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lβ Introduction

In differential geometry of linear connections, A. Nijenhuis has introduced

the concepts of local holonomy group and infinitesimal holonomy group and ob-

tained many interesting results [6].

The purpose of the present note is to generalize his results to the case of

connections in arbitrary principal fiber bundles with Lie structure groups. The

concept of local holonomy group can be immediately generalized and has been

already utilized by S. Kobayashi [4]. Our main results are Theorems 4 and 5

on infinitesimal holonomy groups. The proofs depend on a little sharpened form

of a theorem of Ambrose-Singer [1]. In the case of linear connections, our infini-

tesimal holonomy group coincides with that of Nijenhuis, as we shall show in

Section 6.

Finally, in the case of Cartan connections, we shall give a certain expres-

sion of infinitesimal holonomy groups.

After the completion of this work, we have learned from Dr. A. Nijenhuis

that he himself obtained a similar generalization [7].

In preparing the present note for publication, I have received valuable

criticism and kind encouragement from Dr. K. Nomizu, Mr. J. Hano and, in par-

ticular, from Dr. Nijenhuis. I am glad to express here my deep gratitude to

them.

2. Holonomy groups

Let P=P(M> G, π) be a differentiable principal fiber bundle over a base

manifold M with Lie structure group G and with projection π of P onto M. We

always assume that P satisfies the second axiom of countability and that M is

connected. By differentially, we understand that of class C°\ We denote by
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TX(P) the tangent space to P at x and by Vx the subspace of TX(P) which is

tangent to the fiber through x.

A connection in P is given by defining at each point x of P a vector

subspace Qx of TX(P) such that

(QΛ) Qx depends differentiably on x

(0.2) TxiP)= Vx + Qx (direct sum);

(0.3) Qχ.a = Ra'Qx,

where ft? (βGG) denotes the right translation of P induced by a : Rax = x a.

A vector in Qx is called horizontal and a vector in Vx vertical. Let us denote

hx (resp. vx) the projection of TX(P) onto Qx (resp. Vx) with respect to the

direct decomposition (0.2). For an element A in the Lie algebra β of G, we

denote by Λ* the vertical .vector field on P generated by A. Here A* generated

by A is the vectorfield on P induced by the 1-parameter group Rat of right

translations of P where at = exp tA [1], [8]. Now define a β-valued differential

1-form ω, called the connection form, on P by

U.I) ύλt(Aί) = A for A G d ;

U.2) ω*(X)=0 for l e f t ,

Then ω satisfies the condition

U.3) Ra ' ω = «/i(α~1) ω.

Conversely, a Q-valued differential 1-form ω satisfying (ω. 1) and U. 3) de-

fines, by (o).2), a connection OΛ:, whose connection form coincides with ω.

For a given connection, the curvature form Ω on P is defined by

(0.1) ΩX(X, Y)=dωx(hx- X,hx- Y) (X, y ε W Λ ) .

Ω satisfies the condition

(Ω.2) R^Ω^adia'1) Ώ.

The structure equation ([1], [8]) is given by

Ω = dω -h ̂ y Cω, ft?].

A β-valued differential form 0 is called of type adiG), if it satisfies

R% * θ = adia'1) - θ ( α e G ) .

https://doi.org/10.1017/S002776300000012X Published online by Cambridge University Press

https://doi.org/10.1017/S002776300000012X


INFINITESIMAL HOLONOMY GROUPS OF BUNDLE CONNECTIONS 107

If θ is of degree 0, that is. if θ is a 0-valued function, this can be written as

θ{x Λ) ^ad{a~ι) θ(x).

(ω.3) and (Ω.2) show that ω and Ω are of type ad(G).

A (piecewise differentiate) curve x(t) in P is called horizontal if, at each

point x(t), the tangent vector to the curve is horizontal. We denote by P(x)

the set of point y such that x and y can be joined by a horizontal curve in P.

The holonomy group H(x) at a point x of P is defined by

and the restricted holonomy group H\x) at x is the set of all the elements a

of G such that # and x <z can be joined by a horizontal curve whose projection

to M is homotopic to 0 in M. As is well known [1], [8], H{x) is a Lie sub-

group of G and H°(x) coincides with the connected component of H{x) contain-

ing the unit element e. Denote by ί)(x) the Lie algebra of H°(x)> which is a

subalgebra of 8. From these definitions, we get easily

(1.1) H(x-a)=ad(a~ι)H(x) and t){χ * a) =

(1.2) H(y)=H(x) and f)(y) =§(x) for v€ΞP(#).

At each point x of P, let mo(#) be the vector subspace of fl spanned by all

the elements J2*(X, Y*)(Z, ί G Γ*(P)). Since β is of type ad(G), we have

(1.3) mo(tf α) = ad{a~ι) mQ(x).

Now, the theorem of Ambrose-Singer (Theorem 2 of [1], cf. [5], [8]) states that

fyx) is the Lie algebra generated by all mo(.y)> yGP(x).

Later on, we shall use

LEMMA 1. f)(x) is spanned as a vector subspace in vi by all mo(v), y^Pix).

Proof. Let m be the vector subspace spanned by all ιπo(jy), y&P(x). For

a point y of P(x), let x(t) be a horizontal curve joining x and jy. Then the

curve x(t) a is also horizontal for any element a of G. If a&Hix), then

x aE: P(x)y and hence y a e P(#). Therefore we have

ad(a~ι) mo(y) = mo(^ β) C m.

This proves ad(a~ι)n\ C m, for ίz€ϊ H(x)> and hence Cί)(Λr), m] C m. This shows

that m itself forms a Lie algebra, q.e.d.
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Remark. The proofs of Theorems 1 and 4 of Nijenhuis [6] are not sufficient.

The proof of Theorem 1 can be completed by the above lemma. But in the

statement of Theorem 4, "spanned" has to be replaced by "generated."

3. Local holonomy groups

For any connected open subset U of M, π'ι(U) has the natural bundle

structure and the natural connection induced those of P. For any point x of

π^ίU), we denote by H°(U, x) the restricted holonomy group at x of this con-

nection in π'1^!) and by P{U> x) the set of points y of π^iU) such that x and

y can be joined by a horizontal curve in π"1(U).

Definition. The local holonomy group H*(x) at a point x of P is defined

as

H*(x) = Π H\U, *),

where U is an arbitrary connected open neighborhood of p — κ x in M.

For a point x of Py take a sequence of connected open neighborhoods Uk

(k = 1, 2, 3, . . .) of p = π x in M such that Uk D Ϊ7*+i and Π Uk = {p}. Then,

for any open neighborhood V of py there exists an integer a such that U is con-

tained in V for k^ or. Therefore we have H*(x) = Γ\H\Uk, x). Since each

H°(Uk> x) is completely determined by its Lie algebra, the minimal values of

dimH°(Uk> x) is attained for some k. Hence v/e have H*(x) =H\Uk, x) for

some k.

We have clearly

PROPOSITION 1. The local holonomy group H*(x) has the following proper-

ties :

i) J?*(Λ) is a connected Lie subgroup of G which is contained in H°(x).

Denote by ψ(x) the subalgebra associated to H*(x) in 9;

ii) H*(x-a)=ad(a~1)H*{χ) and ψ(x a) = ad(a~ι)ψ(x)

iii) There exists a connected open neighborhood U of p^π x such that,

for any connected open neighborhood V of p contained in U, we have H*(x)

= i/°(F>*);

iv) For any point y of P(U, x), we have H*(x) DH*(y) and ψ(x) Dγ(y);

v) The set {π(x) G M\dimH*{x) ^ a) is open in M for any integer a.
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As to v), we remark that since άimH*(x) is constant on each fiber,

άimH*(x) can be considered as a function on the base space M.

THEOREM 1. H°(x) is generated by all H*(y), yζΞP(x), and ΐ}(x) is spanned

by all fj*(y)9 y 6= P(x).

The first stament means that every element a of H°(x) can be written as

a finite product a = ax . . . ak where at e H*(yi) for some v; e P(x).

We have ί)(x) = ϊj^) D ίj*(jy) D mo(jy) for a point .y of P(#). By Lemma 1,

tyx) is spanned by mo(y), yGP{χ)t and a fortiori by ΐf(^). The first stament

follows from the second and from the following

LEMMA 2. If the Lie algebra 9 of a connected Lie group G is generated by

a family of vector subspaces mx (λ G Λ) of fl, then any element a of G can be

written as a finite product of the following form

a = exp Xi exp X2. . . exp Xk,

where each Xi is contained in some mλ.

Proof. Let H be the set of those elements a which can be written in the

above form. We easily see that H is an arc wise connected subgroup of G and

hence a Lie subgroup of G by a theorem of Kuranishi-Yamabe [11]. Since H

contains the elements of the form exp X, JGiΠλ, the Lie algebra t) of H contains

each m>. From the assumption, f) coincides with 0. q.e.d.

THEOREM 2. // άimH*(x) is constant over P, then we have H°(x) =H*(x)

for every xE:P.

Proof. In a sufficiently small neighborhood U of p = π x, we have H*(x)

D H*(y) for a point y of P(ί/, #). Since they have the same dimension, we

have H*{x) =H*(y). From this, we can easily deduce that for any point y of

P(x) we have H*(x)=H*{y). Since H\x) is generated by all H*(y) for

y e P(x), we have finally H\x) = H*(x).

4. Infinitesimal holonomy groups

The definition of infinitesimal holonomy groups is preceded by several

lemmas.

LEMMA 3. Let f be a ^-valued function of type ad(G) on P. Then
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i) For any vector field X on P,

υ(X)χ./= -lωx(X),f(x)l;

ii) For any horizontal vector fields X and Y on P,

v(ZX9

iii) If X and Y are vector fields on P invariant under right translations,

then Ω(Xt Y) and X*f are functions of type ad(G).

Proof i) Set A =- ωAX) e fl. Then we have Ax = v(X)Xf and hence

v(X)x-f=Aχ -f=\im~]-{f(x-exptA)-f(x)}
t-*o t

= lim-j {adiexp ( - tAΪ) -fix) -fix)}

= -[A, /(ΛΓ)]= - .

(cf. [2]), where expίΛ is the 1-parameter subgroup of G generated by A.

ii) For any horizontal vector fields X and F, we have, in virtue of the

structure equation,

2ΩX(X, Y)=2dωx(X> Y) + lωx(X), ωx(Y)3

•=2dωΛX, Y)

= Xx(ω(Y)) - Yx(ω(X)) - ωx(LXy YD

= -ωx(ZX9 YD.

From this, we get ii) in virtue of i).

iii) Since Ω is of type adiG), we have

Ωxa(RaX, RaY)=adίa-ι)ΩxiXy Y).

Hence i?(X 7) is a function of type adiG) if RaX=X and i ? α y = F . We

have also

{XfHxa)=Xxa-f= (RaXx) -f=Xx(f°R)

= ad(a'ι)(Xxf) =• ad{a~ι){Xf)(x).

We have completed the proof of Lemma 3.

We have defined, in Section 2, mo(χ) at each point x of P as the vector

subspace of Q which is spanned by all the elements ΩxiX, Y), Z, Y<ETX(P).

Now we shall define a vector subspace m/>(#) of 9 inductively on & in the

following way. Consider any function of the form
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, Y),

where X> Y, Vu . . > Vk are arbitrary horizontal vector fields on P, and

Vk . . . VΊi2(Z, Y) denotes the result of applying successively Vu . . . , Vk to

the ^-valued function Ω(X, Y). Let uik(x) be the subspace of 8 spanned by

iΠfe-i(Λ ) and by the values at x of all the functions of the form ilk). Set ί)'(x)

= U n\k(x). We shall later see that this ί)'(x) defines the Lie algebra of the

infinitesimal holonomy group.

Take a basis Xu . . . , Xn (w = dimM) of vector fields on a neighborhood

U of p= π x in M, and let XT the lift of jv (to π~HU)) respectively. Here

the lift X* of a vector field X on M is the horizontal vector field on P such

that 7r X* = X X* is uniquely determined and is invariant by Ra, a&G.

Consider any function of the form

(life) Xfh. . .XfxΩ{Xΐ, Xΐ\

where /, /, j u . . > jk are taken arbitrarily from 1, . . . , n.

LEMMA 4. For each ky u\k(x) is spanned by ΠU-I(ΛΓ) and by the values at

x of all the functions of the form (II«), furthermore

mk(xa) = adKa~ι) IK^IΛ:).

Proof. The lemma is true for k — 0, and we use the induction on k. Sup-

pose that Lemma 4 is true for k-1. From the definition, ιrik(x) is spanned by

IΪU-I(ΛΓ) and by the values at x of all the functions of the form (h). Since Xϊ,

. . . , X* form a basis of horizontal vector fields on π~ι(U), it is easily seen

that any function of the form (h) can be written as a linear combination of the

functions of the form (Πα) {a ^ k), where the coefficients are real valued func-

tions. This shows the first statement of the lemma. Since XT is right invariant,

Ω(X*9 X*) is of type ad(G). By iii) of Lemma 3, any function of the form

(life) is also of type ad(G). Hence we get mkixa) = ad(a~1)mk(x). q.e.d.

LEMMA 5. The vector space tf(x) = U nu(#) is contained in lf{x).
k

Proof We shall prove this by the induction on k. For k = 0, we already

know that mo(#) C ψ(x). Suppose that Wk-Λx) C ίfix) for every point x.

Since mk(x) is spanned by mk-i(x) and by the values at x of the functions of

the form (I&), it is sufficient to show that, for any horizontal vector field X and
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for any function / of the form (Ife-i), we have Xx * / G ψ{χ).

Let ψt be the local 1-parameter group of transformations generated by X

and defined in a neighborhood of x. Then, ψt x (\t I < some δ) forms a hori-

zontal curve through x since JY" is horizontal. By iv) of Proposition 1 we have,

for sufficiently small t, Ϋ(ψt x) C ψ(x)y and hence

f(ψt x) e iΐu_i(fί x) C ΐ)*(^ x) C ίf (*).

On the other hand, we have

Xx - f=\im-\{f(ψf x) - fix)}.

Therefore we have Xx fE:ψ(x). q.e.d.

LEMMA 6. ty(x) spans a subalgebra of Q.

Proof. It is sufficient to show that, for any integers / and ky we have

[m/(#), mk(x)l C m^+/+2. To prove this it is also sufficient to show that, for any

function g of the form (I/) and /of the form (life), the G-valued function [/, g~](x)

= lf(x), g(x)l can be written as a linear combination of the functions of the

form (Ir) (r £ k + l + 2) with coefficients of real valued functions. This will be

proved by the induction on /.

i) In the case where 1 = 0, g has the expression gίx) = ΩX(X, Y), where

X} Y are horizontal vector fields. Since / is of type ad(G)f we have, by ii) of

Lemma 3,

2LΩΛX, Y),f(x)l = v(

On the other hand,

v&X, Yl)x-f=lX, Y]* •/

= X,(Y/)- Yx(Xf)-h(lX,

Since X* Y f and Y X f are of the form (I*+2) and h(ίX9 YD - f of the

form (Ijb+i), the above statement is true for /=0 and for any k.

ii) Suppose that the statement is true for / and for any k. To prove the

case / + 1, it is sufficient to show that, for any function g of the form (I/) and

/ of the form (11*), the statement holds for the function [X g> / ] , where X is

any horizontal vector field. We have easily

ιχχ g, /(*): = χx(ίg, n) - zg(χ), Xx-fi
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Here, the statement holds for [#, X / ] from the inductive assumption, and the

function ίg, / ] can be written as a linear combination of functions of the form

(Ir) (r £ l+k + 2) and hence X(Lg, /]) is a linear combination of functions of

the form (I r) (r ^ l+k + 3). Therefore the statement is also true for ίXg, f\

This completes the induction.

By Lemma 5 and Lemma 6, fy(x) is a subalgebra of ΐ}*(x).

Definition. The infinitesimal holonomy group H'(x) at a point x of P is

the connected Lie subgroup of G which has ϊfix) as its Lie algebra.

PROPOSITION 2. The infinitesimal holonomy group Hf(x) has the following

properties:

i) H'(x) is a connected Lie subgroup of H*{x);

ii) Hf(x-a)=ad(a-1)Hf(x) and ϊ)'(x a) - adia'^ix)

iii) The set {π x EΞ MI dim Hf(x) ^ a} is open in M for any integer a

iv) If H'{x) = H*{χ) at a point, then there exists a connected open neighbor-

hood U of p = π x such that, for any point y of P(U, x), we have Hf(y)

= 2^00 ==#'(#)=#*(#).

Proof, ii) follows from Lemma 4, and it means that dimH'(x) can be

considered as a function on M. iii) is seen from the fact that if the values of a.

finite number of functions of the form (W (k ^ 0) are linearly independent at

a point x, so are they in a neighborhood of x. If άimH'ix) = dim H*(x) at x,

this holds in a neighborhood of x by v) of Proposition 1 and by iii) of the above.

Hence we get iv) from Theorem 2.

THEOREM 3. H°(x) is generated by all H((y), y&P(x), and tyx) is

spanned by all fy(y), y G P(x).

The proof is similar to that of Theorem 1.

5* Theorems

THEOREM 4. If dim H'(x) is constant over P, then we have H*(x) =H*(x)

-Hf(x) for every x&P.

This can be obtained from Theorem 2 and from the following

LEMMA 7. If dim Hf{x) is constant in a neighborhood of x in P, then we

have H'(x)=;H*(x).
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Proof. On a sufficiently small neighborhood V of p = π x in Λf, we have,

for any point y of P( V, x),

(5.1) !)*(#) D ϊ)*(y) D ί)'(y) D mQ(y).

Therefore we see from Lemma 1 that ψ(x) is spanned by all ty(y), y 6Ξ P( V, x).

Therefore it is sufficient to show the existence of a neighborhood U of p on

which fy(x) =fy(y) holds for any y&P(U, x).

Now take a finite number of functions /i, . . . , / « of the form (EU) ik ^ 0)

such that /I(AΓ), . . . ,/«(#) form a basis of !)'(#). Then we see from the as-

sumption of the lemma that fi(y\ . . . , fΛy) form a basis of ϊ)'(.y) for any

point y in a sufficiently small neighborhood of x. Since /i, . . . , / * are of type

ad(G), fι(ya), . . . ,fa.\ya) also form a basis of Ij'ίjy #). This shows that

there exists a neighborhood V oί p such that /ι(jy), . . , fΛy) form a basis of

ί)f{y) for every point y of π~ι{ V). Take a neighborhood U oί p in V so small

that (5.1) holds in T Γ ' W ) .

We shall prove 'ί)'(x) = fj'ljy) for any point ^ of P(U} x). Let Λr(ί)

( 0 s ί = l ) be a horizontal curve joining x and jv in π~ι{U). Though x\t) is

piecewise differentiable in general, we assume first that x{t) is differentiate

throughout 0 ̂  t ^ 1.

Set g, U) =/,(#(*)). Since the curve x{t) is horizontal, we have

As ^Ί(ί), . . . , gΛt) form a basis of ί)'(x(t)), dgjjdt can be written as

(dgj/dth= ibajkit) gk(t),

where ccjkit) is differentiable in t.

Consider the differential equation for the unknown

dβj/dt = - f]βk ' cckj (j = 1 . - . a).

This has α:-linearly independent solutions βij with initial condition

fty(0)=fti.

We see easily that these solutions can be extended for 0 ̂  t ^ 1, constructing

successively the solutions. We have
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t (Σ&n &) = Σ-~f (β») gj + Σ fa - ~t gj
at j=ι 3=1 at j=i at

« α a rt

- - Σ Σ βik ockj gj + Σ Σ βij ay* gfe = 0.
j = 1 fc - 1 j = 1 fc = 1

Hence we have Σ f r U) ' Sj^t) =^i (0). This proves Ϊ)'U(O)) = ί)'(#(U), because

the det Ift yίΌj is not 0. This also can be proved successively for the case

where χ{t) is piece-wise differentiate. Therefore we have proved H'(x) - H*(x).

A point p of M is called singular with respect to H* (resp. H') if, for any

sufficiently small neighborhood U of p, dimH*(x) (resp. άimH'(x)) is not

constant over π~ι(U). From Lemma 7 and from iv) of Proposition 2, we see

that the set Ω"' of singular points of H* is contained in the set 9J of singular

points of H'. In the same way as Nijenhuis [β], we can prove that Ω* and Ω'

are closed sets without interior points.

In the case of an analytic bundle, a connection is called analytic if the

horizontal space Qx depends analytically on x. Then one can see that the hori-

zontal component hX of any analytic vector field X is analytic and that ω and

Ω are also analytic.

THEOREM 5. // the bundle and the connection are analytic, then, H°(x)

= H*(x) - H'(x) for every x <E P.

Proof. It is sufficient to prove that άimH'ix) is locally constant. In fact,

in this case, άimH'(x) is constant over P and hence we get the theorem from

Theorem 4.

Now take analytic local coordinates x\ . . . , xn defined in a neighborhood

U of p = K x in M. We can assume that xι(p) =0 and that U is homeomorphic

with the open subset of Rn composed of the points {χ\ . . , , xn) such that
n

Σ ( # Γ ) 2 < a" (a> 0), by the mapping q -> (x1(q), . . . , xn(q)). We shall prove
t = l

that dimf)'l.y) is constant over π~{(U).

Set Xi = d/dxι and let us denote by Xf the lift of Z, . For any system of

•w-real numbers (a\ . . . , <z") such that Σ ( ^ ) 2 = l Consider the vector field

X-^dXi on U. The ray u(t) ( - a < t < a) defined by xι(u(t)) = a!t has

Xuit) a s i t s t a n g e n t v e c t o r a t u { t ) . T h e lift X* of X is g i v e n b y 'ΣdXΐ' a n d

is a n a n a l y t i c h o r i z o n t a l v e c t o r field o n π~1(U). T h e lift x ( t ) of u(t) t h r o u g h

x h a s Xί(t) a s i t s t a n g e n t v e c t o r a t x ( t ) . S i n c e t h e s e t of a l l t h e lifts x i i )
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of any ray u(t) defined in the above way covers U, it is sufficient to show

= f)'(x(ti)) for any point xiti) on the curve x(t).

Now consider all the functions / of the form Hh) ik ^ 0)

defined on π'\U)9 and set g(t) =fixit)), which are analytic functions defined

for - a <t <a. Fix a point xiU). We can prove (see the lemma below) that

there exists δ > 0 such that all the functions git) so obtained can be expanded

in the common neighborhood \t - 101 < δ of U as follows

°"w ' ~ ml

where we have

g{m\t),

Therefore, for each t in | f - f o | < < ? , all g{m)ii) belong to ί)'U(f)). Since all

git) span fyixit)), the first Taylor expansion shows that fy(x{t)) is contained

in fyixito)). Similarly, %'ixih)) C ϊj'(#(f)) and hence they coincide. For each

f i ( | f i l < β ) , the set {xit)\0 ^\t\ ^\tι\} being compact, we have Ϊ)'U(O))

= ΐ)'(Λ;(fi)). q.e.d.

LEMMA 8. In an analytic manifold, let x(t) (If I < α, xiO) =p) be the inte-

gral curve of an analytic vector field X which is defined in a neighborhood V

of p and is not 0 everywhere. For an analytic function f and for a finite number

of analytic vector fields Xu . . . , XΛ defined on V, consider all the functions gix)

and hit) of the form

gix) = iXh . . . XjJKx)

h(t)=g(xit))y

where ju . . . , jk are arbitrarily taken from 1, . . . , a. Then there exists δ > 0

such that all hit) so obtained can be expanded in the common neighborhood

\t\ <δ as follows

~ m ml
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Proof. From the assumption, we can take analytic local coordinates (x1,

. . . , xn) such that the curve U, 0, . . . , 0) (|ίl < some ai) coincides with x(t)

and X- d/dxι (see § VII, Chap. Ill of [2]). Now we see that the above expansion

of hit) is the same as that of g(x) in a power sieries of xι. Each Xi can be
n

written as Xi = l>jfijd/dxl. Since / and /,•/ are analytic, they can be expanded

in a power series of ix\ . . . , xn) in a common neighborhood \xι\ < a2. Now

the lemma can be seen from the following fact:

If two analytic functions flt /?, of (xι

9 . . . , xn) are expanded in a neighbor-

hood I xx I < a, then the functions /i f2 and /i d/2/dx1 can be expanded in the

same neighborhood. q.e.d.

6. Linear connections

Let P be the bundle of frames over a connected ^-dimensional manifold M.

P is a principal fiber bundle with structure group GL(n> R) over M. A con-

nection in P is called a linear connection of M. The purpose of this section is

to show that our infinitesimal holonomy group coincides with that of Nijenhuis.

In order to do this, we must first clarify the relation between a connection in

P and the covariant differentiation on M induced by this linear connection. We

shall follow the formulation which has been given recently by K. Nomizu [8].

A connection in P induces a covariant differentiation of tensor fields on

M [8], [9]. Let us denote by VXT the covariant differential of a tensor field

T on M in the direction of a vector field X. Let F be an w-dimensional vector

space with fixed basis fi, . . , ?». Since P is the associated principal bundle of

the tangent bundle of M, any point x - (eu . . , en) of P gives a linear mapping

of F noto the tangent space Tp(M) to M a t p = π x such that

Since Ql(n, R) is considered as the Lie algebra of all linear endomorphisms of

F, each element A of 9ί(w, R) gives, for each point x of P, a linear endo-

morphism of TP(M) ip = π x) of the form

#• A *" 1 : Tp(M) » Γ/,(Af).

In the following, we shall denote by Xή the lift of a vector field X on M

and by X, Y, Z, Vu . . . , Fi, . . . arbitrary vector fields on M

We shall use the following (see K. Nomizu [8])
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LEMMA 9. For each Z, define an F-valued function fz on P by

fz(x) = x~1(Zp)i where p-π x.

Then we have

(β.D (rxz)P = x(xϊ •/);

And the curvature tensor R on M is given by

(6.2) R(X,

A tensor field T of type (1.1) is a rule which assigns to each p G M a

linear endomorphism of Tp(M). The covariant differential FVT of T is given

by ([8], [9])

(6. 3) (FyT)(Z) = Fv(T(Z)) - T(FvZ)

In particular, if T = R(X, Y) (X} Y fixed), we have

(6.4) (FvR(X, Y))(Z) =Fv(R(X, Y)(Z))-R{X, Y){FVZ)

for any Z. The covariant differentiatial of FVlR(X, Y) taken in the directions

F2, . . . , Vk successively will be denoted by

Vv%VVιR{X, Y), . . . , Fv}c . . . rVlR(X, Y).

LEMMA 10. (FVk . . . FViR(X, Y))(Z)p

Proof. The case where k = 0 is just (6.2). For a vector field PF = i?(X, Y)(Z),

we have

(6.5) yv(Λr) = ΛΓ p /

By (6.1) and (6.5), we get

(6.6) irVι{R{X, Y)(Z))}p = x-{V?xΩ(X*t Y*)(fz)))

where Ω(X*, Y*)(fz) is considered as an F-valued function on P. On the other

hand, we have

(6.7) V?XΩ(X*, Y])(fz))

= {V?X-Ω(X*, Y*)

From (6.1), this can be written as
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(6. 8) { Vϊx Ω(X*, y*)} (x'\Zp))

*, Y*)(fz))-Ωx(X*f γ-'Ί{x~ι((FrίZ)P)

F r o m ( 6 . 4 ) a n d (6.5), w e g e t

( 6 . 9 ) (rVιR(X, Y)){Z)p = {x- VΪXΩ(X*\ Y*) x'1} (Zp).

This proves the lemma for the case k = 1. The general case vcan be obtained

successively by using (6.3) for T = F,-,._1. . ,ΓVχR{X, Y), in stead of (6.4) in

the above argument. q.e.d.

The holonomy group H(x) (resp. H*{x), H'(x)) can be represented on

Tp{M) ip^π'X) as the group of linear automorphisms {x a x~ι\ a e Hix)

(resp. H*(x), H'ix))}. Then ίjix) (resp. Ίf(x), ϊ)'(x)) is represented on TPKM)

as x ί){χ) x~ι (resp. x f):;:(#) JC"1, x ί)'!^) Λ:""1). From Lemmas 4 and 10,

we get the following

LEMMA 11. x ίj'ix) x~ι is spanned by the values at β = π x of all the

tensors of the form

R(X9 Y), FriR{X, Y), . . , PY, . . . ΓrίR(X, 7), . . . .

THEOREM 6. The Lie algebra x \)'{χ) x~ι of the infinitesimal holonomy

group reβresented on the tangent space Tp\M) (p-πmx) is spanned by the

values at p of all the tensors of the form

R{X, Y), (FRHVi X, y), . . . , {F{k)R){Vu . . . , Vk I X, Y), . . - ,

where X> Y, VΊ, . . . , Vk>, . . . are arbitrary vector fields on M.

The successive covariant differentiatials VR, . . . , V{k)R of /? can be ex-

pressed as follows:

I, v2 x, Y) = rri (r/?(Fi x, Y))

- Γ/?(ΓΓ, Fi ^, y ) - ?R( Vι Fr2X, Y) -R(Vι\ X, Fr2 Y)

From (6.10), and from Lemma 11, we obtain the theorem.

Remark. In coordinates (x\ . . . , xn), set Xi-d/dx*. Then FA;^/ can be

expressed as
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(rik)R)(Vi, . . . , Vk I X, Y) is expressed as follows:

(Fik)R)(Xjχ) . . . , Xh Xiy Xι) = ΣFyfc...Λ#i/Vtf Λ p ® X«.
a, p

Theorem 6 is nothing but Theorem 5 of Nijenhuis [6].

7. Cartan connections

In this section, we shall show how the infinitesimal holonomy group of a

Cartan connection can be expressed on the reduced bundle. However, we do

not give here in detail the notion of a Cartan connection (see Ehresmann [3],

Kobayashi [5]).

The structure group of a differentiate principal fiber bundle P=P{M, G)

is said to be reducible to a Lie subgroup G' of G if there exists a differentiate

principal fiber bundle P' = P'(M, GΊ with structure group Gf and a differentiate

mapping ψ of P ' into P such that ψ(x a) = ψ(x) a ( β £ G', # e P') and ^ is

base-preserving [10]. In this case, P1 with together φ is called the reduced

bundle and Pf can be considered as a submanifold of P (so that we consider the

set Pf as a subset of P by the injection φ).

We shall consider in this section only the case where the structure group

of P is reducible to a closed subgroup G1 of G such that dim G/G = dim M, and

we denote by (P'f ψ) the reduced bundle. Then a connection on P is called

Cartan connection if the restriction α/ = φ* α> of its connection form ω to P'

satisfies the condition:

If ωx(X)=0 ( l e W ? ' ) ) , then X=0.

Such a connection exists if and only if the associated bundle E(M, F, G')

of P is "so«<& <z Λf," where F=G/G' and (7 acts on F to the left [3], [51

For a Cartan connection, let us denote by Ω1 the restriction φ* Ω of the

curvature form Ω to P'.

Take a subspace m of 9 such that 9 = Q' = m (direct sum as vector spaces)

where 9' is the subalgebra corresponding to the identity component of G'. For

any vector field X on M we are denoting by X* the lift of X to P. We shall

also denote by Xf the vector field on Pf such that, at each point x of P ;,

ωi(Xi)Gm and πx(Xx) = X*.x. Xf is uniquely determined, because πx is a
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linear isomorphism of the vector,space {Y e Tx{Pf) | ωx(Y) G rn} onto T^.X{M).

LEMMA 12. Let f be a ^-valued function on P of type ad(G). Then, for

any vector field V on M, the function V*f is also of type ad{G), and its restric-

tion to Pf is equal to the function

where f denotes the restriction of f to Pf.

Proof Since F* is right invariant on P, V*f is of type ad{G) by iii) of

Lemma 3. At any point x of P\ we have

Vt = hx Vt - hx V'x

because π.x Vx = πx Vx= V^x. Hence the vector Vx = Vi - F ί is vertical in

P. By i) of Lemma 3, we have

Vx-f= -Zωx(Vx),f(x)l

Since Vx is horizontal and since Vx is tangent to P'y we have

ωx(Vx) = ωx(Vx)=ω'x(Vx).

Therefore, at each point x of Pf,

V* -f=V'x-f-Vx'f

This proves our lemma.

Using the above notation, Ifix) of a Cartan connection can be calculated

on the reduced bundle from the following

THEOREM 7. The Lie algebra fy(x) of the infinitesimal holonomy group of

a Cartan connection at a point x of the reduced bundle P1 is spanned by the

values at x of all the functions f(k) on Pf obtained in the following way:

For any vector fields X, Y, VΊ, . . . , Vk, . . . on M, define ^-valued func-

tions f{k) on P! successively by

/ ( 0 ) = # '(* ' , Y')

fίl)=V[-f{0) + lω>(V[),fml

= VΊΩ'iX', Yf)ίω'(V[), Ω'{Xf

y Y')l . . .
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Proof. Remark first that, at each point x of P'y we have

Ω'ΛX1, Y') = S2X(X*, r ί ;),

since hx X[= hx X;, hx Ϋx = hx Yί . This shows that / 0 ) - Ωf(X>, Y') is

just the restriction to P ' of the function Ω(X*\ Y'). Applying Lemma 12 to

the function Ω{X'\ Y*), we see that / ( 1 ) is also the restriction to P ' of

F ^CY" 1 ' , Y*). In the same way, we see that fκk) is the restriction to Pf of

Vk . . . F*£(X", Y*) which is a β-valued function on P of type ad(G). This

proves the Theorem.

Remark. In general, the vector field X' is not right invariant (for instance,

in the case of conformal connections). However, from the above proof we see

that the function f{k] defined as above are independent on the choice of m such

that fl = vV + m.

In particular, in the case of aίrlne connections, the generators of the non-

homogeneous holonomy groups in the above theorem can be given by certain

expressions involving the torsion and curvature tensors on the base manifold.

We hope to take up this problem at another occasion.
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