30D50, 30D55, 30F15, 31A05

BLASCHKE-TYPE MAPS AND HARMONIC MAJORATION ON RIEMANN SURFACES

Shinji Yamashita

An analytic map h of type $\mathcal{B}\ell$ from a Riemann surface R into another S, both having Green's functions, behaves well near the "boundary" of R. Let X stand for a family of holomorphic functions, and let f be holomorphic on S. We shall show, for several X's, the following:

- (i) $f \in X(S) \Leftrightarrow f \circ h \in X(R)$;
- (ii) $||f \circ h|| = ||f||$.

Use is made of harmonic majoration of subharmonic functions on R and on S.

1. Introduction

A Riemann surface R is called hyperbolic if R admits a Green's function $g_R(z, \omega)$ with pole $\omega \in R$. In the present paper, R and Sdenote hyperbolic Riemann surfaces. Let $h: R \neq S$ be a nonconstant analytic map of type $\mathcal{B}\ell$ in the sense of Heins [3, p. 440], namely, for each fixed $\omega \in S$ the superharmonic function $g_S(h(z), \omega)$ in R does not majorize any strictly positive and bounded harmonic function on R. Here, we say that a function f_1 majorizes another f_2 on R if $f_1 \geq f_2$ on R. Let X(R) be a family of holomorphic functions on R. A motivation of the present paper arises from the following.

PROPOSITION X. Let $h: R \rightarrow S$ be as above and suppose that f is holomorphic on S. Then, $f \in X(S)$ if and only if $f \circ h \in X(R)$, and in this case, the "norm" is invariant; symbolically, $||f \circ h|| = ||f||$.

Received 8 January 1985

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/85 \$A2.00 + 0.00.

To prove that Proposition X is valid for some X's , we need our main theorem. If a subharmonic function u on R is majorized by an harmonic function on R, then the least harmonic majorant u_R^{2} of u, the smallest among all harmonic functions majorizing u, exists.

THEOREM 1. Let $h: R \rightarrow S$ be a nonconstant map of type Bl, and let u be a subharmonic function on S majorizing a harmonic function on S. Then,

(1) $u_{\hat{S}}^{\circ}$ exists if and only if $(u \circ h)_{\hat{R}}^{\circ}$ exists; if this is the case, then $u_{\hat{S}}^{\circ} \circ h = (u \circ h)_{\hat{R}}^{\circ}$ on R;

(II) furthermore,

(1.1)
$$\sup_{z \in \mathbb{R}} [(u \circ h)_{\widehat{R}}^{2} - u \circ h](z) = \sup_{z \in S} (u_{\widehat{S}}^{2} - u)(z) + u_{\widehat{S}}^{2}$$

Note that if $h: R \to S$ is an arbitrary analytic map, and if $u_{\hat{S}}^{\circ}$ exists, then $(u \circ h)_{\hat{R}}^{\circ}$ exists with $(u \circ h)_{\hat{R}}^{\circ} \leq u_{\hat{S}}^{\circ} \circ h$.

THEOREM 2. Proposition X is true for

$$X = N, N^{+}, H^{p}, BMOA, H^{p}_{\sigma} and BMOA_{\sigma}$$
 (0 \infty).

Detailed explanations of "norms" for X's in Theorem 2 will be postponed. The class N(R) consists of f such that $\log^+|f| = \max(\log|f|, 0)$ is majorized by a harmonic function on R. Heins [4, Theorems 11.1 and 11.2, p. 440] shows that if f is meromorphic on S, then f is Lindelöfian on S if and only if $f \circ h$ is Lindelöfian. As a consequence, $f \in N(S)$ if and only if $f \circ h \in N(R)$. We shall give another proof of this. Theorem 2 for X = N asserts much more about the "norm".

The other X's are: N⁺ : the Smirnov class [10]; H^P : the Hardy class [7], [8]; BMOA : the family of holomorphic functions of bounded mean oscillation [6]; H^P_σ : the hyperbolic Hardy class [12], [13]; BMOA_σ: the family of holomorphic functions of hyperbolically bounded mean oscillation [11].

2. Proof of Theorem 1

The core of the proof is to establish (I) for the case $R = S = \Delta \equiv \{|z| < 1\}.$

LEMMA 2.1. Let u be subharmonic in Δ and majorize a harmonic function there. Let $h: \Delta \rightarrow \Delta$ be of type Bl, or, equivalently, a nonconstant inner function [1, p. 24], [3, p. 454]. Then u_{Δ}^{2} exists if and only if $(u \circ h)_{\Lambda}^{2}$ exists; if this is the case, then

$$(2.1) u_{\Delta}^{\circ} \circ h = (u \circ h)_{\Delta}^{\circ} .$$

Proof. For simplicity we write $v^* = v^*_{\Delta}$. We may assume that $u \ge 0$ and u is nonconstant. Actually, let w be harmonic in Δ with $w \le u$. Then

$$(u-w)^{+} + w = u^{+}$$
 and $((u-w) \circ h)^{+} + w \circ h = (u \circ h)^{+}$

whence (2.1) holds if and only if

$$(u-w)^{\circ}h = ((u-w)^{\circ}h)^{\circ}$$
.

First of all, if u° exists, then $(u \circ h)^{\circ}$ exists because $u \circ h \leq u^{\circ} h$. Thus, we must show that if $(u \circ h)^{\circ}$ exists, then u° exists and (2.1) holds. Furthermore, it suffices to show that if $(u \circ h)^{\circ}$ exists, then

(2.2) $u^{\circ}h(0) = (u \circ h)^{\circ}(0)$.

For arbitrary $w \in \Delta$ we set $T_{i,i}(z) = (z+w)/(1+\overline{w}z)$. Then,

$$(u \circ h)^{\circ} = (u \circ h \circ T_{\omega} \circ T_{-\omega})^{\circ} \leq (u \circ h \circ T_{\omega})^{\circ} \sigma_{-\omega}$$
$$\leq (u \circ h)^{\circ} \sigma_{\omega} \sigma_{-\omega} = (u \circ h)^{\circ}$$

so that

$$(u \circ h) \circ T_{w} = (u \circ h \circ T_{w}) \circ$$

Since $h \circ T_{\mu}$ is inner and $h \circ T_{\mu}(0) = h(\omega)$, it follows that

$$(u \circ h)^{(w)} = (u \circ (h \circ T_w))^{(0)} = u^{(w)} \circ (h \circ T_w)^{(0)} = u^{(w)} \circ h(w)$$

For the proof of (2.2) we may assume that h(0) = 0. In fact, $H = T_{-h(0)} \circ h$ is inner and H(0) = 0. Since

$$u \circ h = u \circ T_{h(0)} \circ H$$
,

and since $u \circ T_{h(0)}$ is subharmonic in Δ , and since $(u \circ T_{h(0)} \circ H)^{-1}$ exists, it follows that

$$u^{\circ} h(0) = u^{\circ} T_{h(0)}^{\circ} H(0) = (u \circ T_{h(0)})^{\circ} H(0) =$$
$$= (u \circ T_{h(0)}^{\circ} H)^{\circ} (0) = (u \circ h)^{\circ} (0) .$$

Set $\Delta_p = \{ |z| < r \}$, 0 < r < 1, and set $u_p = u_{\Delta_p}^{\circ}$ in Δ_p° , = u on |z| = r.

If the inequality

(2.3)
$$(u_{n} \circ h)(0) \leq (u \circ h)^{(0)}$$

is true for all r , 0 < r < 1, and for h(0) = 0 , then letting r+1 we obtain, since $u_p(0)$ = $(u_p\circ h)(0)$, that

$$u^{(0)} \leq (u \circ h)^{(0)}$$

which, together with the obvious relation,

$$(u \circ h)^{(0)} \leq u^{\circ} h(0) = u^{(0)}$$

yields (2.2).

For the proof of (2.3) we fix r and we set

$$M = \max_{\substack{|z|=r}} u(z) .$$

Then M > 0 and

(2.4)
$$u_p(z) \leq M$$
 for all $z \in \overline{\Delta_p}$

Now, for a.e. $\zeta \in \partial \Delta$, the limit exists,

$$h(\zeta) = \lim_{t \to 1^{-0}} h(t\zeta)$$
, and $|h(\zeta)| = 1$.

By Egorov's theorem, for each $\varepsilon > 0$, there exists an open set $E \equiv E(\varepsilon)$ on $\partial \Delta$, and t, 0 < t < 1, such that the linear Lebesgue measure $m(E) < \varepsilon/M$ and

(2.5)
$$|h(t\zeta)| > r$$
 for all $\zeta \in \partial \Delta \setminus E$.
Let G_t be the component of the open set $h^{-1}(\Delta_r) \cap \Delta_t$, which

contains 0 . Then, for $z \in \Delta_{\pm} \cap \partial G_{\pm}$,

(2.6)
$$u_{p} \circ h(z) - (u \circ h)^{(z)} = u \circ h(z) - (u \circ h)^{(z)} \leq 0$$

because |h(z)| = r. On the other hand, since $|h(z)| \le r$ for $z \in A = \partial \Delta_t \cap \partial G_t$, (2.4) yields

(2.7)
$$u_{\mathbb{R}} \circ h(z) \leq M$$
 for $z \in A$.

Furthermore, by (2.5) we have $z/t \in E$ for $z \in A$, whence

(2.8)
$$m(A) \leq tm(E) < \varepsilon/M$$
.

Let ω be the harmonic measure of A in Δ_t , that is, the harmonic function in Δ_t , which is continuously equal to 1 on A and 0 on $\partial \Delta_t \setminus A$. Then,

(2.9)
$$\omega(0) = m(A) < \varepsilon/M$$

by (2.8). Note that $\omega(z) > 0$ for $z \in \Delta_t \cap \partial G_t$. Now, the maximum principle applied to the harmonic function

$$u_{n} \circ h - (u \circ h)^{-} - M \omega$$

in G_t , together with (2.6) and (2.7), shows that this function is nonpositive on the whole G_t because $u \ge 0$. In particular, the evaluation at 0 yields

$$u_{p} \circ h(0) \leq (u \circ h)^{(0)} + \varepsilon$$

by (2.9). Since $\varepsilon > 0$ is arbitrary we obtain (2.3).

LEMMA 2.2. Let π be a universal covering map from Δ onto R, and let u be subharmonic on R. Then u_R° exists if and only if $(u \circ \pi)_{\hat{\Delta}}^{\circ}$ exists. In this case $u_{\hat{R}}^{\circ} \sigma \pi = (u \circ \pi)_{\hat{\Delta}}^{\circ}$ in Δ and

(2.10)
$$\sup_{\omega \in \Delta} [(u \circ \pi)_{\Delta}^{\hat{}} - u \circ \pi](\omega) = \sup_{z \in R} (u_R^{\hat{}} - u)(z) .$$

We do not assume that u majorizes a harmonic function.

Proof. Since $z = \pi(w)$ ranges over all R as w ranges over all Δ , (2.10) is apparent if $u_R^2 \circ \pi = (u \circ \pi)^2$ is established. We use again $(u \circ \pi)^2 = (u \circ \pi)_{\Delta}^2$, etc. Obviously, $(u \circ \pi)^2$ exists if u_R^2 exists; in this case $(u \circ \pi)^2 \leq u_R^2 \circ \pi$. Suppose that $(u \circ \pi)^2$ exists. Since $(u \circ \pi)^2$ is

automorphic with respect to the cover transformation group consisting of Möbius transformations of Δ onto Δ , $v = (u \circ \pi)^{\circ} \circ \pi^{-1}$ is well defined on R. Since $(u \circ \pi)^{\circ} \ge u \circ \pi$ we obtain $v \ge u$, whence u_R° exists and $v \ge u_R^{\circ}$. Thus, $(u \circ \pi)^{\circ} \ge u_R^{\circ} \circ \pi$.

Proof of Theorem 1. Let $\pi_R: \Delta \to R$ and $\pi_S: \Delta \to S$ be universal covering maps, and apply Lemma 2.2 to $u \circ h$ on R. Then $(u \circ h \circ \pi_R)^{\uparrow}$ exists if and only if $(u \circ h)_R^{\uparrow}$ exists and

$$(2.11) \qquad (u \circ h) \hat{R} \circ \pi_R = (u \circ h \circ \pi_R)^{\uparrow} .$$

A single-valued branch of $\pi_S^{-1} \circ h \circ \pi_R$ in Δ , which we denote by $H = \pi_S^{-1} \circ h \circ \pi_R$, is locally of type $\mathcal{B}\ell$, whence of type $\mathcal{B}\ell$ by [3, Corollary, p. 472]. Then

$$(2.12) \qquad (u \circ h \circ \pi_R)^{\circ} = (u \circ \pi_S \circ H)^{\circ}$$

so that, Lemma 2.1, applied to the subharmonic function $u \circ \pi_S$ in Δ , and to the inner function H, asserts the existence of $(u \circ \pi_S)^{\uparrow}$ and

(2.13)
$$(u \circ \pi_S)^{\circ} \circ H = (u \circ \pi_S \circ H)^{\circ} = (u \circ h)_R^{\circ} \circ \pi_R$$

by (2.11) and (2.12). Summing up these arguments, we know that $(u \circ h)_R^{\hat{}}$ exists if and only if $(u \circ \pi_S)^{\hat{}}$ exists; (2.13) holds in this case. On the other hand, by Lemma 2.2, again, $(u \circ \pi_S)^{\hat{}}$ exists if and only if $u_S^{\hat{}}$ exists, and in this case, $u_S^{\hat{}} \circ \pi_S^{\hat{}} = (u \circ \pi_S)^{\hat{}}$, whence, by (2.13),

 $(u \circ h)_{R} \circ \pi_{R} = u_{S} \circ \pi_{S} \circ H = u_{S} \circ h \circ \pi_{R}$ on Δ .

Consequently, the equality $(u \circ h)_R^2 = u_S^2 \circ h$ on R is established.

To prove (1.1) in (II) we first observe that

$$K \equiv \sup_{z \in R} [(u \circ h)_{R}^{\circ} - u \circ h](z) = \sup_{w \in \Delta} [(u \circ h \circ \pi_{R})^{\circ} - u \circ h \circ \pi_{R}](w)$$

by (2.10) for $u \circ h$ on R. Since $u \circ h \circ \pi_R = u \circ \pi_S \circ H$, and since $(u \circ h \circ \pi_R)^{-1} = (u \circ \pi_S)^{-1} \circ H$ by (2.12) and (2.13), it follows that

(2.14)
$$K = \sup_{\omega \in \Delta} [(u \circ \pi_S)^{-} - u \circ \pi_S] \circ H(\omega) = \sup_{z \in H(\Delta)} v(z)$$

where $v = (u \circ \pi_S)^{\circ} - u \circ \pi_S$ in Δ . Now, by the theorem of 0. Frostman [2, p. 111], $\Delta \setminus H(\Delta)$ is of capacity zero, whence $H(\Delta)$ is dense in Δ . For each $z \in \Delta$, we then choose a sequence $\{z_n\}$ with $z_n \in H(\Delta)$ and $z_n \neq z$. Since v is lower-semicontinuous, it follows that

$$K \ge \lim_{n \to \infty} \inf v(z_n) \ge v(z) .$$

We thus have

$$K \leq \sup v(z) \leq K,$$
$$z \in \Delta$$

whence

$$K = \sup_{\zeta \in \Delta} [(u \circ \pi_S)^{\circ} - u \circ \pi_S](\zeta) ,$$

which, together with (2.10) for $u \circ \pi_{c}$ on Δ , yields

$$K = \sup_{z \in S} (u_{\hat{S}} - u) (z) .$$

3. Proof of Theorem 2

(i) X = N. This is a consequence of Theorem 1 for $u = \log^+ |f|$. The "norm" of $f \in N(R)$ is

$$\|f\|_{\omega,N(R)} = (\log^+ |f|)_{\hat{R}}(\omega)$$

where $w \in R$ is a fixed point. Then, for $f \in N(S)$,

$$\|f \circ h\|_{w,N(R)} = \|f\|_{h(w),N(S)}$$

(ii) $X = N^+$. The Smirnov class $N^+(R) (= S(R)$ in [10]) consists of all $f \in N(S)$ such that $\log^+|f|$ is majorized by a quasibounded harmonic function in the sense of Parreau [7] on R, or, equivalently, $(\log^+|f|)^-$ is quasibounded, that is, the limiting function of a nondecreasing sequence of nonnegative and bounded harmonic functions on R. Note that $N^+(\Delta) = N^+$ in [1, p. 26]. Some observations must be added. We claim that if $v \ge 0$ is harmonic on S and if $v \circ h$ is quasibounded on R, then v is quasibounded on S. For the proof of this, we let $v = v_b + v_*$ be the Parreau decomposition of v, where $v_b \ge 0$ is quasibounded, and $v_* \ge 0$ is singular; see [7], [3], [10]. According to [3, Theorem 20.1, p. 468], $v_* \circ h$ is singular on R. Since $v \circ h \ge v_* \circ h$, and since the singular part $(v \circ h)_*$ of the decomposition of $v \circ h$ on Ris zero, $0 = (v \circ h)_* \ge v_* \circ h$, so that $v_* \circ h = 0$, whence $v_* = 0$.

Now, Theorem 2 for $X = N^+$. Let f be holomorphic on S. If $(\log^+|f|)_{\hat{S}}$ is quasibounded, then $[(\log^+|f|)\circ h]_{\hat{R}} = (\log^+|f|)_{\hat{S}}\circ h$ is quasibounded on R. The converse is true by the observation in the preceding paragraph. Thus, $f \in N^+(S)$ if and only if $f \circ h \in N^+(R)$. As the "norm" of $F \in N^+(R)$ we use $\|F\|_{\mathcal{W},N(R)}$ as in (i).

(iii) $X = H^p$. The Hardy class $H^p(R)$ (0) consists of <math>f holomorphic on R such that $(|f|^p)^{-1}$ exists. The "norm" with the reference point $w \in R$ is

$$\|f\|_{w,H^{p}(R)} = [(|f|^{p})^{(w)}]^{1/p}$$

see [7, p. 137], [8, p. 50]; this is actually a norm in case $p \ge 1$. Theorem 1 with $u = |f|^p$ establishes the present case. The norm identity is

$$\|f \circ h\|_{\mathcal{W}, H^{p}(R)} = \|f\|_{h(\mathcal{W}), H^{p}(S)}$$

(iv) $X = H^p_{\sigma}$. The class $H^p_{\sigma}(R)$ (0 \infty) consists of f

holomorphic and bounded, $\left|f\right|$ < 1 , on R such that the subharmonic function

$$\sigma(f)^p \equiv (\tanh^{-1}|f|)^p$$

admits an harmonic majorant on R . The "norm" with the reference point $w \in R$ is

(3.1)
$$[(\sigma(f)^p)^{(w)}]^{1/p}$$
.

It is now easy to establish this case with the aid of Theorem 1 with $u = \sigma(f)^p$. It is known that $H^p_{\sigma}(R)$ is a complete metric space with metric relating to (3.1); see [13].

(v) A subharmonic function u on R is said to be of bounded mean oscillation on R, $u \in BMOS(R)$ in notation, if u_R^{\uparrow} exists and

$$\| u \|_{BMOS(R)} \equiv \sup_{z \in R} (u_R^{-u})(z) < \infty$$

This means that the potential p in the Riesz decomposition $u = u_R^* - P$, is bounded on R. Let u be a subharmonic function on S majorizing a harmonic function there. Then $u \in BMOS(S)$ if and only if $u \circ h \in BMOS(R)$, and further, in this case,

$$\| u \circ h \|_{BMOS(R)} = \| u \|_{BMOS(S)}$$
.

This is a consequence of Theorem 1 with the emphasis on (1.1).

(vi) X = BMOA. The terminology in (v) is justified by the following observations. According to Metzger [6] a holomorphic function f on R is said to be of bounded mean oscillation, $f \in BMOA(R)$, if

$$\|f\|_{BMOA(R)} = \sup_{\omega \in \mathbb{R}} 2\pi^{-1} \iint_{\mathbb{R}} g_{\mathbb{R}}(z, \omega) |f'(z)|^2 dx dy < \infty .$$

In [11] we find the relation for f holomorphic on R:

(3.2)
$$(|f|^2)_{\hat{R}}(\omega) - |f|^2(\omega) = 2\pi^{-1} \iint_R g_R(z,\omega) |f'(z)|^2 dx dy$$

Thus, $f \in BMOA(R)$ if and only if $|f|^2 \in BMOS(R)$; in this case, $\||f|^2\|_{BMOS(R)} = \|f\|_{BMOA(R)}$.

Theorem 2 for X = BMOA now follows from (v) above. The quantity $\|f\|_{BMOA(R)}$ is called BMOA pseudo-norm of $f \in BMOA(R)$.

(vii) $X = BMOA_{\sigma}$. The situation is the same on replacing $|f'|^2$ by $|f'|^2/(1-|f|^2)^2$ and $|f|^2$ by $\lambda(f) = -\log(1-|f|^2)$ for f holomorphic and bounded, |f| < 1, on R. Thus, $f \in BMOA_{\sigma}(R)$ if $\|f\|_{BMOA_{\sigma}(R)} = \|\lambda(f)\|_{BMOS(R)} < \infty$. The equality follows from the analogue of (3.2),

$$\lambda(f)^{(\omega)} - \lambda(f)(\omega) = 2\pi^{-1} \iint_{R} g_{R}(z,\omega) \left| f'(z) \right|^{2} / (1 - \left| f(z) \right|^{2})^{2} dx dy ;$$

see [11]. Again (v) proves the case $X = BMOA_{cr}$.

Remark. Let L(R) be the family of meromorphic and Lindelöfian functions on R. It should be noted that Theorem 2 for X = N yields the following result of Heins cited in the introduction. For fmeromorphic on S, we have $f \in L(S) \Leftrightarrow f \circ h \in L(R)$. For the proof we may suppose that f is nonconstant. Let E be the set of all the poles of f on S. Then $S_E = S \setminus E$ and $R_E = R \setminus h^{-1}(E)$ both are hyperbolic Riemann surfaces. It then follows from [3, Theorem 16.1, p. 466] that the restriction of h, that is, $h: R_E \neq S_E$ is again of type $\mathcal{B}\ell$. On the other hand, it follows from Parreau's theorem [7, Théorème 20, p. 182] (this theorem is valid for $\alpha = 0$) that

$$f \in L(S) \Leftrightarrow f \in N(S_E) ;$$

$$f \circ h \in L(R) \Leftrightarrow f \circ h \in N(R_E) .$$

Therefore, $f \in L(S) \Leftrightarrow f \circ h \in L(R)$.

References

- [1] Peter L. Duren, Theory of H^P spaces (Academic Press, New York, 1970).
- [2] Otto Frostman, "Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddel. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
- [3] Maurice Heins, "On the Lindelöf principle", Ann. Math. 61 (1955), 440-473.
- [4] Maurice Heins, "Lindelöfian maps", Ann. Math. 62 (1955), 418-446.
- [5] Shoji Kobayashi and Nobuyuki Suita, "On subordination of subharmonic functions", Kodai Math. J. 3 (1980), 315-320.
- [6] Thomas A. Metzger, "On BMOA for Riemann surfaces", Canad. J. Math. 33 (1981), 1255-1260.
- [7] Michel Parreau, "Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann", Ann. Inst. Fourier 3 (1951), 103-197.
- [8] Walter Rudin, "Analytic functions of class H ", Trans. Amer. Math. Soc. 78 (1955), 46-66.
- [9] John V. Ryff, "Subordinate H^p functions", Duke Math. J. 33 (1966), 347-354.

- [10] Shinji Yamashita, "On some families of analytic functions on Riemann surfaces", Nagoya Math. J. 31 (1968), 57-68.
- [11] Shinji Yamashita, "F. Riesz's decomposition of a subharmonic function, applied to BMOA", Boll. Unione Mat. Italiana, (6)3-A (1984), 103-109.
- [12] Shinji Yamashita, "Hyperbolic Hardy class H¹", Math. Scand. 45 (1979), 261-266.
- [13] Shinji Yamashita, "On hyperbolic Hardy classes", Comm. Math. Univ. St. Pauli 30 (1981), 65-69.

Department of Mathematics, Tokyo Metropolitan University, Fukasawa, Setagaya, Tokyo 158, Japan.