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STABILITY OF HOLDER ESTIMATES FOR 3
ON PSEUDOCONVEX DOMAINS OF
FINITE TYPE IN C?

S. CHO!, H. AHN anD S. KIM

Abstract. Let € be a smoothly bounded pseudoconvex domain in C? and let
b be of finite type m. Then we prove the stability of Holder estimates for 8
under some perturbations of b£2. As an application, we prove the Mergelyan
property with respect to C*(Q) norms for 0 < a < 1/m.

§1. Introduction

Methods of integral representations for estimating solutions for d-equa-
tion in several complex variables have been successfully used for strongly
pseudoconvex domains [G-L, H, R1]. For weakly pseudoconvex domains
of finite type in C2, Range [R2] has introduced a method for constructing
integral kernels on smoothly bounded pseudoconvex domains. This method
was based on Skoda’s L? estimates [S] for holomorphic solutions h;(p, 2),
7 = 1,2, of the division problem

hl(p7 Z)(Zl ‘pl) + h?(pa Z)(z2 —P2) = 17 pE an z € {L

He has used the detailed geometric analysis of Catlin [C], near a boundary
point py € b2 of finite type to get pointwise estimates of h;(p, z), z € Q,
j =1,2. The result was:

THEOREM. ([R2]) Let Q be a smoothly bounded pseudoconvex domain
in C? of finite type m, and let f € Cé’l(ﬁ) be D-closed. Then for every
n > 0, there is a solution u'™ of du = f on Q which satisfies

1 _
(1.1) [ul? (2) = ulP (w)] < Cyll £l oo (]2 — w7

for z,w € Q. The constant C,, is independent of f.
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Throughout this paper, 2 will be a smoothly bounded pseudoconvex
domain in C2? and b5 is of finite type. In this paper, we will prove that the
estimates in (1.1) are stable under suitable perturbations of the domain .

DEFINITION 1.1. Let 2 C C™ be a smoothly bounded pseudoconvex
domain with C* defining function . By a smooth bumping family of €2
we mean a family of smoothly bounded pseudoconvex domains {Q"}o<i<1
satisfying the following properties:

(1) Q=9

(2) O € Q2 if t; < tg,

(3) {b92}o<i<1 is a C family of real hypersurfaces in C",
(4)

4) the boundary defining functions 7t of Q¢ varies smoothly with respect
tot and r* — r as t — 0 in C* topology.

Remark 1.2. In [Ch], the first author constructed a smooth bumping
family of € if bS) is of finite type. Also he showed that there is a family of
diffeomorphisms {¢:}, ¢+ : @ — QF, such that ¢g :  — € is an identity and
the complex structure on Q! is C* close to the complex structure on 2 as
t— 0.

Now we state our main result:

THEOREM 1.3. Let 2 be a smoothly bounded pseudoconver domain in
C? of finite type m, and let {Q'}o<i<1 be a smooth bumping family of Q.
Then there is tg > 0, depending only on 2, such that for each n > 0 and
t < tq, and for each 0-closed function f* € C’(}’l(ﬁt), there is a solution uﬁn)
of Ou = ft on Q! which satisfies

1_
(1.2) [ (2) = uf (W)| < Oyl ooy 2 = wl 7,
for z,w € Q. The constant C,, is independent of f and t.

For each o > 0, we denote || || o (@) the Holder norm of order o on Q.
Here || [0 (@) s the supremum norm on Q. As an application of Theorem
1.3, we prove the following Mergelyan property:

THEOREM 1.4. Let Q be a smoothly bounded pseudoconver domain in
C2 of finite type m, and let f € H(Q) N C¥(Q), 0 < o/ < 1/m. Then for

each a < o (a=d if &/ =0), there is a sequence {gn} C H(Q) such that

nh_{%o “gn - f“ca(ﬁ) =0.
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§2. Stability of local geometry under perturbations

In this section we will investigate how the local geometry of 2 changes
under small perturbations of the boundary of 2 near a point pg € b2 of
finite type m.

Let 7(z) be a defining function for 2. We may assume that there is a
coordinate functions z;, 2y defined near py such that |38z—r2(z)| > ¢ > 0 for
all z in a small neighborhood U of pg, for some constant ¢ > 0. Let us

fix p € U for a moment. Then we have the following special coordinates
¢=<¢(p) = (¢1,¢)

ProPOSITION 2.1. ([C, Proposition 1.1]) For each p € U, there is a
biholomorphism ®, : C2 — C2, ®,(0) = p, ®(¢) = z, such that the domain
D, = CI);l(Q) has a defining function given by

p(Q)=r0®,(Q) =7(p) +ReCa+ > ajulp)C{Ct

J+k<m
2,k>0

+O(|G ™ + [¢alICD)-

Here ®, and the coefficients a;;(p) depend smoothly on p € U. For
[=2,...,m,and § > 0, set

Ai(p) = max{|a;k(p)| : j + k =1},

and .
T(p,6) = min{(6/A4;(p))7 : 2 <1 <m}.
Since py is of finite type m, it follows that A,,(po) # 0, and hence A,,(p) #
0,forpeU. So . .
62 S7(p6) Sém, pel,

provided that U is sufficiently small. Now consider a smooth bumping
family {Q'}o<i<1 of  with defining functions {r’}. Let us investigate how
the quantity 7(p,§) changes as t (and hence r') varies.

If we apply Proposition 2.1 at the point p with r replaced by rt, then
we obtain another special coordinates ¢ = (t(p) = (¢1,¢2) about p, defined
by the biholomorphic map ¥, : C* — C?, z = WL(¢), ¥L(0) = p, and the
defining function p* = r* o ¥!, for the domain D} = (¥})7(Q2"), has the

form
(2.1) PO =) +ReCat Yo afup)CiT

+O(IG ™ + [¢alICD).
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Note that Wl is given by

\p;:\plo...o\pm’

where
ort -1 u ort
! = - Z2 7T
U (u) = (p1 + w1, p2 + (822 (P)) < 2 o (P)u1>),
v 2 8¥st, y
() = (¢, — EEE(O)Cl)’ v=2,...,m,
and where
(2.2) shii =8, oWl and s} =r".

Therefore \I'; can be written as

V() = (p1+ C1p2 +do(t,p)Ca + Y di(t, p)CF),
k=1

where

1{0rt !
dO(t’p) = 5 (8_22(17)) ; and

(2.3)

1 (ort okt
di(t,p) = % <5Z‘2*(p)> W,lf(()), E=1,2,...,m.

Set r =10 p = o0 5, = 9,9, = \Ilg. To investigate how the quantity
7(p,6) change as t varies, we have to compare a};(p) with a;z(p). The

defining function 7t of Q' can be written as
rt =r4+1tG,
where G is a smooth function of z. Therefore we get

(2.4) pl=rto W =roWl +1(Gol}).

Throughout this paper, we denote by O(1) the bounded functions or

bounded vector valued funtions in U. We need two lemmas.

LEMMA 2.2. For each p € U and for all sufficiently small t > 0, we

have
d;(t,p) = d;(0,p) +tO(1), i=0,1,...,m.
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Proof. By (2.3), we see that for all sufficiently small ¢,
ort -1 or oG .
do(t, —
otn)=3(50) =5 (0t (5o 0))

= a(ﬁﬁ(p)> +tO(1) = do(0,p) + tO(1),

because ] | > ¢ > 0. By induction on v in (2.2), it is easy to show that
st =s, + tO( ). Hence for all sufficiently small ¢ > 0, we get that

r 1 9k
) =5 (2 w) 2%k

T kS
- (&) [f;; <o>+to<1>}

. ~1 gkg
- k|((§zz( )) ?9 :(0)+t(’)(1) = di(0,p) +tO(1),

fork=1,2,...,m. 0

LEMMA 2.3. For each p € U and for all sufficiently small t > 0, we
have

al 1 (p) = a;k(p) +tO(1).

Proof. From (2.1) and (2.4), we can get

. 1 8j+kpt 1 itk o \Il;f)
a',k(p) = 711 = ( = ————_‘—(0) + tO(l).
P kagiect T gtk aciact
Hence it suffices to show that
1 §tkpo ‘lft 1 &tkro \IIO
(2.5) ———P(0) = ———P(0) +tO(1).
lk' C]ack lkl 3Cf(9§1

By Lemma 2.2, we can write \II;, = ‘Ifg + tF, where F' is a smooth vector
valued function on U. Hence we have 7 o U =ro \Ilg + tO(1), and this
proves (2.5).

Forl=2,...,mand 6 > 0, set

(2.6) Aj(p) = max{|aj . (p)| : j + k =1},
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and
(2.7) 7'(p, 8) = min{(8/A}(p))T : 2 < 1 <m}.

Note that there is a constant ¢ > 0 so that |AY (p)| > ¢ > 0 for all p € U.
Then by virtue of Lemma 2.3, we have |Af (p)| > § for all p € U provided
that t is sufficiently small. Hence 7%(p, §) is well defined for all sufficiently
small ¢ and satisfies the relation

1
(2.8) 55% < 7(p,6) < C§m,

for some constant C' > 0 independent of ¢ and p. Also the definition of
7t(p,8) easily implies that if 8’ < §”, then

(51/6//)%7't(p, 6”) S Tt(p, 5/) S (61/511)%71(1), 6”).
Now define

Ri(p) ={¢ € C% [a] < 7'(p,6) and [C2| < 6}

and

Q5(p) = {¥,(¢): ¢ € Ri(p)}-
In the sequal we denote D} any partial derivative operator of the form
3({(?—251” where p + v = [. If we combine the definitions in (2.6), (2.7) and

by virtue of Taylor’s theorem, we can easily get the following derivative
estimates of p.

PROPOSITION 2.4. Let p be an arbitrary point in U. There are inde-
pendent constants C > 0 and tg > 0 such that the function p* = rt o U]
satisfies

(2.9) 104(¢) = p"(0)] < C8, ¢ € Ry(p), and
(2.10) Do) < C(Tt(m,6))7, C€ Ri(p), 1 =1,2,...,m,
for all 0 <t < ty.

By Lemma 2.2, it follows that there is an independent constant C > 0
such that |do(t,p)| < C for all sufficiently small ¢ > 0 and for all p € U.
Thus lg‘él > L in U, for all sufficiently small ¢. This fact and (2.8), (2.9),
(2.10) in Proposition 2.4 imply that all the constants in the theorems in
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section 1-3 in [C] are stable with respect to t. Let Qi(e) = {z;7(2) < €}
and define

S'(e) = {z;—e < r’(z) < €} and
S-(e) = {z—e<r'(x) <0}

Let {L1, L2} be the local frame on U satisfying Lr! = 0, Ly = 8%2' Then,
in particular, the following important theorem holds.

PROPOSITION 2.5. There is a constant ¢ > 0 (independent of t and §)
such that for all small 6 > 0 and small t > 0, there is a plurisubharmonic
function X5 € C°(U N QY(6)) with the following properties:

(1) P <1, 2 € TN QYE),
(2) for all L = s1Ly + soLy at z, where z € U N S*(6),
BON(L, L) = c(|s1 (" (p, 6)) 72 + |s2|*6 %),
QONs(L, L) > ¢|LXJ?, and
(3) if \Il;) is the map associated with a given p € U N S*(6), then for all
¢ € Ri(p) with |p"(¢)] < 6,
| DDy (A 0 Wh(0))] < Crulr'(p, 6))~F67,
where Cy; does not depend on t.

Now set U’ = {(: \Ifg((:) € U}, and define

.0 = [+ [P + 30 AL p)2G %} and
k=2
Wis(p) = {C e U [0(0)] < sJLC)}.

PROPOSITION 2.6. There is an independent constant C > 0 such that
for each p € U NbQ and each small § > 0 and t > 0 there exists a smooth
real valued function H;,é(g) defined in Wst’ﬁ (p) (where s is a small constant
independent of p, § and t) such that

(1) =CJ(p. ) < Hy5(¢) < =2 J5(p, Q)
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(2) for any L = s1L} + s2Lf at ¢,

Losmt op 7 ¢ |s1? |52
588Hp,6(L7L)(C) < Jé(p, C)[Tt(p, Jg(p’ ())2 + Jg(p’ 6)2]7 and
(3) for any L = s1L) + soLy at C,
|s1] |s2|

m(p, J5(p, Q) JE(p; Q)
where Lj = ($4);1Li, i=1,2.

Proof. Note that the proof of Proposition 4.1 in [C] only uses the
properties of A} in Proposition 2.5. Since the estimates in Proposition 2.5
are stable with respect to ¢, we can prove Proposition 2.6 by the method
similar as Proposition 4.1 in [C].

) . . F:)
Set p;’g = p(¢) + 6H§’5(C), with € > 0. Since 572 =~ 1 (where (3 =
Z2 + 1y2), we also have ggz ~ 1 for all sufficiently small t. Thus it follows
8 €,t
;:; ~ 1. Then as Catlin
did in [C], the set Sp = {¢ € Wis(p) p;”% = 0} is a smooth pseudoconvex

that for all sufficiently small e (independent of t),

hypersurface (from the side p;’% < 0) for all sufficiently small ¢. Let us fix

€ = ¢p and set p; s = p;‘)(’st. Fort,6 > 0 and a > 0, we define the nonisotropic

polydiscs P£(t,¢’) centered at ¢’ by
P(t,¢") ={¢ € C* 1 G — ¢3f < adi(p,¢), [ = G| < T'(p,adf(p, ¢))}-
We now state the main result of this section.

PROPOSITION 2.7. There are positive constants a and c (independent
of p,§ and t) such that for each p € U N b where t is sufficiently small,
there is a pseudoconver domain Dfo* with the following properties:

(1) 0 € bDY,
(2) {CeDt:0<[¢|<c}C Dy,

(3) for ¢ € Dy, with [¢'| < a one has Pg(t,(") C Dy
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Proof. Set Dyt = {[¢] < ¢: p(¢) < 0} U{¢ € W4(p) : phs(¢) < O}

Then Df;t is a pseudoconvex domain which satisfies
Din{l¢l < e} € Dyt < (D n{[¢] < e}) U W, s(p).

Define ij* = int Mo<s<s, Df,’t. Then Df,* is pseudoconvex and we can prove
properties (1), (2) and (3) following Range’s proof of Proposition 2.4 in
[R2].

83. Stability of estimates of holomorphic generating form

In this section, we will show the stability of some pointwise estimates
for holomorphic L? functions. We will use Proposition 2.7 and Cauchy
estimate on Py (t,z) C DY for a fixed z € Di. Set §*(z) = dist(z,bDL) for
z € D}. Suppose h € O(D}}) satisfies

e [ ROP o
(31) ( n) - D ]CIQ (5p) (C)dV(C) <00
for some n > 0. Set 8 = (a/2)J(p,z). We may assume 8 < 1 by choosing a
sufficiently small for all small ¢. Then from (2.8), it follows that there exists
C > 0 so that —éﬁ% <7t:=1Yp,B) < CBwm. If we use Proposition 2.7 and

Cauchy estimates on PgZ (t,2) C Df,*, we obtain the following estimates as
Range did in [R2].

vh<z>|gczcl+n[ 1 _I ]Mt-

51+" Ttﬁ1+77 m
oh 1+ 1 || ¢
(3.2) 5o ()] < GO [Ttﬂw + ﬂHH} M; and
8]7, 1+ 1 |Zl t

for all sufficiently small ¢ where Cy depends only on the dimension of the
domain.

By Lemma 2.3 and Proposition 2.7, it follows that a-min(1, Y72, AL (p))
> ¢ > 0 for all sufficiently small ¢. Hence by estimating 3 and 7¢ from below,
we see that

(3.3) 82 1p(2)| + |z2] + [« and
(3.4) 2 |,
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hold uniformly for all sufficiently small ¢. Since lIJ:f, is a biholomorphism
which changes smoothly as t varies, Proposition 2.7 implies that there are
positive constants ¢ and v which are independent of p and t (for all small
t) such that

r* > c|lz — p|™ for |z — p| < v and z ¢ UL(DY).

Since a pseudoconvex domain  C C™ of finite type is regular [Ch], it follows
that there is a pseudoconvex domain Q* with Q0 C Q* € {2z : r(z) < ey™}.
Choose t; > 0 so that

0 < dist(b92°,b) < dist(bQ°,6Q*) for all 0 < t < t5.

Let p = sup{rt(¢) : ¢ € b*,0 <t < t!'}. Then 0 < u < ¢y™ and we can
choose 4/ > 0 such that 0 < p < ¢(y')™ < cy™. Define 2 by

Q= N{z:|z—pl <}NILDMNU N{z:]z—p| >~}

Then Q; for 0 <t <ty is still pseudoconvex.

For a sufficiently small b > 0, we set Uy = UNS°(b) = {z € U: -b<
r(z) < b} and choose t3 > 0 so that U NdQt C UN So(g) forall 0 <t < to.
We set 6L(z) = dist(z,b0) and given 1 > 0, we define the weighted L?
norm I]’;’n on Q;’) by

P 2 2
It (k) = [ [ yamavea)|

L |2 = pl?

Also we let g'(p,-) denote the second component of the inverse of the bi-
holomorphic map W/ and {Lj, L4} be a fixed orthonormal frame for T7(10)
on a neighborhood of Uy which satisfies L{rt(p) = 0. If we use the relations
in (3.3) and (3.4), we obtain the following stable estimates.

PROPOSITION 3.1. There are constants C' and a such that for all p €
Up N QY and for all sufficiently small t, the following holds: If h € (’)(Q;)
and I}, (h) is finite for some n > 0, then
(1) |r(2)| + |dh(2)| < C'IL}, (h) for z € Q with |z —p| > a, and if z € QA
with |z — p| < a, then

(2)

I ,(h)
()| + |gt(p, 2)| + |z — p|™)itn’

ha)] < O
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I (h)
|2 = pl(Ir(2) + 1g"(p, 2)| + |2 — p[™) 147

|Lih(2)] < C’ and

(4)

th(s / Lyn()
|Lyh(2)] < C (Irt(2)| + lgt(p, 2)| + |z — p|™)2+n’

where C' is independent of t and h.

Proof. Note that for z € Q' with |z — p| > a, one has 6.(z) >

dist(ﬁt, bQ2*) > 0. So (1) follows from the Cauchy estimates. For all suffi-
ciently small ¢ < min{tg,¢1,t2}, we replace 3 and 7 with |p*(2)| + |22| + |2
and |z| respectively. Note that p* = r* o ¥} and ¥}, are smooth functions in
p and t. So the Jacobian determinants of ¥} and (\Ilf,)_l with respect to z
are uniformly bounded by a constant as ¢ and p vary slightly. So we pull
back the estimates given by (3.2) via the map (‘I/;)“1 to get the estimates
in (2), (3) and (4). U

Next, we will prove the existence of a holomorphic generating form
with stable estimates. For the existence, one can refer Theorem 4.2 in [R2].
Let n > 0 be given. We apply Theorem 1 in [S] to pseudoconvex domains
Q;, CC?witha=14+1n/2,q=1,f=1,g=2—p, and ¢ = ——27}10g6f,.
Note that e~%(2) = (65(2))*" > |z — p*". Thus

2+ 909 —
(3.5) I'o(h) < =— | 1-]z—p| 2 % ¥aV
n o Jay
2
< 2+n |z — p|_4+"dV
n Jas
<24

/ |z — p|™*t1dV < G < o0,
n JB

where B is a large ball containing 2*, and C;] depends only on 7. Let us fix
t > 0 for a moment. Then there are holomorphic functions hfm (p,-) which
satisfies the equation

i1 (p,2)(21 — p1) + bl o(p, 2) (22 — p2) = 1, z € Q.
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Set h;- = hfm for convenience. In general, we can not guarantee the
smoothness of h;(p,z) on p € bQ. We need some modification. For
€ >0, let O = {z:7(2) < —€e} € Q. For each p € Uy N bQ', define
65(C,2) = ZJ L hi(p, 2)(z5 — ¢;). Then ¢} € C°(C? x QF) is holomorphic
in z and ¢p(p,z) = 1 on Q. Thus given € > 0, there is a neighborhood
V;G of p such that

(3.6) 64(C,2) > = on (Vi nbQ!) x Q.

Set h’ (¢, 2) = hi(p,2)/#5(C, 2) and shrink Uy so that all the above hold
for every q € Uy N b and denote it again by Up. Let us cover Ug N b
by finitely many sets { qLe o Va, ¢ }. Then there is a partition of unity
{Xu € C’SO(Vt ) v =1, l} which is subordinated to the covering

Ve Va, . Deﬁne hte(C, 2) = L=1 XL (Rl g, (¢,2). Then for each
sufﬁmently small € and ¢, the following hold:

N =

(3.7) R eC™®((UgndQ)x ), j=1,%

(3.8)  h(¢,") € O(Q) for ¢ € Uy NbQY;

(3.9)  AY(C 2)(21 — &) + h5(C, 2) (22 — Co) = 1 on (Ug N QYY) x QL.
Note that if ¢ and € are sufficiently small, then |r!(z)| — e 2> dist(z,b$2)

uniformly for ¢ and 2z € 2!. Combining Proposition 3.1 , (3.5) and (3.6),
we get the following proposition.

PROPOSITION 3.2. For all sufficiently small t > 0 and € > 0, above

h;’e satisfies the following stable estimates:

(1) [hY5(¢, 2)| + |doh24(C, 2)] < Cy for z € QF with |z — (| > a;
and for z € QL with |z — (| < a,
(2) [KE(C, =) < [?(fﬁ
Cﬁ .
|2 = CI[TE(S, 2)]
CTI
[TE(¢, 2)]27°

. , t,
where T%((, z) = dist(z, QL) + |g°(C, 2)| + |z — ¢|I™, and the functions h;*
depend on 1 and t, but the constant Cy, is independent of € > 0 and t > 0.

(3) IL§RG(¢,2)] <

(4) |LERY(C2)| <
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The functions h;’e in (3.7) are locally defined. For the globally defined
holomorphic generating form on b2 x QL we will patch together the function
h;’e using a partition of unity. Note that for all sufficiently small 0 <
t < t4, Ug is a neighborhood of ¢ € Q' N (%UO). Since b§2' is compact,
finitely many neighborhoods, Uy, Uy, ..., Uy (independent of t), will cover
the set {b2' : 0 < t < t4}. Thus we may choose a partition of unity in ¢,
subordinated to {U; : j = 0,...,k}, to patch the locally defined functions

h;’e to obtain a globally defined smooth functions w;’e and we obtain a

holomorphic generating form W< = ?:1 w;fed(j on bt x QL.

84. Proof of Main Theorems

In this section, we prove Theorem 1.3 and Theorem 1.4 using the esti-
mates on the holomorphic generating form in Section 3.

Proof of Theorem 1.3. Integral operator for Qf can be written as T, . =
S1 + S3, where

S1(f) :cg/bﬂtf/\Wé’E/\ﬁclong-(lz

and Sy(f) involves integration of Bochner-Martinelli-Koppelman kernel over
¢, In standard method for Hélder estimate, the only nontrivial part is

(4.1) cz/ £ AL(WE A B log |2 — ().
¥ A{|C—2]<a)

From Proposition 3.2, it follows that (4.1) is uniformly bounded by

1
b ic_si<a) [lc P Cl(Fé)”"] 45()

1 1
< Gyl |oo dist(z, bQ '"/ [ + }dS .
lllloo dist (= BR) ) emsteay LT — 2P T Tz —gqne) 45

(4.2) Cyllflloo

In order to estimate (4.2), we need a coordinate change. Here the main
point is the choice of coordinate system s*(¢,2) = (s1, 52,83, 84), where
s1 = r4(¢),s2 = Img*((, z) (See [R3,V Lemma 3.4]). Notice that drt(p) A
d¢Im g'(p,p) # 0O for all small t and the Jacobian matrix Jg(s') depends
only on the 1st derivatives of * and Img’. In this coordinates,

1 1
/bﬂ‘ﬂﬂ<~zl<a} [Ic —pan T =g | 49
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is estimated by dist(z, bQ2t)~ 14+(z =", Thus we obtain
A2 S1(£)(2)] < Oyl Il e dist (z, b2) G,

and this implies that for all z,w € Q, it follows that

1
(T3, f)(2) = (T F)(w)] < Cyll fl] ooy |z — w]m= "
By a suitable limiting argument as Range did in [R2], we obtain (1.2). []

Proof of Theorem 1.4. Let Uj;, j = 0,1,...,N be a finite collection of
open sets with the following properties:

(2) Uy CC Q,

(3) On each Uj, j =1,2,...,N, there are holomorphlc coordinates zl, z2
with the property that Br/ 8932 > 0, where 2} = z} + iyj.

Let (j, j = 0,1,..., N be a partion of unity subordinate to the covering
{U;}. For a given f € HQ)NCY(Q), 0 < o/ < 1/m, and for all small
6 >0, let fs5 be given by

fs(2) = Co(2)f(2) + Z Gi(2)f (.7~ 6).

J=1

Let a < o (a = o if o' = 0) be arbitrary given. Observe that fs € C*(Q)
and satisfies

(4.3) lim | f5 = fllgagm = 0, and  lim |13 fllgam = 0.

Assume that € > 0 is arbitrary given. We choose §p > 0 sufficiently small
so that

(4.4) | fs — f”ca(ﬁ) < €/3,

for all § < &. Next, for each § < &y, we solve dps = Ofs on Q. Since
dfs € C™(Q) and since bQ is of finite type, it follows that ps € C*(Q)
and the estimates (1.1) give ||ps|| sa @ < Call0fs Lo (). If &0 is sufficiently
small, it follows from (4.3) that

(4.5) 15l ca @y < €/3,
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for all § < 8. Set hs = f5 —ps. Then hs € H(Q2) N C?(Q). We may assume
that hs is well defined on a smooth bumping family {ﬁt}tgm of 2, for all
§ < 6. Since hg € C?(Q) and dhs = 0 on Q, it follows for each § > 0 that

(4.6) lim [|0hs | () = 0.

Now for each ¢ > 0, we solve Ehgo = Ohs, on Q'. From the stability of Hélder
estimates for & (Theorem 1.3), and from the estimates in (4.6), there exists
to > 0 so that

(4.7) Ilhfszllca@to) <e€/3.
Set ge = hs, — h2. Then g € H(Q"), and from (4.4), (4.5) and (4.7) it

follows that ||ge — f”Ca(ﬁ) < e.
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