ON THE BOUNDARY BEHAVIOUR OF BLOCH AND NORMAL FUNCTIONS

RAUNO AULASKARI

Criteria for an analytic function f defined in |z| < 1 to belong to B_0 , the class of Bloch functions satisfying lim $(1 - |z|^2)|f'(z)| = 0$, and criteria for a meromorphic function |z|+1g defined in |z| < 1 to belong to N_0 , namely, to satisfy lim $(1 - |z|^2) \frac{|g'(z)|}{1 + |g(z)|^2} = 0$, are obtained in terms of the area |z|+1 and the length of the images of hyperbolic disks and hyperbolic circles, respectively.

§1.

Let f be a holomorphic function in the unit disk $D = \{z \mid |z| < 1\}$ of the complex plane $\mathscr{C} = \{z \mid |z| < \infty\}$. Let B be the family of holomorphic functions f in D such that

$$\sup_{z \in D} (1 - |z|^2) |f'(z)| < \infty$$

and B_0 the family of holomorphic functions f in D such that

$$\lim_{|z| \to 1} (1 - |z|^2) |f'(z)| = 0.$$

If $f \in B$, then f is said to be a Bloch function. In Theorem 1 we shall propose some criteria for f to belong to B_{ρ} . These criteria are

Received 13 June 1984.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84 \$A2.00 + 0.00

immediate consequences of Yamashita's Theorem in [4].

Let

$$d(z,w) = \frac{1}{2} \log \frac{|1 - z\overline{w}| + |z - w|}{|1 - z\overline{w}| - |z - w|}$$

be the hyperbolic distance between z and w in D. For $0 < r < \infty$ and for $z \in D$, we set

$$U(z,r) = \{ w \in D \mid d(w,z) < r \}$$

and

$$\Gamma(z,r) = \{ w \in D \mid d(w,z) = r \}.$$

Let $A_f(z,r)$ be the euclidean area of the Riemannian image F(z,r) of U(z,r) by f, and let $A_f(z,r)$ be the euclidean area of the image F(z,r) of U(z,r) by f; we note that F(z,r) is the projection of F(z,r) to \emptyset . Let $L_f(z,r)$ be the euclidean length of the Riemannian image of F(z,r) by f, and $L_f(z,r)$ the euclidean length of the outer boundary of F(z,r). The outer boundary of a bounded domain G in \emptyset means the boundary of $\emptyset \setminus E$, where E is the unbounded component of the complement $\emptyset \setminus G$ of G. The inequalities

$$A_f(z,r) \ge A_f(z,r)$$
 and $L_f(z,r) \ge L_f(z,r)$

hold for each $0 < r < \infty$ and each $z \in D$.

Yamashita proved the following:

THEOREM A. Let f be non-constant and holomorphic in D. Then the following are mutually equivalent:

300

(V) there exists
$$0 < r < \infty$$
 such that $\sup_{z \in D} L_f(z,r) < \infty$.

From this theorem we obtain

THEOREM 1. Let f be non-constant and holomorphic in D. Then the following are mutually equivalent:

Proof. The assertions follow immediately from the proof of Theorem A in [4] by replacing the bounded term by a sequence of terms converging to zero.

§2.

The meromorphic analogue of a Bloch function is a normal meromorphic function. A function f, meromorphic in D, is said to be normal in D if $\sup_{z \in D} (1 - |z|^2) f^*(z) < \infty$ where $f^*(z) = |f'(z)|/(1 + |f(z)|^2)$ is the spherical derivative of f (cf. [3]). We denote by N the family of all normal meromorphic functions in D. Further, let N_0 be the family of meromorphic functions f in D such that

$$\lim_{|z| \to 1} (1 - |z|^2) f^*(z) = 0.$$

The euclidean area and length used in the above theorems will be replaced by the spherical area and spherical length. We shall denote the spherical area of F(z,r) by $B_f(z,r)$ and the spherical area of F(z,r) by $B_f(z,r)$. Let $M_f(z,r)$ be the spherical length of the

Rauno Aulaskari

Riemannian image of $\Gamma(z,r)$ by f, and let $M_{f}(z,r)$ be the length of the boundary of F(z,r). The corresponding inequalities as above are valid, that is,

(1)
$$B_f(z,r) \ge B_f(z,r)$$
 and $M_f(z,r) \ge M_f(z,r)$.

For normal meromorphic functions we cannot obtain results corresponding to those in Theorem A, as shown by Yamashita in [4]. For example, implication $(III) \Rightarrow (I)$ does not hold as Lappan has shown in [2] and the implication $(V) \Rightarrow (I)$ is still open. Therefore it is interesting to notice that the meromorphic analogue of Theorem 1 for the functions of N_0 is valid. For the proof of our theorem we shall make use of the following lemma [1, Lemma II]:

LEMMA. For the function g meromorphic in D suppose that the spherical area $B_{q}(0,r)$ is strictly less than π . Then,

$$g^{*}(0)^{2} \leq \frac{B_{g}(0,r)}{\pi x^{2}(1-\frac{B_{g}(0,r)}{\pi})}$$

where $x = (e^{2r} - 1)/(e^{2r} + 1)$.

THEOREM 2. Let f be non-constant and meromorphic in D. Then the following are mutually equivalent:

302

Proof. We prove first $(III) \Rightarrow (I)$; let

$$g(w) = f(\frac{w+z}{1+\overline{z}w}) .$$

By the assumption there is a $r_0 > 0$ such that $B_f(z,r) < \pi$ for all $z, r_0 < |z| < 1$. Let $|z| > r_0$. Then by a simple calculation and the Lemma we have

$$(1 - |z|^{2})f^{*}(z) = g^{*}(0) \leq \left\{ \frac{B_{g}(0,r)}{\pi x^{2}(1 - \frac{B_{g}(0,r)}{\pi})} \right\}^{1/2}$$
$$= \left\{ \frac{B_{f}(z,r)}{\pi x^{2}(1 - \frac{B_{f}(z,r)}{\pi})} \right\}^{1/2},$$

where $x = (e^{2r} - 1)/(e^{2r} + 1)$. Hence $(III) \Rightarrow (I)$. $(I) \iff (II)$ Yamashita has proved this result in [5]. $(II) \Rightarrow (IV)$ By the above equivalence it is sufficient to prove that $(I) \Rightarrow (IV)$. We choose a sequence of points (z_n) for which $|z_n| \neq 1$ as $n \neq \infty$. Let r > 0. We take the sequence of hyperbolic disks $(U(z_n, r))$ and form the functions

$$f_n(\zeta) = f\left\{\frac{\zeta + z_n}{1 + \overline{z}_n \zeta}\right\} .$$

Let $\zeta_0 \in \Gamma(0, r)$ and let $z'_n = (\zeta_0 + z_n)/(1 + \overline{z}_n \zeta_0)$. The radius of D going through z_n intersects $\Gamma(z_n, r)$ in two points. We denote by z''_n the point for which $|z''_n| < |z_n|$. Then we obtain for the spherical derivative

$$f_{n}^{*}(\zeta_{0}) = \frac{1}{1 - \delta(z_{n}, z_{n}')^{2}} \cdot (1 - |z_{n}'|^{2}) f^{*}(z_{n}')$$

$$\leq \frac{1}{\alpha} (1 - |z_{n}''|^{2}) \max_{z \in \Gamma(z_{n}, r)} f^{*}(z) = \frac{1}{\alpha} (1 - |z_{n}''|^{2}) f^{*}(z_{n}'')$$

و

Rauno Aulaskari

where $z_n'' \in \Gamma(z_n, r)$ and $1 - \delta(z_n, z_n')^2 = 1 - \left| \frac{z_n - z_n'}{1 - \overline{z}_n' z_n} \right|^2 \ge \alpha > 0$, since

 $d(z_n, z'_n) = d(0, \zeta_0) = r.$ Now

$$M_{f}(z_{n},r) = \int_{\Gamma(z_{n},r)} f^{*}(z) |dz| = \int_{\Gamma(0,r)} f_{n}^{*}(\zeta) |d\zeta|$$

$$\leq \frac{1}{\alpha} (1 - |z_{n}''|^{2}) f^{*}(z_{n}''') \int_{\Gamma(0,r)} |d\zeta|$$

$$= \frac{\pi}{1 \log \frac{1+r}{2}} \cdot \frac{1-|z_n''|^2}{2} \cdot \frac{(1-|z'''|^2)f^*(z''')}{2}$$

$$= \frac{\pi}{\alpha} \log \frac{1}{1 - r \cdot 1 - |z_n''|^2} (1 - |z_n''|^2) f^*(z_n'') \to 0$$

since $|z_n'''| \to 1$ and $\frac{1 - |z_n''|^2}{1 - |z_n'''|^2} \to 1$.

The latter part of the assertion follows from the assumption (II). $(IV) \Rightarrow (V)$: This follows trivially from (1). $(V) \Rightarrow (III)$: Let (z_n) be any sequence of points for which $|z_n| \rightarrow 1$ as $n \rightarrow \infty$. Then, for sufficiently large n, either the diameter of $F(z_n, r)$

(2)
$$\operatorname{diam} F(z_n, r) \leq M_f(z_n, r)$$

or the complement $\hat{\ell} \setminus F(z_n, r)$ is divided into the components $E_i(z_n, r)$, $i \in I$ (I an index set) for which

$$\sum_{i \in I} \operatorname{diam} E_i(z_n, r) \leq M_f(z_n, r).$$

When *n* is large enough, the latter alternative is not possible by the assumption $B_f(z,r) \leq \alpha < \pi$. The assertion follows by (2) and thus the theorem is proved.

References

 [1] J. Dufresnoy, "Sur l'aire sphérique décrite par les valeurs d'une fonction méromorphe", Bull. Sci. Math. 65 (1941), 214-219.

- [2] P. Lappan, "A non-normal locally uniformly univalent function", Bull. London Math. Soc. 5 (1973), 291-294.
- [3] O. Lehto and K. I. Virtanen, "Boundary behaviour and normal meromorphic functions", Acta Math. 97 (1957), 47-65.
- [4] S. Yamashita, "Criteria for functions to be Bloch", Bull. Austral. Math. Soc. 21 (1980), 223-229.
- [5] S. Yamashita, "Functions of uniformly bounded characteristic", Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1982), 349-367.

Department of Mathematics, University of Joensuu, P.O. Box 111, SF-80101 Joensuu 10, Finland.