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BLASCHKE-TYPE MAPS AND HARMONIC MAJORATION
ON RIEMANN SURFACES

SHINJI YAMASHITA

An analytic map h of type B£ from a Riemann surface R into

another 5 , both having Green's functions, behaves well near the

"boundary" of R . Let X stand for a family of holomorphic

functions, and let / be holomorphic on S . We shall show, for

several X's, the following:

(i) / e X(S) o foh e X(R);

( i i ) ll/ofcll = Ufll.

Use is made of harmonic majoration of subharmonic functions on R

and on 5.

1. Introduction

A Riemann surface R is called hyperbolic if R admits a Green's

function ^_(s,W) with pole W £ R . In the present paper, R and S

denote hyperbolic Riemann surfaces. Let h: R -*• S be a nonconstant

analytic map of type B£ in the sense of Heins [3, p. 440], namely, for

each fixed W £ S the superharmonic function g^(h(z) ,W) in R does not

majorize any s t r ic t ly positive and bounded harmonic function on R . Here,

we say that a function / majorizes another f on R if f > f on

R . Let X{R) be a family of holomorphic functions on R . A motivation

of the present paper arises from the following.

PROPOSITION X. Let h: R •*• S be as above and suppose that f is
holomorphic on S . Then, f G X(S) if and only if foh e X(R) , and
in this case, the "norm" is invariant; symbolically, D_fo/jll = $ fl.
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196 Shinji Yamashita

To prove that Proposition X is valid for some X's , we need our main

theorem. If a subharmonic function u on R is majorized by an harmonic

function on R , then the least harmonic majorant u" of u , the smallest
ri

among a l l harmonic functions majorizing u , exists.

THEOREM 1. Let h: R •* 5 be a nonconstant map of type Bl , and let
u be a subharmonic function on S majorizing a harmonic function on S .
Then,

(I) u" exists if and only if {u°h) ~ existsj if this is the case,

then u~°h = (u°h) ~ on R j
o ti

(II) furthermore,

(1 .1) Sup[(Mo?2)p - U°h] (Z) = Sup(lC " M) (2) •
H s

Note that if h: R -*• S is an arbitrary analytic map, and if ul

&
ex i s t s , then {u°h)" exists with (u°h)" < u~«h .

n no

THEOREM 2. Proposition X is true for

X = N, N+, iP, BMOA, ff and BMOAg ( 0 < p < •*>).

Detailed explanations of "norms" for X's in Theorem 2 will be
postponed. The class N(/?) consists of f such that
l o 9 \f\ ~ max(log|/"| ,0) i s majorized by a harmonic function on R. Heins [4,
Theorems 11.1 and 11.2, p . 440] shows that if f i s meromorphic on 5 ,
then f i s Lindelofian on S if and only if foh is Lindelofian. As a
consequence, / £ N(S) i f and only if foh £ N{R) . We shall give
another proof of th i s . Theorem 2 for X = N asserts much more about the
"norm".

The other X's are:

N : the Smirnov class [10];

H? -. the Hardy class [7], [8] ;

BMOA : the family of holomorphic functions of bounded mean

oscillation [6];

the hyperbolic Hardy class [12], [13];

the family of holomorpl

mean oscillation [//].

BMOA : the family of holomorphic functions of hyperbolically bounded
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2. Proof of Theorem 1

The core of the proof is to establish (I) for the case

R = S = A 5 {\s\ < 1}.

LEMMA 2.1. Let u be subharmonic in A and majorize a harmonic

function there. Let h: A -»- A be of type Bt, or, equivalently, a

nonconstant inner function [J, p. 24], [3, p. 454]. Then u" exists if

and only if (M°?Z)~ exists; if this is the case, then

(2.1) M"O!I = (uoh) " .

Proof. For simplicity we write V" = v" . We may assume that u > 0

and u is nonconstant. Actually, let W be harmonic in A with W < u .

Then

(u-W)" + w = u" and ((u-W) oh)" + w°h = (uoh)" ,

whence (2.1) holds if and only if

(u-w)"oh = ((u-W) oh)" .

First of all, if u" exists, then (uoh)" exists because uoh < u"oh.

Thus, we must show that if (uoh)" exists, then u" exists and (2.1)

holds. Furthermore, it suffices to show that if (Uoh)" exists, then

(2.2) u"oh(0) = (u°h)"(O) .

For arbitrary w £ A we set T (z) = (z+W)/(l+wz) . Then,
w

(uoh)" = (uoh'ToT )" < (uohoT)"oT
W —W W —W

w —w '

so that

(uoh)"oT = (uohoT,) " .
w w

Since hoT is inner and hoT (0) = h(w) , it follows thatw w

(uoh)"(w) = (uo(hoT ))~(0) = u"o(hoT )(0) = u"oh(w) .
w w

For the proof of (2.2) we may assume that h(0) = 0. In fact,

H = Tu,Q)°h is inner and H(0) - 0. Since

U°h = U°Th(0)°H '
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and since w°2V . . is subharmonic in A , and since (UoT, °E)" exists,

i t follows that

u-oh(O) = u"oTh{Q)°H(0) = (u°Th{ )"°H{0) =

)~(0) = (Uoh)"(0) .

Set A = { 131 < 2̂ } , 0 < r < 1 , and s e t

U = u". in A ,
r A r

r

= u on | z | = r .

If the inequality

(2.3) (Ur°h) (0 ) < (uoh)"(0)

is true for a l l v , 0 < r < 1, and for h(0) = 0 , then let t ing r + 1

we obtain, since M (0) = (u oh) (0) , that

w"(0) < (MO^)"(0) ,

which, together with the obvious relation,

y i e l d s ( 2 . 2 ) .

For the proof of (2.3) we f ix r and we s e t

A/ = max u{z) .
\z\=r

Then M > 0 and

(2.4) M
r (

s > < w f ° r a l l z G A~ .

Now, for a . e . 5 £ 3A , the l imi t e x i s t s ,

fc(C) = l im h(tO , and | / i(C)| = 1 .
t+1-0

By Egorov's theorem, for each e > 0 , there exists an open set E = E(e)

on 3A , and t , 0 < t < 1 , such that the linear Lebesgue measure

m(E) < z/M and

(2.5) \h{tO \ > r for a l l C, e 3A \ £• .

Let C. be the component of the open s e t h (A ) O A, , which
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B l a s c h k e - t y p e maps 199

contains 0 . Then, for z G A, n 3G, ,

(2.6) u 0/2(3) - (wo/i)"(2) = u°h(z) - (Uoh)"(z) < 0

r

because |?l(3)| = r . On the other hand, since \h{z) | < r for

z e A 5 3A n 3G , (2.4) yields

(2.7) w oh(z) < M for 3 6 4 .

Furthermore, by (2.5) we have z/t S E for 3 6 .4 , whence

(2.8) m(A) < tmtS1) < e/M .

Let to be the harmonic measure of A in A, , that is, the harmonic

function in A, , which is continuously equal to 1 on A and 0 on

3A \ A . Then,

(2.9) to(0) = m(A) < e/M

by (2.8). Note that 10(2) > 0 for z G A n 3G . Now, the maximum

principle applied to the harmonic function

u oh - (u°h) " - Mo

in G , together with (2.6) and (2.7), shows that this function is

nonpositive on the whole

evaluation at 0 yields

nonpositive on the whole G because u > 0 . In particular, the

upoh{0) < (uoh) " ( 0 ) + e

b y ( 2 . 9 ) . S i n c e e > 0 i s a r b i t r a r y we o b t a i n ( 2 . 3 ) .

LEMMA 2.2. Let -n be a universal covering map from A onto R

and let u be subharmonia on R . Then u" exists if and only if (

exists. In this ease uZ,°v = (U°TT) ". in A and
R A

(2.10) Sup[(U°TT)" - UOTT] (U) = SUp (U"-U) (Z) .
WSA z€i?

We do not assume that u majorizes a harmonic function.

Proof. Since z = 7t(U) ranges over all R as W ranges over all

A , (2.10) is apparent if wpolT = (Won) * is established. We use again

(Woir)" = (uo-n) 2 , etc. Obviously, (U°TT) " exists if uZ. exists; in this
A n

case (won) " < 1^07! . Suppose that (u°v)" exists. Since (MOT)" is
XT
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automorphic with respect to the cover transformation group consis t ing of

Mobius transformations of A onto A , V = (U°T\) "OTT i s well defined

on R . Since (W°TT) " > k°ir we obtain V > u , whence uZ ex i s t s and
ft

v > uZ. . Thus, (u»i)A > uZ°v .
ft ft

Proof Of Theorem 1. Let T\-. A -»• R and TTC: A •* S be universal
ft o

cover ing maps, and apply Lemma 2.2 to w>h. on i? . Then (uoTzmr ) ~

e x i s t s i f and only i f (u°h)Z ex i s t s and
ft

(2.11) (uoh)^oTiR= (u°h°iiR)'- .

A s ing le -va lued branch of TT« «ho-n in A , which we denote by

H = TTO °?i°7r , i s l o c a l l y of type B£ , whence of type Bt by [3, Corol lary,

p . 472 ] . Then

(2.12) {U<=ho-nR)"= (WoTT ôff)" ,

so that, Lemma 2.1, applied to the subharmonic function Uo-n in A , and

to the inner function H , asserts the existence of (woir^) " and

(2.13) (W°TT5)-o# = (W°TT5o^)~ = (U"h)Z{o-nR

by (2.11) and (2.12). Summing up these arguments, we know that (uoh) "

n

e x i s t s i f and o n l y i f (uo-na)" e x i s t s ; (2.13) ho lds i n t h i s c a s e . On t h e

o t h e r hand , by Lemma 2 . 2 , a g a i n , (UOTT ) " e x i s t s i f and on ly i f uZ

e x i s t s , and in t h i s c a s e , wcO7Tc = (w<>ir«) " , whence, by ( 2 . 1 3 ) ,

(uoh)R°T\R = Ug°-ns<>H = uZ,ohoi\R on A .

Consequently, the equality (w>h.)Z = uZoh on R is established.
ft o

To prove (1.1) in (II) we first observe that

K = s\ip[(u°h)Z,-u°h]{z) = sup[(u°7z°TTD) " -wh'v^] (w)

by (2.10) for wh on R . Since u°h°T[- = U°TI~<>H , and since
ft o

(u°h°-nR)~ = {uovs)
noH by (2.12) and (2.13) , i t follows t h a t
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(2.14) K= sup[ (M°TTC) * -W°TT~] cH(W) = sup V(z)

where l> = (u°Tr_) " - MOTT̂  in A . Now, by the theorem of 0. Frostman

[2, p . I l l ] , A \ ff(A) i s of capacity zero, whence #(A) i s dense in A

For each z S A , we then choose a sequence {s } with z e fl(A) and

2 •*• z . Since u i s lower-semicontinuous, i t follows tha t

K > lim inf v{z ) > V(z) .

We thus have

K < sup V{z) < K ,

whence

K = S U p [ (Wo lT^ ) " - UoTtg] ( C ) ,

which, together with (2.10) for M°TTC on A , yields
o

K = sup(iC -u) (z) .
zes S

3. Proof of Theorem 2

(i) X = N . This is a consequence of Theorem 1 for u = log |/|

The "norm" of / 6 N{R) is

where W e R i s a fixed point. Then, for / G il?(5) ,

(i i) X = N+ . The Smirnov class /\?+(i?) (= 5(i?) in [10]) consists

of a l l / 6 #(S) such that log | / | i s majorized by a quasibounded

harmonic function in the sense of Parreau [7] on R , or, equivalently,

(log | / i ) ~ i s quasibounded, that i s , the limiting function of a

nondecreasing sequence of nonnegative and bounded harmonic functions on R

Note that N (A) = N in [J, p . 26]. Some observations must be added.

We claim that i f V > 0 i s harmonic on S and i f U°7z i s quasibounded

on R , then v i s quasibounded on S . For the proof of t h i s , we le t
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V = y, + v% be the Parreau decomposition of V , where V, > 0 is

quasibounded, and Vk > 0 is singular; see [7], [3], [10]. According to

[3, Theorem 20.1, p. 468] , V^oh is singular on R . Since v°h > V^h ,

and since the singular part (Voh) ̂  of the decomposition of V°h on R

is zero, 0 = {V°h) * > V^h , so that VA°h = 0 , whence V^ = 0 .

Now, Theorem 2 for X = N . Let / be holomorphic on 5 . If

(log+|/|)^ is quasibounded, then [ (log+|/|) oh]^ = (log+|/| ) ,>7z is

quasibounded on R . The converse is true by the observation in the

preceding paragraph. Thus, f 6 N (£) if and only if f°h 6 N (R) . As

the "norm" of F £ N+(R) we use llFll , ,,,„, as in (i) .

(iii) X = HP . The Hardy class if (R) (0 < p < °°) consists of /

holomorphic on R such that (\f\ ) " exists. The "norm" with the

reference point W 6 R is

see [7, p. 137], [8, p. 50]; this is actually a norm in case p > 1 .

Theorem 1 with u = \f\ establishes the present case. The norm identity

is

(iv) X = iP . The class iP (i?) (0 < p < °°) consists of f

holomorphic and bounded, | / | < 1 , on i? such that the subharmonic

function

o(f)P E "1!!?

admits an harmonic majorant on R . The "norm" with the reference point

W G R is

(3.1) [(o(/)P)"(U

I t i s now easy to establish this case with the aid of Theorem 1 with

u = o (f) . I t i s known that IF (i?) i s a complete metric space with

metric relating to (3.1); see [73].

(v) A subharmonic function u on R is said to be of bounded mean

osci l lat ion on R , u 6 BM0S(i?) in notation, if uZ. exists and
n
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This means that the potential p in the Riesz decomposition u = uR - P ,

is bounded on R . Let u be a subharmonic function on S majorizing a

harmonic function there. Then u e BMOS(S) if and only if u°h £ BMOS(R)}

and further, in this case,

lBM0S[R) = II

This is a consequence of Theorem 1 with the emphasis on (1.1).

(vi) X - BMOA . The terminology in (v) is justified by the following

observations. According to Metzger [6] a holomorphic function f on R

is said to be of bounded mean oscillation, / G BMOA(R) , if

< - .

In [7 7] we find the relation for f holomorphic on R:

(3.2) (\f\2)ff(w) ~ lf|2(w) = 2iT jf gR(z,w)\f (z)\2dxdy .

Thus, / e BMOA(R) if and only i f | / | 2 G BMOS(R) ; in th is case.

Theorem 2 for X = BMOA now follows from (v) above. The quantity

^^ i S c a l l e d BM0A Pseudo-norm of f S BMOA(R) .

(vii) * = BA/04 . The situation i s the same on replacing

l / ' l 2 by l / ' | 2 / d - | / i 2 ) 2 and | / | 2 by X (/) = - l o g d - | / | 2 ) for /

holomorphic and bounded, | / | < 1 , on R . Thus, fe BMOA (i?) if

(R) ~ "^^"BMOSIR) < °° ' T h e e c J u a l i t y follows from the analogueA
o

of (3.2),

= 27i"- i f f , ,1
JJ//?

see [11]. Again (v) proves the case X =

Remark. Let L(R) be the family of meromorphic and Lindelofian

functions on R . It should be noted that Theorem 2 for X = N yields
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the following result of Heins cited in the introduction. For f

meromorphio on S , we have f G US) <* f°h 6 £(/?) . For the proof we

may suppose that / is nonconstant. Let E be the set of al l the poles

of / on S . Then 5_ = S \ E and f?_ = R \ h'1 (E) both are hyperbolic

Riemann surfaces. I t then follows from [3, Theorem 16.1, p. 466] that the

restr ict ion of h , that i s , h: R-r, •* Sj, is again of type 8£ . On the

other hand, i t follows from Parreau's theorem [7, Thgoreme 20, p. 182]

(this theorem is valid for a = 0 ) that

f e L (5) o /

f»h e L(R) «• foh e

Therefore, /
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