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Iron oxide in the form of magnetite (Fe3O4) is the primary catalyst for the high temperature (310–
450oC) water gas shift (WGS) catalyst [1]. In use, pure Fe3O4 catalysts rapidly lose activity due to a 
reduction in surface area caused by sintering. Hence a structural stabilizer, usually Cr2O3, is added to 
industrial WGS catalysts. Various Fe3O4/Cr2O3 catalyst compositions have been tried, and whilst 
14wt% Cr2O3 produces the greatest resistance to sintering, a concomitant reduction in activity per 
unit area means that an 8wt% Cr2O3 addition has been accepted as a compromise. Such stabilized 
catalysts can operate for 2-10 years before sintering produces a reduction in activity sufficient to 
require catalyst replacement. Despite the industrial significance of the WGS catalyst, some 
controversy still exists over how the stabilization effect is achieved. Some researchers [2] believe the 
stabilization is effected by discrete Cr2O3 grains that physically block the sintering of neighbouring 
Fe3O4 particles. Others [3] insist that the chromium exists in solid solution in the Fe3O4 lattice, 
although they have not proposed a mechanism by which stabilization occurs. In an attempt to resolve 
this controversy, we have studied a freshly reduced Fe3O4/Cr2O3 catalyst by electron diffraction, 
HREM, STEM-EDS and X-ray photoelectron spectroscopy (XPS).  

The Fe2O3/Cr2O3 catalyst precursor was prepared by co-precipitation from a solution of mixed metal 
nitrates. Reduction of the precursor to the freshly activated Fe3O4/Cr2O3 catalyst (42m2g-1) was 
carried out according to the procedure described by Lywood and Twigg [4]. The nominal bulk Cr:Fe 
ratio in the catalyst was designed to be 8:92, however XPS analysis yielded a Cr:Fe ratio of 23:27 
suggesting a significant surface enrichment in Cr.   

The Fe3O4/Cr2O3 catalyst (Fig.1) was found to consist of dense agglomerates of irregular crystallites 
ranging between 10-60nm in size. All the rings in the corresponding selected area electron pattern 
could be attributed to the Fe3O4 phase. A typical lattice image from the [1-14] zone axis of a 
magnetite crystallite is shown in Fig.2. A careful survey of the sample by STEM-EDS analysis failed 
to identify any discrete Cr2O3 grains suggesting that the physical barrier model is not correct. Bulk 
analyses where the probe was rastered to encompass a large area of sample gave a Cr content of 
8.2±0.8wt%, which is close to the nominal value of 8wt%. Point analyses were also taken through 
the centre and close to the very edge of 100 crystallites using a 1nm probe. A summary of the results 
obtained is presented in Fig.3. There is a considerable variation in Cr content from grain-to-grain in 
the material and there is a clear difference in the Cr distribution from the centre-to-edge of individual 
grains (Fig.4). The average centre composition was 6.3±2.3wt% whereas the average edge 
composition was 10.7±4.8wt%. This difference directly confirms the existence of a Cr surface 
segregation effect. No specific correlations could be found between the measured centre and edge 
compositions of individual grains (i.e. a low Cr content at the interior of a particle did not 
necessarily mean a high Cr content at the edge).  
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The Cr3+ ion can exist in solid solution within the magnetite lattice. The d3 electron configuration 
gives it a maximum crystal field stabilization energy factor (∆=1.2) meaning that it will exclusively 
occupy octahedral interstices in the oxygen sub-lattice. The inhomogeneous Cr distribution noted (i) 
from grain-to-grain and (ii) within individual grains occurs as a consequence of the co-precipitation 
procedure employed, since the different metallic species involved will come out of solution over a 
range of pH values. A feasible explanation for the stabilization of Fe3O4 by Cr3+ may be invoked by 
taking the Cr surface segregation effect into account. The melting temperatures of Cr2O3 and Fe3O4 

are 2603K and 1870K respectively. By virtue of the stronger Cr-O bond, the melting point of a Fe-
Cr-O oxide will progressively increase with increasing Cr content. The Cr enriched surface skin that 
encapsulates each catalyst grain, being more thermodynamically stable than the iron-rich core, will 
thus very effectively reduce ion diffusion and sintering effects at the WGS reaction temperature.  
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Figure 3 Histogram showing Cr content 
distribution measured at centre and edge of 
individual catalyst particles. 

Figure 4 Cr content measured as a function 
of position across the single Fe3O4/Cr2O3 

catalyst particle. 

Figure 2 [1-14] HREM image of a single 
Fe3O4/Cr2O3 grain. 
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Figure 1   Bright field micrograph of  
the Fe3O4/Cr2O3 WGS catalyst 
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