 1 = 1 I 

/

ft 

F(r,f)(gi, •••>£*) I I ((«» x ) ' (g<)) W^gi, . . . , dgj 
[<?*] i = i 

„*((a a) ,0(01 gk)), I fc Fif,n(gh » gk)e agi, • • . ,agk 

where <p is the analytic map of G* into the Euclidean space Âk defined by 

* ( £ i , . . . , & ) = X^i>, . . . , X<'*>. 

The following lemma, which follows either from the results of [5] or [1], 
is now useful. 

LEMMA 2.2. Let <p be an analytic map of an analytic manifold M into a 
Euclidean space Kn. Suppose that rj is a finite measure on M which is locally 
absolutely continuous with respect to Lebesgue measure on M, and write 
<P*(rç) for the finite measure on R7* which is projected by <p from rj. Then the 
Fourier-Stieltjes transform of <p*(r?) vanishes at infinity if and only if the 
range of <p belongs to no proper hyper plane. Explicitly, the map 

J [R«] J M 

vanishes at infinity if and only if the range of <p belongs to no proper hyper-
plane. 

In the case at hand, we let M be the manifold Gk and set rj equal to the 
locally absolutely continuous measure F(f,f>)dgi. . . dgk. It follows im
mediately that 7] is finite. (I^KG*) ^ || / | | || f'\\.) Take cp to be the map 
which sends (gi, . . . , gk) to the vector in Âk whose i'th component is \iQi). 
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Let us check that the range of y is not contained in any proper hyper-
plane. By way of contradiction, suppose that (au • • • , ak) is a nonzero 
element of Ak such that ((ai, . . . , ak), <p(gi, . . . , gk)) equals a constant c 
for all ^-tuples (gi, . . . , gk). Without loss of generality, suppose that 
ai 7̂  0. Fixing the variables g2, • . • , gk all to be equal to the identity, we 
find that (aly \g) equals a constant c' for all g in G. But then there would 
exist a nonzero element bi of A, in fact a multiple of a,\, such that (&i, A'7) 
is a multiple of 2ir for all g in G. But then, directly from the formula in 1.4, 
we see that the kernel of UT is nontrivial. This is a contradiction to our 
assumption, and hence the range of <p belongs to no proper hyperplane. 

Now fix an e > 0. There exists, by the lemma, a compact subset C of N 
(depending of course o n / and / ' ) such that 

I(wn{/'),/)| << 

whenever n is outside C. This shows at least that W\N vanishes at infinity. 
We deduce from this the following important observation. 

2.3. For a n y / in the space of W and any g in G there exists a compact 
subset D of N and a neighborhood U of g (both depending on / and g) 
such that 

\(w.A/),/)! <2< 
whenever g' is in U and w is outside D. 

Finally, let us write the elements of G as products g = ny(t) for n in N 
and / in G/N, and let us fix an element/ in the space of W. Then 

IW(/)-/)l = I (WW/),/) I 

= / f [^ .g ) ] - 1 "^ &)](**) 

X [/fei,... ,gt)](s)x(tl n) (,y(s)g[y(st)]-1)dP(s)dmk(gh... ,&) | 

J / [M*,g)r1/2i[/(gi,..-,£*)](<>i 
4 7 [<?*] U G/N 

X |[/(gi, . . . , gk)](s)\dP(s)dmk(gh . . . , &)• 

It follows from the dominated convergence theorem, applied to the finite 
measure rnk, that this integral tends to zero as t tends to infinity in G/N. 
Hence there exists a compact subset K of G/N such that 

I (WW/), / I <* 
whenever £ is outside K. Let L be the compact subset y(K) of G. Then, 
using a compactness argument and 2.3, we conclude that there exists a 
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compact subset E of N such that 

|Wrr(«)(/)./)l <2 * 

whenever ny(t) is outside EL. 
This of course completes the proof. 

3. Proof of 2.1. Proposition 2.1 will be established by means of a series 
of lemmas. 

LEMMA 3.1. Suppose L and M are Lie subgroups of a connected Lie group 
G. If the connected components of these groups are not normal in G, then for 
almost all gin G, 

dim (gLg-1 C\ M) < max (dim L, dim M). 

Proof. It can clearly be assumed that dim L = dim M. Let L0 and Mo 
be the respective connected components of L and M. Suppose B were a 
subset of G of positive measure such that 

dim (gLg-1 H M) = dim M for all g £ B. 

Then gLog~x H Mo = Mo, for all g £ 13 and, consequently, hL0h~l = L0, 
for all /z- G B~lB. Thus the normalizer of L0 in G is a closed subgroup of 
positive measure in a connected Lie group and so must be all of G. But L0 

is not normal in G, hence such a set B cannot exist. 

In the situation we are concerned with, H is a closed subgroup of a 
connected Lie group G and N is the maximal normal subgroup of G con
tained in H. 

LEMMA 3.2. 77*m? ocwte an integer k ^ 2(dlmi*-dimiv> such that 

dim ^Q gtflgr1) = dimiV, 

f#r almost all k-tuples (gi, . . . , gfc) G G*. 

Proof. Recall that w i s a probability measure on G which is mutually 
absolutely continuous with respect to right Haar measure and hence with 
respect to left Haar measure. Then mk is quasi-invariant under the action 
of G on Gk via left multiplication of diagonal elements. That is, if g Ç G 
and y = (gh . . . , gk) G G*, then 

g -y = (ggi, • • • ,gg*)> 

Let p( • , g) denote the Radon-Nikodym derivative of the measure 
E—>mk(g - E) with respect to mk. Recall that p (y, g) is jointly measurable 
in y and g. 

Observe that for any k, N C n t= i giHgf1, for all (glf . . . , gk) Ç Gk. 
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Hence, it suffices to prove that if j ^ (dim H — dim N) and k = 2j, then 
for almost all ^-tuples (gu . . . , gk) in Gk we have 

(n^r 1 ) dim l p | giHgi I ^ dim H - j . 

(Where no confusion can arise, we use x = (gi, . . . , gk) and ifz = 
rh-igiPgc1.) 

We prove the above statement by induction on j . It is clearly true 
when j = 0. Suppose it holds for some j , 0 ^ j < (dim H — dim N). 
Thus, there exists a measurable A C G* such that 

m*(G* - 4 ) = 0 and 
(dim Hv) S dim H - j for all y G A. 

We claim that for almost all (x,y) £ A X A, 

dim (H* r\ Hv) S dim H - j - 1. 

To see this, define / on Gk X G* by 

/ (* , y) = max {0, [dim (Hx H i P ) - dim H + j + 1]}. 

Then, if/(x, y) = 0 almost everywhere in Gk X G* we will have established 
the above claim. Consider 

I I f(x1y)dmk(x)dmk(y) 
J Gk J Gk 

= 1 1 j f(x,g'y)P(y,g)dmk(x)dnik(y)dtn(g) 
*> G J Gk J Gk 

= 1 j j f(x1g-y)p{y1g)dm{g)dmk(x)dmk{y) 
U Gk U Gk *J G 

= 1 } 1 /(*» g ' y)P(y> g)dm(g)dmk(x)dmk(y). 
J A J A J G 

For each (x,y) £ A X A, either dim Hx = dim Hv = dim iVor for almost 
all g 6 G 

dim (Hx r\ gHvg~l) < max (dim Hx, dim Hv) ^ dim i? - j - 1, 

by Lemma 3.1. But, gHvg~l = H(g-y) so, in either case,/(x, g • y) = 0 for 
almost all g (z G. Thus, 

I / f(x}y)dmk(x)dmk(y) = 0. 

This establishes the inductive step and therefore the lemma. 

So we have shown that, for some integer k ^ 2(dimi*~dim7SO and for 
almost all x Ç G*, dim i P = dim TV. In particular, the connected com-
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ponent of Hx is contained in N for almost all x Ç Gk. Hence, Hx/N is a 
countable subgroup of G/N containing no nontrivial normal subgroup of 
G/N, for almost all x Ç GK 

LEMMA 3.3. Let L and M be countable subgroups of a connected Lie group 
G such that neither L nor M contains a nontrivial normal subgroup of G. 
Then, for almost all ginG, 

gLg-*r\M = {e). 

Proof. Suppose that B is a subset of G with positive measure and 
gLg~l C\ M 7* {e}, for all g 6 B. Since M is countable, there exists m £ M, 
m 9e e and a subset B\ of B such that measure of B\ is positive and 
m Ç gLg-1 for all g Ç 5 i . Since L is countable, there exists an / Ç L, 
/ y* e, and a subset B2 of 231 such that measure of B2 is positive and 
gig-1 = m for all g £ B2. Hence, for all h £ B2~

lB2, we have /^-1/fe = /. 
This implies that the centralizer of / has positive measure and so is all 
of G. But, then / is in the center of G which is impossible since L contains 
no normal subgroup of G other than {e}. This proves the lemma. 

Returning to the situation described before the statement of Lemma 
3.3, we have a co-null set C in G/N and a co-null set A in Gk such that for 
all Ng £ C and x, y 6 A, gHxg~l C\ Hv = N. That is, if C is the inverse 
image of C under the canonical projection, then C is a co-null set in G 
and for all g G C', x, y G A, 

(3.4) #('•*.*> = H0-* r\Hv = N. 

A Fubini argument, similar to that used in the proof of Lemma 3.2. 
shows that ( C • A) X A = {(g • x,y): g £ C', x, y Ç A] is a co-null set 
in G2k. Therefore, the equation 3.4 completes the proof of Proposition 2.1 
with ko = k. 
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