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1. Introduction. Let C^ = CmxCmx...xCm be the finite abelian group of order
mn generated by n elements wu...,wn of order m. Let C be the field of complex
numbers and P a projective representation of G with factor set a over C (see Morris [2]).
Further let

and
a'(wj; w,) = a(wf, Wj)a~1(wJ, wt) (1=£ i,;'«£ n).

Then, it can be easily shown that the factor set a can be chosen in such a way that
/x(Wj) = 1, for i = 1 , . . . , n and a'{w{, Wj) (1 s£ i =£/ =s n) is an mth root of unity. In the case
when m is even and a'(wh w,) = - 1 (1 =£ if j; s; n), Morris [2] determined the complete set
of inequivalent irreducible projective representations of C^ with factor set a. His results
served as a structure theorem in the study of the projective representations of the
generalized symmetric group (see Read [3]). This paper deals with the linear and
projective representations of the subgroups of C£, given by

with respect to the restriction of the factor set a to C^tP, where a satisfies a'(wh w,) = - 1
(1=£ if j^n) and p | m. The only non-trivial factor set which we get by restricting factor
sets of G(m, p, n) to C^ p is a (see Read [5]). This provides a base for the study of
projective representations of the finite imprimitive unitary reflection groups (see [6] and
[7]). The case of irreducible linear representations of C^p is simple and has been
considered by Read [4]. His results are given in Lemma 5.1.

The group C ^ may be generated by the following set of generators:

In what follows, the restriction of a to C£,-p is denoted by a itself and C* denotes the
multiplicative group of non-zero complex numbers. Unless otherwise specified, all the
projective representations considered in this paper are taken with respect to the factor set
a.

2. We first give a result on representations in subgroups of index 2 which is used in
the construction of representations of C^p.

DEFINITION 2.1. Let H<=G be finite groups such that |G:H| = 2 and let T be an
irreducible projective representation (henceforth written as i.p.r.) of G. We say that T
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splits in H if and only if T = P+P on H, where P and P are G-conjugate i.p.r.'s of H and
+ denotes the direct sum of representations.

LEMMA 2.2. The following are equivalent.
(i) An i.p.r. T of G splits in H.

(ii) T(x) = (-l)e 0 0T(x) for all xeG, where = stands for "is equivalent to" and

fO ifxeH,

[l otherwise.

(iii) If XT is the character of T, XT(X) = 0 for all x e G\H.

Proof. See Read [3, page 122].

- G

3. The irreducible representations of C"n.

LEMMA 3.1. The irreducible linear representations (r./.r.'s) of CH, are given by {F^
. . .<S>F,J where Ft is an i.l.r. of C^, the i-th copy of the cyclic group Cm of order m.

Proof. Well-known.

Since all the i.l.r.'s of C(£ are of degree 1, F = F^.. .<£>Fn is an i.l.r. of degree 1 and
may be identified with its character. If Ff is defined by Fi(wi) = ̂ "i where £ is a primitive
mth root of unity, wt is a generator of C ^ and af e { l , . . . , m} then F may be identified
with the linear representation 0(a.,...,<,„) of C^ defined by

for all ah bt e { l , . . . , m}, i = 1 , . . . , n.
Let

a-
_r o n _ro n _ri on _ri on
~Y-i oJ' p~Li oJ' T~LO -iJ' e~Lo IJ

where i = V(-l). Then

ie a n d o~p = — po~, pr = —Tp, T<J = —or.
For any positive integer k, a set of 2k + 1 matrices Nlt..., N2k+i °f degree 2k is

defined by

AT2j_i = T®. . .(g)T(8)p(g)e(S).. .<£>£
for i = 1 , . . . , k and

T®. . .®T®T®T®. . .<g>T

where ® denotes the tensor product of matrices.
It is easily verified that:

(i) N? = I , / = l , . . . , 2 k + l,
(ii) NjN^-N^Jth,

(iii) N x . . .N 2 f c + 1 = ik/,
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(iv) no other product of distinct matrices Nh ... Njt = £1, for any £ e C* apart from a
reordering of (iii),

(v) Nu ... Nu has nonzero trace if and only if Nh ... Njt = £J for some £eC*,
(where I is the identity matrix of degree 2k).

See also Read [3, Lemma 1.11] and references given there.

LEMMA 3.2. Let k =[^n] and {JV1 ;. . . , N2k+i} be the set of matrices defined above.
Define a projective representation T(Ol an) of C", (af € { 1 , . . . , m}, i = 1 , . . . , n) by

T(aif....o(Wi) = f°'Nl> i = l , . . . , n .

Then T(ai an) is an i.p.r. o/ C^.

(a) When n is even, a full set of inequivalent i.p.r.'s of C£, is given by

{T(a, a j : af e { 1 , . . . , |m}, i = 1 , . . . , n}.

(b) When n is odd, a /H/J set of inequivalent i.p.r.'s of C^ is given by

{T(ai ^ j : either all af e { 1 , . . . , 3/n} or a// af e {|m + 1 , . . . , m}}.

Proof. See Morris [2].

DEFINITION 3.3. Let T be the i.p.r. of C^ defined by T(WJ) = Nj, i = 1 , . . . , n, i.e.
T= T(au....a^) where af = m, i = 1 , . . . , n. We shall call T the basic projective representa-
tion of Cn

m.

LEMMA 3.4. Let x denote the projective character of the basic projective representation T
as above. Then

(i) if n is even,

X(wf....wf«) = 2"'2,
where bt e { l , . . . , 5m}, i = 1 , . . . , n and x has value 0 on all other elements;

(ii) if n is odd,

where bt e { l , . . . , m}, i = 1 , . . . , n and x has value 0 on all other elements.

Proof. We note that

T(w2,»' ... w2b-) = I
and

if n is odd.

and T(w) J= cl, ce C* in any other case. The result now follows from the properties of the
matrices Nu ..., Nn.

COROLLARY 3.5. In the above notation

0) ^(a, o j= 0(a,,...,ajT>
00 ' / X(a, <o denotes the projective character of T(a, ^ rhen x(a, ^ = eca,,...,^)^

Proof. This is immediate from the definitions of the representations involved.
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4. The restrictions of the i.l.r.'s of C£, to CJ,,P are clearly irreducible and
0(a,,...,aj|C!kp will also be denoted by 0(ai,...>an). But the i.p.r.'s of C^ when restricted to
Cm,P are not always irreducible. This problem is analysed in the following result.

THEOREM 4.1. (i) If either n or p is odd, then T(ai ajjCJ^p is an irreducible represen-
tation of C^p.

(ii) // n and p are both even then T(a,,...,an)lCm,p IS the sum of two inequivalent
Cm-conjugate irreducible representations of C£, p.

Proof. We note that

and if n is odd then the i.p.r.'s of C£, and C^"1 are of the same degree, viz 2("~1)/2.
Therefore the restrictions of i.p.r.'s of C£, to C^,p must be irreducible.

If n is even then the i.p.r.'s of C^ and CUT1 are respectively of degrees 2"/2 and
2(n-D/2 rT/nyg the i.p.r.'s of C^ when restricted to C^p can decompose into at most two
components and 2 must divide p (see [1, p. 82]). This proves (i).

If n and p are both even then C£,iP £ CJJ,i2
 c C£, and to obtain (ii) it is sufficient to

prove that every i.p.r. of C£, splits in C^>2- F°r this we need only consider the basic
projective representation T of CJ, and show that T splits in C^,2. We note that
\C^:C^2\ = 2 and x(w) = 0 for all w e C \ Q 2 where ^ is a projective character of T.
The result now follows by Lemma 2.2.

DEFINITION 4.2. Let n be even and C^nm = C'^'1 be the subgroup of C£, generated by
{vt = w(w~x: i = 1 , . . . , n-1}. We may choose a transversal of C^"1 in C^p given by

where q = ml p. If T(1) is the basic projective representation of CZ,>m = C^ then define

T(-»(t>;.... «*-_-;) = (-l)b.+-+b-.T(1)(i>?.... iA-,0
and

Tfipw") = Tm(v), T'--1)(vwrp)=T(-l\v),

for all v e Cn
m<m and r = 1 , . . . , q. T™ and T^1' are i.p.r.'s of C^,p called C^-associate

representations.

THEOREM 4.3. Let n and p be even. Then

T\(~"t —TW-l-Tt—l)1 •*x~'m,p L p ' L p

and hence

(a,,...,an)Tp .

Proof. If x(1) and x(~^ denote the projective characters of T ^ and T(~1} respectively,
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then

and xa) has value zero on all other elements. Similarly

X("l)(«f "•...«?-",-) = 2(n-1)/2

and x ( - 1 ) has value zero on all other elements. The result now follows easily.

5. For the complete solution of the problem posed in this paper we now turn our
attention to find the sets of i.l.r.'s and i.p.r.'s of C£, which coincide when restriced to C£,p.

LEMMA 5.1 (Read [4]). Let 8(Oi ^ j and fl^;,...,^) be two i.l.r.'s of C1^. Then

0(Ol ^)iCn
m,P= 0(a;,....a;,4C^p if and only if

(i) af -a'i = aj-a'j (mod m),

(ii) p(ai -a[) = 0 (mod m),
/or aH i, / = 1 , . . . , n.

Proof. C ^ p is generated by {WjW)"1, wp: i, 7 = 1 , . . . , n}. Thus 0(a, „„) and 0(a; „.)
are identical on C^-p if and only if

flea, an) (WfW-1) = 0(a; a ;)(wiw-1) and 0(ai.....(O(wf) = e(a.,...,o;)(wf),

i.e. ^a'~ai = r ; " a ' and ^pa' = £pa*' for all i, j = l,...,n. These imply Ui-a'^a^ -a\ (mod m)
and p(aj-aJ) = 0 (mod m).

THEOREM 5.2. Let n or p be even. Let T(ai...-a?i)= 0(a i <In)T, T(ai <) = #(«; ay T be
two i.p.r.'s of C£. T( a i ^jlC^.p « equivalent to T(ai,...a;)|C^p i/ and oniy i/

(i) at — a j = a, — t

(ii) p(at - a';) = 0 (mod mt)

/or a// i, 7 = 1 , . . . , n, where

' \m if p is odd,

m if p is even.

Proof. By Lemma 3.4 and Corollary 3.5, T(Oi ^iC^p- T(a{ c^\>Cn
m<p if and only if

(0 fl(- o(y?> • • • w?-) = fl(ai a^lb< • • • w f -)
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P
for all b; e { l , . . . , jm}, i = 1 , . . . , n, with £ 2b; =0 (mod p), and

(ii) (only if n is odd)

n

for all bf e { l , . . . , \m}, i = l,...,n, with I (2bf +1) = 0 (mod p).

If n is even, let bt = 1, by = |m - 1 for arbitrarily fixed indices i and / and put bk = |m
for /C7H, /. Thus a necessary condition for T(ai,...>an)4CmrP=T(a;,...,a;)lC^-p is

af - aj = a, - a] (mod |m) .

Similarly, substituting

[2P if p is even

[ p otherwise,

we get another necessary condition:

p(a f -aJ) = 0 (mod m) if p is even,

p(aj-a'j) = O (modern) otherwise.

Conversely, if T(ai i . . .>aj and T(a;,...,<,;) satisfy the above conditions, then

_ £l2(a.-a;)b,

= ^<a'-a':)I2b' (by (i))
= ^pK-a;) Qr ^2P(a,-Q;) ( a c c o r c j i n g a s p is even or odd)

= 1 (by (ii)).

Similarly, if n is odd, we get the two necessary conditions as above.
In addition we need to consider elements of the form wfb'+1... w^b"+1, bt e

n

{ 1 , . . . , \m}, i = 1 , . . . , n with X (2b; +1) = 0 (mod p). If p is even then the elements of
i = l

this form do not belong to C^iP and therefore, in this case, the above two conditions are
sufficient as well.

THEOREM 5.3. If n and p are both odd then T((li a.)-T((1; ^ as representations of
Cn

m,p if and only if

(i) a( - a; = aj-a\| (modern),

(ii) p(af - a';) = 0 (mod 5m),
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(iii) ( p - n)(an - a'n) + A =0 (mod m),

n n

where A = £ at — Y. a\-
i = 1 i = 1

Proof. Conditions (i) and (ii) are obtained by considering elements of type
wfb ' . . . w^b" as in the case n even. In this case, we further need to consider elements of

the type wf'+ 1 . . . wf»+ 1 where bte{\,,.. ,\m), i = l,...,m and Z(2b f + l) = 0

(modp). Let bt = 0, i = l,...,n-l and 2bn + l = p-n + l. Then £ ( 2 ^ + 1 ) ^ 0 (mod p)
and therefore w = w, . . . wn_^ w?~"+l e C'np. Equating the values of the projective charac-
ters of T(<M ^ } and T(a; a ; ) on w, we obtain the third necessary condition as required.

Conversely, conditions (i) and (ii) are sufficient to prove that

for all w f . . . . w f " 6 C : , p .

If wf'^ ... wf-+1 € Cn
m p then £ (2bt +1) = 0 (mod p). Since £ (2b; +1) and p are

i = 1 i = l

both odd, there exists an odd integer 2k + 1 such that £ (2fc; +1) = (2k + l)p. We show that

£ (2fcj+ l)(aj-a|) = 0 (mod m). This will complete the proof of the theorem.
i = i

I (2bf + l)(af - ad = t 2bi(ai -a'd+1 (af - a|)
i = 1 i = 1 i = 1

n

s (an - ««) Z 2b; + A (mod m) (by (i))
i = l

= (a,, - a;)((2k + l)p - n) + A (mod m)

= 2kp(an - a;) + (an - a'n)(p -n) + A (mod m)

= {an - a'n)(p - n) + A (mod m) (by (ii))

= 0 (mod m) (by (iii)).
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