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Abstract

Background: Real-world data, such as administrative claims and electronic health records, are
increasingly used for safety monitoring and to help guide regulatory decision-making. In these
settings, it is important to document analytic decisions transparently and objectively to assess
and ensure that analyses meet their intended goals. Methods: The Causal Roadmap is an
established framework that can guide and document analytic decisions through each step of the
analytic pipeline, which will help investigators generate high-quality real-world evidence.
Results: In this paper, we illustrate the utility of the Causal Roadmap using two case studies
previously led by workgroups sponsored by the Sentinel Initiative – a program for actively
monitoring the safety of regulated medical products. Each case example focuses on different
aspects of the analytic pipeline for drug safety monitoring. The first case study shows how the
Causal Roadmap encourages transparency, reproducibility, and objective decision-making for
causal analyses. The second case study highlights how this framework can guide analytic
decisions beyond inference on causal parameters, improving outcome ascertainment in clinical
phenotyping. Conclusion: These examples provide a structured framework for implementing
the Causal Roadmap in safety surveillance and guide transparent, reproducible, and objective
analysis.

Introduction

The Food and Drug Administration’s (FDA) Sentinel Initiative is a program for actively
monitoring the safety of regulated medical products [1,2]. The Sentinel Initiative uses
routinely collected healthcare databases generated from insurance claims and electronic
health records (EHRs) to supplement randomized clinical trials to provide evidence on the
real-world effectiveness and safety of pharmaceutical drugs and other FDA-approved
products. However, extracting valid evidence from these data sources to help guide
regulatory decisions remains challenging due to bias in causal estimates stemming from
nonrandomized treatments and poorly measured information on patient characteristics and
clinical features.

In this paper, we illustrate the application of the Causal Roadmap in two case studies that
were previously led by workgroups sponsored by the Sentinel Initiative. Each case example
focuses on different aspects of the analytic pipeline for drug safety monitoring. In the first case
study, we show how the Causal Roadmap can be used to promote transparency, reproducibility,
and objective decision-making for causal analyses. In the second case study, we illustrate how
the principles of the Causal Roadmap extend beyond causal parameters and can be used to guide
analytic decisions for clinical phenotyping for improved outcome assessment.

Each case study was previously conducted and further details can be found on the FDA’s
Sentinel webpage [3]. It is important to emphasize that the purpose here is not to provide a
thorough overview of all decisionsmade throughout the analytic process for each study, or argue
that all analytic decisions within each example are optimal. Instead, our goal is simply to give a
high-level overview of how the Causal Roadmap could be applied to settings similar to the
previously conducted case examples described here.
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Case Study 1: Enhancing Causal Inference in the Sentinel
System: Targeted Learning for Large-scale Covariate
Adjustment in Healthcare Database Studies

Confounding remains a primary challenge in real-world evidence
(RWE) studies for drug safetymonitoring. During the early periods
of post-market approval, some important confounding factors are
often unknown to investigators or not directly measured in these
data sources. To improve confounding control in these settings,
data-driven algorithms can be used to supplement investigator-
specified variables by leveraging the large volume of information in
these data sources to generate and identify features that indirectly
capture information on unmeasured factors (“proxy confound-
ers”) [4,5]. However, there continues to be an increasing number
of methods available for large-scale causal inference with many
variations in how these tools can be applied for high-dimensional
proxy confounder adjustment in healthcare databases. Various
methods rely on different assumptions that hold in different cases,
and it is unlikely that any single approach is optimal across all
databases and research questions. Consequently, a fundamental
challenge when estimating causal effects in healthcare databases is
making objective decisions between alternative analytic approaches
while tailoring analyses to the study at hand.

In this case study, we applied the Causal Roadmap to an
observational study to assess the impact of nonselective nonste-
roidal anti-inflammatories (NSAIDs) vs opioid use on acute kidney
injury (AKI). We show how the Causal Roadmap can help to
improve transparency, reproducibility, and objective decision-
making across all aspects of the analytic pipeline. We give particular
focus on illustrating the use of outcome-blind simulations to
maintain objectivity during the model selection process to tailor
analytic decisions for data-driven large-scale covariate adjustment to
the given study.

Step 1a: Specify the Study Question

We are interested in understanding the short-term (6-month)
impact of initiating NSAID treatment on AKI relative to initiating
treatment with an opioid in patients diagnosed with osteoarthritis.
NSAIDs and opioids are among the most commonly used
pharmacotherapies for pain in patients with osteoarthritis and
the safety of these alternative analgesics on AKI is unclear [6].
Confounding was the primary concern in this study, and we were
interested in applying methods for large-scale covariate adjust-
ment to evaluate if these tools are likely to improve confounding
control when estimating the causal effect in this setting.

Consistent with the ICH E9(R1) attributes of a statistical
estimand, we define the following:

• population of interest: Medicare beneficiaries linked to EHR
data from the Research Patient Data Registry (RPDR) at
Mass General Brigham (the largest healthcare provider in
Massachusetts). The study population was restricted to
patients who had continuous enrollment in Medicare parts
A, B, and D in the 365 days prior to treatment initiation and
were diagnosed with osteoarthritis (defined as having a
diagnostic code for osteoarthritis in the 365 days prior to
treatment initiation).

• study treatment: The treatment was defined as filling at least
one prescription for an NSAID after a 365-day washout
period of no use (no prescription fill) for any opioid or
NSAID (new-user design) [7,8]. Similarly, the comparator

groupwas defined as filling a prescription for an opioid after a
365-day washout period having no prescription fill for any
opioid or NSAID.

• outcome: The outcome was defined as any diagnosis for AKI
within 6 months of follow-up. The outcome was identified
using a previously developed algorithm for identifying AKI in
administrative claims data [9].

• summary measure: 6-month risk difference.

Step 1b: Specify Causal Model and Causal Parameter

In this example, we chose to model the effect of initiating the
treatment vs comparator on the 6-month risk of AKI (“point-
treatment” effect) [10]. We chose to target the intention-to-treat
(ITT) effect because the assumptions for identification for this
causal parameter are less strict compared to a per-protocol analysis
where individuals are censored at treatment discontinuation/
switching. In administrative healthcare databases, reasons for
discontinuation and switching are often not well measured,
making identification of a per protocol causal parameter more
challenging.

The causal model for a point treatment effect is presented in the
directed acyclic graph (DAG) shown in Fig. 1. It is important to
note that the causal model is based on underlying causal
assumptions which cannot be empirically verified (and therefore
require subjective decisions by investigators). This case study is
focused primarily on evaluating different methods of confounder
adjustment. The simplified causal model in Fig. 1 also emphasizes
the possibility of confounding over other issues; for example, in the
above DAG, we assume that there is no selection or collider bias,
outcome misclassification, or differential censoring by treatment
group after adjusting for W .

It is important to emphasize that investigators can disagree on
the merits of the chosen causal model (DAG). The purpose of the
Causal Roadmap is to help investigators be explicit and transparent
in the assumptions made by the causal model so that investigators
can think carefully about the plausibility of those assumptions and
the conditions necessary for identification of the causal parameter
defined in terms of the chosen causal model.

Once the causal model is specified, the causal parameter can
then be defined. In this example, we defined the causal parameter
as the 6-month risk difference for the outcome. More formally, we
define YA= 1, C= 1 as the potential outcome for individuals had they
received treatment NSAID (A = 1) and not been censored (i.e.,
outcome is observed for each individual or C= 1). Similarly, we
define YA= 0, C= 1 as the potential outcome for individuals had they

Figure 1. Directed acyclic graph (DAG) showing a simplified causalmodel for the case
example comparing the effect of initiating nonselective nonsteroidal anti-inflamma-
tories (NSAIDs) vs opioid use on acute kidney injury (AKI). In this causal model, A
represents a binary treatment, W represents a high-dimensional set of confounders
and/or proxies for confounders, Y represents a binary outcome, and C is a censoring
indicator representing whether or not the outcome was observed or not observed
(C= 1 indicates outcome was observed). In this causal model, wemake the simplifying
assumption that censoring is nondifferential across treatment groups so that the only
bias for the effect of treatment (A) on the outcome (Y) is confounding by W.
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received the comparator drug (opioid) and not been censored. Our
causal parameter is given by ψcausal= E(YA= 1, C = 1)− E(YA= 0, C= 1).

Step 2: Define Observed Data and Decisions for Cohort
Construction

Our dataset consists of linked Medicare-EHR data between the
years 2007 and 2017. We followed the “Target Trial” framework
when constructing our cohort to emulate components of a
randomized trial using observational data [11,12]. We defined
treatment groups using the “new-user” design as discussed
previously. This design for constructing treatment groups helps
avoid bias by having a clear time frame for treatment initiation and
follow-up as in randomized clinical trials. By having a clear time
frame for the start of follow-up, the new-user design helps to avoid
biases caused by conditioning on variables on the causal pathway
and avoids comparing current (prevalent) users to new-users of the
treatment and comparator groups of interest [8].

After identifying new-users of the treatment and comparator
groups, we restricted the cohort to individuals diagnosed with
osteoarthritis. This was defined as having a diagnostic code for
osteoarthritis in the 365 days prior to treatment initiation. After
restricting to individuals with osteoarthritis, the new-user cohort
included 21,343 individuals with 7,767 (36.4%) individuals
initiating NSAIDs, 13,576 (63.6%) individuals initiating Opioids,
and 899 (4.2%) individuals having an outcome event. Baseline
covariates available for adjustment consisted of 91 investigator-
specified variables and an additional 14,938 features available for
proxy adjustment. These additional proxy features were derived
from all claims codes and codes from EHR structured data after
screening codes with a prevalence < 0.001.

Steps 3 and 4: Assess Identifiability and Define the Statistical
Estimand

We defined the statistical target of estimation as the marginal risk
difference, ψobs= E[E(Y* | C= 1, A= 1,W)]− E[E(Y* | C= 1,
A= 0,W)], where C= 0 indicates the outcome was censored
and C = 1 indicates it was observed in the data. ψobs is equivalent
to ψcausal under the following set of identifying assumptions:
(1) consistency, (2) conditional exchangeability (no unmeasured
confounding or selection bias), and (3) positivity.

If we are willing to make an additional assumption of
uninformative right censoring (MCAR), we can define the
statistical estimand as ψ 0obs= E[E(Y|A=1,W)|C=1] − E[E(Y |
A= 0,W)|C= 1], asserting that the statistical parameter in the
subpopulation where the outcome is observed is equivalent to the
statistical parameter in the full study population.

Before proceeding with estimation of the target parameter, it is
important to consider the plausibility of each assumption
necessary for identification of the causal parameter. Diagnosis
codes for AKI are known to be highly sensitive and specific, so the
consistency assumption is likely to be satisfied. It is possible (and
even likely) that conditional exchangeability is not fully satisfied,
because some degree of baseline confounding is likely due to
unobserved factors and there may be some selection bias due to
informative censoring. However, given the short follow-up, less
than 4% of study participants were censored due to death or
disenrollment, and censoring was similar in each study arm. To
simplify analyses for this case study focused on confounder
adjustment, and because reasons for censoring are often not
captured well in administrative healthcare data, we were willing to
make the assumption of uninformative right censoring.

Step 5a: Choose a Statistical Model and Estimator

Estimation of ψ 0obs was carried out on the dataset omitting
observations where outcomes were censored due to loss-to-follow-
up (<4% of observations). As discussed previously, while this can
induce a selection bias, we were willing to assume that the impact
was negligible due to the low degree of censoring. We used targeted
minimum loss-based estimation (TMLE) to estimate the average
treatment effect in the population. For the outcome model used
within TMLE, we fit a Lasso regression to optimize cross-validated
prediction. However, in this study, outcome events were rare, and it
was difficult to fit large-scale models for the outcome. Therefore, for
all TMLE models, we focused on large-scale covariate adjustment
through modeling the treatment assignment (the propensity
score [PS]).

When modeling the PS within the TMLE framework, we
compared 8 Lasso-based PS models for large-scale covariate
adjustment. We briefly outline PS Models 1 through 8 below:

• Model 1: Traditional Lasso: Logistic regression model using
L1 regularization (Lasso), where the loss function for
choosing the lambda tuning parameter (degree of regulari-
zation) is based on minimizing the out-of-sample (cross-
validated) predictive performance for treatment [13].

• Model 2: Outcome Adaptive Lasso: We applied a variation of
the outcome adaptive lasso proposed by Shortreed & Ertefaie
[14]. Our variation consisted of first fitting a lasso model for
the outcome and identifying all variables whose coefficient
was not shrunk to zero. We then fit an Adaptive Lasso model
for treatment assignment to allow for specification of
different penalization weights for different variables. All
variables whose coefficient in the outcome lasso model was
not shrunk to zero were forced into the treatment Lasso
model by assigning them a penalization weight of zero. All
other variables were penalized similarly to Model 1 (based
on optimizing cross-validated predictive performance for
treatment).

• Model 3: Collaborative-Controlled Lasso: The collaborative-
controlled lasso is a recently proposed extension of Lasso
regression for purposes of estimating the PS [15]. Instead of
choosing the lambda tuning parameter to minimize cross-
validated prediction for treatment assignment, the collabo-
rative-controlled lasso uses the principles of collaborative
targeted learning to consider a bias-variance tradeoff in the
estimated treatment effect when selecting the degree of
regularization (lambda tuning parameter) [15].

• Model 4: Collaborative-Controlled Outcome-Adaptive Lasso:
This approach combines Collaborative Learning with Model
2 described previously. The first step inModel 4 is the same as
Model 2 (variables selected by the outcome Lasso are forced
into the treatment model). However, when fitting the
treatment adaptive lasso model in the second step, Model
4 uses collaborative targeted learning to select the regulari-
zation tuning parameter instead of using cross-validated
prediction for treatment.

• Models 5 through 8: Models 5 through 8 are equivalent to
Models 1 through 4, except that they incorporate cross-fitting
when modeling treatment assignment and assigning pre-
dicted values for the propensity score. Cross-fitting (sample
splitting) has been recommended when using data-adaptive
(machine learning) algorithms for estimating nuisance
models for causal inference (e.g., the PS and outcome

Journal of Clinical and Translational Science 3

https://doi.org/10.1017/cts.2023.632 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2023.632


model) [16–18].Here, we only considered application of cross-
fitting to the PS model to reduce problems of nonoverlap
caused by modeling spurious associations in the PS.

Outcome-blind simulations: In order to choose between the
alternative models described above, we need an objective
framework. The use of synthetically generated datasets that
combine real data from the given study with simulated causal
effects has become increasingly popular to help tailor analytic
choices for causal inference [19–23]. Frameworks for generating
synthetic datasets have largely been based on use of the parametric
bootstrap [19]. Here, we applied a similar simulation approach to
provide objective empirical guidance for model selection. Briefly,
we bootstrapped subjects from the observed data structure and left
associations between baseline covariates unchanged. We then
injected causal relations between a subset of variables to simulate
treatment assignment as well as the outcome. This allowed us to
generate data with a known treatment effect while maintaining
some of the complexity of the observed data structure to compare
statistical properties of different analytic approaches. The goal of
these outcome-blind simulations is to help investigators tailor
analytic decisions to the given study while maintaining objectivity
during the analytic process.

Step 5b: Evaluate Study Results

Results for Outcome-Blind Simulations: In Figure 2, we present
outcome-blind simulation results for the empirical study. Figure 2
shows that the collaborative controlled extensions of the Lasso and
Outcome-Adaptive Lasso when using cross-fitting (Models 7 and
8) had similar performance, with both these approaches out-
performing the other Lasso models in terms of bias (Plot A), MSE

(Plot B), and coverage (Plot C). Overall, the collaborative
controlled outcome adaptive lasso with cross-fitting (Model 8)
performed best when implemented using TMLE, with a slight
incremental benefit over Model 7.

Empirical Study Results: For the outcome-blind simulation
study, Model 8 performed best in terms of reducing bias in the
estimated treatment effect. Therefore, we applied this model to
the empirical study for large-scale covariate adjustment. The
unadjusted 6-month risk difference comparing NSAIDS vs
opioids on acute kidney injury was 0.024 (0.018, 0.030). After
large-scale covariate adjustment using TMLE with a PS that was
estimated using the collaborative-controlled outcome-adaptive
Lasso with cross-fitting (Model 8), the risk difference was 0.005
(−0.027, 0.038).

Step 6: Specify a Procedure for Sensitivity Analysis

Causal bias is the gap between the statistical and causal parameter
that can arise when any causal assumptions are violated. A
nonparametric sensitivity analysis illustrates how departures
from causal assumptions would impact study findings [24]. The
sensitivity plot shows the shift in point estimates and 95%
confidence interval bounds under a range of gap sizes (Fig. 3).
Gap size can equivalently be expressed in units that facilitate a
basis for comparison, such as effect size units (δ) or relative to
the bias adjustment due to measured confounders (Adj units).
Bounds on the plausible gap size can be obtained from external
knowledge and through the use of negative controls. The
G-value is the size of the minimal causal gap that would negate
the study finding [25]. In our example, the G-value = 0.027 on
the risk difference scale.

Figure 2. Outcome-blind simulation results for study 1.

4 Williamson et al.

https://doi.org/10.1017/cts.2023.632 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2023.632


Case Study 2: Scalable Prediction of Safety Outcomes
Using Electronic Health Record Data

Safety studies are run within Sentinel only when the ARIA (Active
Risk Identification and Analysis) system is deemed sufficient to
answer the safety question at hand, based on the available data and
methods [26,27]. The Sentinel distributed database primarily
includes claims data from 17 Sentinel data partners [28,29]; some
of these data partners also provide EHR data. ARIA sufficiency
judgments rely on understanding whether exposure to the study
drug, comparator, and health outcome of interest (HOI) can be
accurately assessed from these observational data. If ARIA is
deemed insufficient, then FDA may require the sponsor to run a
postmarketing study.

The end goal of a Sentinel safety surveillance study is often to
determine if a medical product is causing unintended adverse
effects. However, for some health outcomes of interest, it may be
difficult to identify the health outcome of interest from
information in claims data due to a lack of key information.
In the remainder of this section, we discuss how principles
underlying the Causal Roadmap can guide the use of machine
learning to identify an outcome from data – a classification
activity known as “phenotyping” in the clinical informatics
literature [30].

A distinction must be made about the phenotyping process
(which is fundamentally a prediction problem) and the down-
stream use of the phenotype (e.g., estimating prevalence, to satisfy
cohort inclusion criteria, outcome in a causal inference problem).
Here we focus on identifying case status to be used as a binary
outcome in a downstream retrospective safety study. Publications
have shown that nondifferential misclassification of the outcome
biases the estimate of an additive treatment effect, but not a relative
risk (RR) [31]. However, using a classifier that has a low positive
predictive value (PPV) will bias a RR estimate, while using a
classifier that has a low sensitivity will increase the variance of the
RR estimate. Thus, high PPV and high sensitivity are desirable
properties. Although phenotyping is a predictive modeling task
rather than a causal inference task, a variant of the Causal
Roadmap can serve as a guide.

We now discuss several steps from the Causal Roadmap that
can serve as a guide throughout a prediction modeling task. Our
example phenotyping task is to predict anaphylaxis using
structured medical claims and EHR data (both structured data
and unstructured text, with natural language processing methods
used to extract information from the unstructured text); the results
of this analysis were published by Carrell et al. [32] who followed
the steps that we highlight below.

Step 1a: Specify the Study Question

Anaphylaxis is a rare, though life-threatening, systemic allergic
reaction that occurs shortly (minutes to hours) after contact with
an allergy-causing substance (e.g., food, medication, or insect bite)
[33]. Anaphylaxis diagnosis codes are a poor proxy for true
anaphylaxis events. Approximately 1/3 of medical encounters for
which an anaphylaxis code exists are not true cases of anaphylaxis
[34]. Carrell et al. [32] developed a phenotyping algorithm using
claims data augmented with labs and EHR data with the goal of
improving the PPV for anaphylaxis without sacrificing sensitivity.

For our classification task, we will define the phenotype as an
indicator Y of the predicted probability of having an anaphylaxis
event above a threshold. In terms of the full counterfactual data, the
parameter of interest for the prediction task is ψ* = E(Y∣X), where
E denotes the expectation and X contains measures of the relevant
features guided by a downstream use of the phenotype as the
outcome in a future safety study.

Step 1b: Specify the causal Model

Although phenotyping is a prediction task rather than a causal one,
we will keep its potential downstream use as an outcome in a
retrospective study in mind when choosing features to consider as
candidate predictors. Consider a generic-directed acyclic graph
(DAG) for such a study, where A is an indicator of treat-
ment (Fig. 4).

Baseline covariates,W, are ideal candidate features to include in
the prediction model. Claims and EHR data connected to the
diagnostic medical encounter are central to recognizing the

Figure 3. Estimated effects and 95% confidence intervals from a sensitivity analysis (intervals in gray) showing how departures from the assumption of exchangeability (no
unmeasured confounding, informative censoring, etc.) would impact the calculated risk difference and 95% confidence interval (interval in black).
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occurrence of the outcome event. Eachmedical encounter offers the
opportunity to capture information on diagnosis and prescription
codes, symptoms, lab orders, lab values, and time-varying patient
characteristics. The DAG in Fig. 4 illustrates that if exposure (A) leads
to differential capture of these covariates, then their inclusion in a
predictive model could bias the downstream effect estimate (due to
inducing collider bias). A second possible source of bias is differential
outcome capture by exposure status. Both may affect the interpre-
tation of the downstream causal effect estimate by conflating the effect
of preplanned monitoring with the effect of the study drug. These
issues are unlikely to arise in our study since anaphylaxis typically
occurs within minutes or hours after exposure to the allergy-causing
substance, and since the focus below is on identifying anaphylaxis
cases rather than estimating a causal effect of a study drug.

Step 2: Define Observed Data

The study population is defined as Kaiser PermanenteWashington
(KPWA)members who had a qualifying health encounter between
October 1, 2015 and March 31, 2019. KPWA is an integrated-care
delivery organization operating in Washington State and northern
Idaho. Qualifying health encounters consisted of (a) an emergency
department or inpatient encounter with an anaphylaxis diagnosis
and (b) an outpatient encounter with an anaphylaxis diagnosis and
(on the same day from any setting) either a diagnosis code for one
of several conditions that often co-occur with anaphylaxis or a
procedure code for one of several procedures that are often used to
treat anaphylaxis [32,35].

Clinician resources limited the number of charts reviewed to
ascertain gold standard outcomes. The analytic dataset consisted of
239 people. Medical records for each person’s qualifying encounter
were reviewed to determine whether potential events met the
National Institute for Allergy and Infectious Disease clinical
criteria for anaphylaxis. Of the 239 people, 154 were found to have
a validated anaphylaxis event (Y= 1), while 85 were found to not
have a validated anaphylaxis event (Y= 0). The covariates, X,
include 159 potential predictors, including 43 structured covariates
(e.g., demographics, potential cause of anaphylaxis, and history of
allergic reactions obtained from the Sentinel distributed database)
and 116 natural language processing (NLP)-derived covariates
from the KPWA EHR. In the context of Fig. 4, the demographic
variables are W (the baseline covariates), there is no exposure of
interest, and the remaining variables are obtained during interim
or diagnostic medical encounters. Domain knowledge informed
the selection of features likely to discriminate between cases and
non-cases within the population satisfying the inclusion criteria.

Step 3: Assess Identifiability

In this case study, the purpose is to predict an observed outcome
given covariates, rather than to make causal inference. We do not

consider a counterfactual outcome – in other words, the observed
data are identical to the ideal data necessary to answer the question
of interest. While this step is not relevant to the immediate
purpose, it is relevant for downstream causal analyses using
predicted outcomes. For example, maximizing PPV may reduce
bias due to misclassification, while maximizing sensitivity may
increase power to detect an effect.

Step 4: Define the Statistical Estimand

The statistical estimand is ψ* = E(Y|X).

Step 5: Choose a Statistical Model and Estimator

Any estimator of a prediction function (equivalent to a conditional
mean function, our statistical estimand) is constrained by the
amount of information in the data, which is governed by the
sample size (for continuous outcomes) or effective sample size (the
number of observations in the minority class, for binary outcomes)
[36]. To avoid overfitting to the data, Carrell et al. [32] first applied
outcome-blind dimension reduction techniques that reduced the
feature set to Z, consisting of 132 covariates. Prediction models
were fit using structured features only and structured and NLP-
derived features, to determine if the NLP-derived features
conferred a benefit to anaphylaxis identification.

Rather than focusing on a single regression technique, Carrell
et al. [32] evaluated 25 parametric and machine learning
algorithms, using cross-validation to estimate the cross-validated
area under the receiver operating curve (cvAUC). The first 24
consisted of all combinations of eight base learners (logistic
regression, elastic net, two variants of gradient boosted trees, two
variants of Bayesian additive regression trees (BART), and two
neural network architectures), each coupled with three prescreen-
ing algorithms (retain all, partitioning around medoids, and
Lasso). The final algorithm was the Super Learner, an ensemble
method defined as an optimal weighted combination of the
individual candidate algorithms [37].

For each prediction function, Carrell et al. [32] estimated both
cvAUC and cross-validated estimates of classification performance
metrics at candidate classification thresholds to illuminate the
tradeoffs between PPV and sensitivity.

Results

Carrell et al. [32] used the Causal Roadmap principles throughout
their analysis, which enabled a clear comparison of results across a
variety of prediction techniques and input feature sets. They
showed that the use of machine learning far exceeded logistic
regression in predicting anaphylaxis in high-dimensional data, and
combining NLP-derived features with structured data conferred
additional benefits. The cvAUC for amain terms logistic regression
model using structured data only was 0.58, while the prediction
function produced using machine learning trained on all available
features was 0.70.

The authors also evaluated cvAUC for each of the models
developed using the KPWA data on data from Kaiser Permanente
Northwest (KPNW), an integrated-care delivery organization in
northwest Oregon and southwest Washington State, collected
using identical methods to the KPWA data. They found that there
was a modest degradation in prediction performance in this new
population.

The maximum PPV observed at KPWA was 86%. The cutpoint
of predicted risk yielding a PPV of 78.7% at KPWA yielded a

Figure 4. An example directed acyclic graph (DAG) showing a possible causal model
relating baseline covariates, W; an exposure of interest, A; an outcome of interest, Y;
and variables captured during interim or diagnostic medical encounters.
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sensitivity of 65.8%; this same cutpoint yielded a 78.1% PPV and
55.6% sensitivity at KPNW. Thus, in a downstream causal analysis,
there will be outcome misclassification. This is a violation of the
consistency assumption that should be considered in any
sensitivity analysis, e.g., the PPV suggests bias in an estimated
RR due to this violation will be mild. However, the relatively low
sensitivity on the external validation data indicates decreased
power to detect a statistically significant effect.

Discussion

Case Study 1 illustrates how the roadmap guides breaking down a
complex problem intomanageable subparts that clearly describe the
chain of reasoning from study question to study finding. This case
study further highlights how the roadmap can help facilitate
transparent and objective analytic decisions throughout the analytic
pipeline, with a specific focus on using outcome-blind simulations to
tailor analytic choices for large-scale covariate adjustment. In post-
market safety analyses, it is often difficult to know the optimal
analytic approach for covariate adjustment. When the optimal
analytic approach is not known, outcome-blind simulations allow
investigators to tailor analytic choices to the study at hand, while
maintaining objectivity during the analytic process by not letting
information on the treatment-outcome association contribute to
decisions on model selection.

In this case study, the outcome blind simulations provided
evidence that the use of collaborative learning when fitting large-
scale PS models can help reduce bias in the estimated treatment
effect. After applying the selected approach to the empirical
example, we found that there was no evidence for increased risk of
AKI between patients taking opioids vs NSAIDs. While hidden
biases—including unmeasured confounding, selection bias, and
misclassification—could impact our results, the sensitivity analysis
suggests that bias would have to be large to explain away the
observed null effect.

Case study 2 illustrates how to apply the Causal Roadmap and
rigorous thinking to a predictive modeling project and a
framework for making performance tradeoffs relative to a final
goal (e.g., estimating a causal effect in a safety study). The Causal
Roadmap encourages documenting the decisions and choices
made during the course of the analysis, and how each can impact
the statistical result, as well as the estimation of the true target
parameter (both in the prediction task in the case study and the
eventual safety analysis).

This case study also highlights the role that outcome
misclassification can play in the estimation of causal effects. While
there were no identification assumptions necessary to estimate the
conditional mean outcome given covariates (our target in the
prediction task), the consistency assumption (that an individual’s
potential outcome given their exposure history is equal to the
observed outcome), which is crucial for causal inference on, e.g., a
causal RR, may be violated if the outcome is misclassified [38,39].
Attention to the consistency assumption can help determine the
prediction performance metrics to focus on when determining if a
phenotyping algorithm (or more generally, an outcome identification
procedure) achieves satisfactory performance to use in the down-
stream safety study.

Conclusion

The Causal Roadmap is a useful tool to guide analytic decisions in
safety studies (including for both causal inference and prediction).

The roadmap guides breaking down a complex problem into
manageable subparts that clearly describe (1) the chain of
reasoning from study question to study finding; (2) which aspects
of the analysis involve observable data and which require
additional assumptions; and (3) sensitivity analyses to assess the
validity of interpretation as a causal effect. By clearly describing
each step in the analytic pipeline, all consumers of safety study
results – including researchers, regulators, policymakers, and other
decision-makers – should be able to determine if the analysis
provides the information required to make subsequent decisions.
Many of the ideas that make up the Causal Roadmap are not new –
it ties together a rich literature and history of making principled
decisions in biomedical and public health research – but it provides
a structured and reproducible approach to analyzing data from
safety studies. Finally, real-world data (including claims and EHR)
is becoming increasingly used in safety studies to help guide
regulatory decision-making. In this context, the Causal Roadmap
can help facilitate transparent documentation and objective
analytic decisions to help key stakeholders better understand
how well analyses using real-world data meet the intended goals.
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