Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T10:37:34.954Z Has data issue: false hasContentIssue false

Bounahasite, Cu+Cu2+2(OH)3Cl2, a new mineral from the Bou Nahas Mine, Morocco

Published online by Cambridge University Press:  09 December 2022

Inna Lykova*
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Ralph Rowe
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Glenn Poirier
Affiliation:
Canadian Museum of Nature, PO Box 3443, Station “D”, Ottawa, Ontario K1P 6P4, Canada
Henrik Friis
Affiliation:
Natural History Museum, University of Oslo, PO Box 1172, Blindern, 0318 Oslo, Norway
Kate Helwig
Affiliation:
Canadian Conservation Institute, 1030 Innes Road, Ottawa, Ontario K1B 4S7, Canada
*
*Author for correspondence: Inna Lykova, Email: ilykova@nature.ca

Abstract

The new mineral bounahasite, Cu+Cu2+2(OH)3Cl2, was found in the oxidation zone of the Bou Nahas Mine, Morocco. It forms pseudo-hexagonal plates up to 3 × 30 × 40 μm in size combined in loose clusters with native copper and paratacamite. The mineral is green with vitreous lustre. The cleavage is parallel to {110}, perfect. Dcalc is 3.90 g/cm3. The infrared spectrum is reported. The composition (wt.%) is Cu2O 23.26, CuO 51.72, Cl 23.36, H2O 8.71, O = Cl2 –5.27, total 101.78. The empirical formula calculated on the basis of 3 Cu atoms per formula unit is: Cu+Cu2+2(OH)2.97Cl2.03. The mineral is monoclinic, P21/n, a = 8.5925(1), b = 6.4189(1), c = 10.4118(2) Å, β = 111.804(2)°, V = 533.17(2) Å3 and Z = 4. The strongest reflections of the powder X-ray diffraction pattern [d,Å(I)(hkl)] are: 7.71(70)($\bar{1}$01), 5.34(22)(011), 3.856(100)(012, $\bar{2}$02), 2.673(36)(022), 2.665 (30)(103) and 2.350 (71)($\bar{1}$23, 301, $\bar{2}$14). The crystal structure, refined from single-crystal X-ray diffraction data (R1 = 0.028), is based on two alternating sheets coplanar to (110): one consists of alternating edge-sharing Cu2+(OH)6 octahedra and two Cu2+(OH)4Cl2 octahedra, whereas the other one is based on Cu+Cl4 tetrahedra forming edge-sharing Cu+2Cl6 dimers.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Owen Missen

References

Brese, N.E. and O`Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Burns, P.C. and Hawthorne, F.C. (1993) Tolbachite, CuCl2, the first example of Cu2+ octahedrally coordinated by Cl. American Mineralogist, 78, 187189.Google Scholar
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species. Springer, Dordrecht. 1726 pp.CrossRefGoogle Scholar
Fleet, M. (1975) The crystal structure of paratacamite, Cu2(OH)3Cl. Acta Crystallographica, B31, 183187.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Grice, J.D., Szymanski, J.T. and Jambor, J.L. (1996) The crystal structure of clinoatacamite, a new polymorph of Cu2(OH)3Cl. The Canadian Mineralogist, 34, 7378.Google Scholar
Hathaway, B.J. (1984) A new look at the stereochemistry and electronic properties of complexes of the copper(ii) ion. Pp. 55118. in: Complex Chemistry. Conference Proceedings, Springer, Berlin.CrossRefGoogle Scholar
Hawthorne, F.C. (1985) Refinement of the crystal structure of botallackite. Mineralogical Magazine, 49, 8789.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K., Burns, P.C. and Vergasova, L.P. (2006) The crystal structure of allochalcoselite, Cu+Cu2+5PbO2(SeO3)2Cl5, a mineral with well-defined Cu+ and Cu2+ positions. The Canadian Mineralogist, 44, 507514.CrossRefGoogle Scholar
Krivovichev, S.V., Hawthorne, F.C. and Williams, P.A. (2017) Structural complexity and crystallization: The ostwald sequence of phases in the Cu2(OH)3Cl system (botallackite–atacamite–clinoatacamite). Structural Chemistry, 28, 153159.CrossRefGoogle Scholar
Lykova, I., Rowe, R., Poirier, G., Friis, H. and Helwig, K. (2022) Bounahasite, IMA 2021-114. CNMNC Newsletter 67. Mineralogical Magazine, 86, 849853.Google Scholar
Mandarino, J.A. (1981) The gladstone-dale relationship; part IV, the compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
O'Keeffe, M. and Bovin, J.-O. (1978) The crystal structure of paramelaconite, Cu4O3. American Mineralogist, 63, 180185.Google Scholar
Pasero, M. (2022) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.main.jp/ [Accessed 09 July 2022].Google Scholar
Pekov, I.V., Zubkova, N.V., Belakovskiy, D.I., Lykova, I., Yapaskurt, V.O., Vigasina, M.F., Sidorov, E.G. and Pushcharovsky, D.Y. (2015) Sanguite, KCuCl3, a new mineral from the Tolbachik volcano, Kamchatka, Russia. The Canadian Mineralogist, 53, 633641.CrossRefGoogle Scholar
Pollard, A.M., Thomas, R.G. and Williams, P.A. (1989) Synthesis and stabilities of the basic copper(II) chlorides atacamite, paratacamite and botallackite. Mineralogical Magazine, 53, 557563.CrossRefGoogle Scholar
Praszkier, T. (2015) Neufunde von gediegenem Kupfer in Kristallen aus Bou N'has, Oumjrane, Marokko. Mineralien-Welt, 5/2015, 6271.Google Scholar
Rowe, R. (2009) New statistical calibration approach for Bruker AXS D8 Discover microdiffractometer with Hi-Star detector using GADDS software. Powder Diffraction, 24, 263271.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Vergasova, L.P., Krivovichev, S.V., Britvin, S.N., Filatov, S.K., Burns, P.C., and Ananyev, V.V. (2005) Allochalcoselite, Cu+Cu2+5PbO2(SeO3)2Cl5 - a new mineral from volcanic exhalations (Kamchatka, Russia). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 134, 7074 [in Russian].Google Scholar
Wells, A. (1949) The crystal structure of atacamite and the crystal chemistry of cupric compounds. Acta Crystallographica, 2, 175180.CrossRefGoogle Scholar
Wyckoff, R.W.G. and Posnjak, E. (1922) The crystal structures of the cuprous halides. Journal of the American Chemical Society, 44, 3036.CrossRefGoogle Scholar
Zheng, X.-G., Yamauchi, I., Kitajima, S., Fujihala, M., Maki, M., Lee, S., Hagihala, M., Torii, S., Kamiyama, T. and Kawae, T. (2018) Two-dimensional triangular-lattice Cu(OH)Cl, belloite, as a magnetodielectric system. Physical Review Materials, 2, 104401.CrossRefGoogle Scholar
Supplementary material: File

Lykova et al. supplementary material

Lykova et al. supplementary material

Download Lykova et al. supplementary material(File)
File 135.5 KB