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AN ERGODIC THEOREM FOR MULTIDIMENSIONAL 
SUPERADDITIVE PROCESSES 

DOGAN ÇÔMEZ 

1. Introduction. The ergodic theorem for multidimensional strongly 
subadditive processes relative to a semigroup °U induced by a measure 
preserving point transformation on X was proved by R. T. Smythe [18]. 
His results have been generalized by M. A. Akçoglu and U. Krengel [4] to 
the continuous parameter case. The definition of superadditivity they used 
is stronger than Smythe's but weaker than strong superadditivity. R. 
Emilion and B. Hachem [10] extended this result to strongly superadditive 
processes relative to a semigroup generated by a pair of commuting 
Markovian operators which are also /^-contractions. The basic tool in the 
proof is a technique which may be referred to as "reduction of dimension" 
and they used a version of it due to A. Brunei [6]. 

The purpose of this paper is to show that if F = {F{uv)}u>0 is a 
bounded strongly superadditive process with respect to a two-dimensional 
strongly continuous Markovian semigroup of operators on L, then 
u F{uu) converges a.e. as u —» oo. This result in the discrete case, can be 
obtained from R. Emilion and B. Hachem's result. However, we give a 
complete proof by a different method, namely by applying a version of 
reduction of dimension which is less complicated and more natural than 
that of A. Brunei's. This method has been introduced by N. Dunford and 
J. T. Schwartz [9] and further developed by T. R. Terrell [19] and M. A. 
Akçoglu and A. del Junco [2]. We also prove the continuous parameter 
version of this ergodic theorem for strongly superadditive processes 
relative to a Markovian semigroup which are also L^-contractions. These 
results generalize the results in [4] (as u —» oo) both in discrete and 
continuous parameter case as well as the results in [5]. 

Let R2 = R X R be the usual two dimensional real vector space, 
considered together with all its usual structure. In particular R2 is partially 
ordered in the usual way, i.e., for any (w, v), (ï, r) e R2, (W, V) ^ (7, r) if 
u ^ / and v ^ r, (w, v) < (/, r) if (w, v) ^ (7, r) and (w, v) # (/, r). The 
positive cone of R2 is R+ and the interior of R+ is C. By N and N + we will 
denote the set of nonnegative and positive integers respectively, and we 
have^T= N2 and JT+ = N2+. Let 
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~k. B = {ml k:m,k e N + }, 

the set of positive binary numbers, then we will denote K = B2. For any 
k e R, k = (k, k) e R2. 

Let (A", ̂  fx) be a a-finite measure space and Lj = LX(X, 3F, ju) be the 
classical Banach space of real-valued integrable functions on I L, will 
denote the positive cone of Lv We shall not distinguish between the 
equivalence classes of functions and the individual functions. The 
relations below are often defined only modulo sets of measure zero; the 
words a.e. may or may not be omitted. 

Consider a strongly continuous semigroup 

* = {0(,,r)Wtf 
of positive L,-contractions with UQ = I, the identity operator on L,. This 
means that 

(1.1) U(tr) ls a l i n e a r operator on L} for each (t, r) e R\ 

(1.2) U{U)L+ c L,+ and \\U{U)\\X ë 1 for each (t, r) e R2+ 

(1.3) U(tr)U^v) = U(t + U,+V) for each (/, r), (u, v) e R2
+ 

(1.4) lim \\U{tr)f-f\\x = 0 for e a c h / e L,. 
(^)-K) 

^ is called a Markovian semigroup if, in addition to (1.1)-(1.4), it 
satisfies 

(1.5) / UUr)fdfi = f fdp 

for e a c h / e Lj and for each (/, r) e R + . 

A family of Lj-functions F = {F^uv)}(uv)ŒC is called a W-super additive 
process [14, 3, 5] if 

(1.6) For each (t, r) <E R2
+ and (w, v) e C with 0 ^ (/, r) < (w, v), 

a) *W) = ^ v ) + U«,of(u-t,v) if 0 < / < W 

b ) *W) ^ /W> + ^o^v-r ) if 0 < r < v. 
I f {~F(M,v))(w,v)ec i s ^-superadditive, then {^(MiV)}(w,v)ec is called ^-sub
additive; and' if both {-i7

(M,v)}(M,v)ec and {^(M,v)}(M,v)GC are ^-super-
additive, then { L V ) L v ) e ( ; is called ^-additive [2, 3]. 

A family F = {F,uv)},uv)ŒC of Lj-functions is called a strongly 
°U-superadditive [18] if it satisfies 

(1.7) if 0 < (/, r) < («, v) 

~^(0,r)^(w,v-r) + U(t,r)F(u-t,v-r)' 
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Any strongly ^-superadditive process F = {^W V )L v ) É ( : which satisfies 

(1-8) *io,v> = F(«,0) = °> « > 0 , v > 0 

is necessarily a ^-superadditive process [18]. Below, when we mention a 
strongly ^-superadditive process we will mean a process satisfying (1.7) 
and (1.8). 

A process F = {F,uv)},uv)(EC is called bounded if it satisfies 

(1.9) sup — 
( M , V ) > 0 UV 

r(u,v) = yF< 

This constant yF is referred to as the "time constant" of the process F 
[11, 14]. 

There is another way of defining superadditivity [2]: For any interval 
I = [a, b] in R2^where 

[a, b] = [a]9 bx] X [a2, b2] 

with al ^ bt and a{, bt e R, /' = 1, 2, define 

(1.10) Fj = U{a^a2)F{h^-axhl-ai). 

Notice that in this case we have, for any (w, v) e R + , 

^(w,v) + / = ^(M,v)^7-

Similarly to the above, a family of L,-functions 

* = lVv)%v)e/, °r ^ = {^7(w,v)/(w,v)e/r 

defined on -/f̂  or K respectively are called (strongly) ^-superadditive if 
they satisfy (1.6) ( (1.7) ) for each (w, v) in J^+ or K. 

Notice that, for each (w, v) e C, ^Vwv) is a class of functions in L,, not 
an actual function. That is why to be able to speak about a.e. convergence 
of u~2Fu when F(uv) denotes equivalence class of Lj-functions and (w, v) 
ranges in R + , we either have to select suitable representatives or let (w, v) 
range through a countable set only. For convenience we will take Q + as 
this countable set where Q+ is the set of positive rational numbers, and we 
will say that 

q — lim F(uv) e x* s t s a e -
(w,v)^(oo,oo) 

when the limit exists a.e. as (w, v) approaches (oo, oo) along pairs of 
positive rationals [2, 3]. This will be equivalent to the existence of 

l i m F(u,v)(*) 
(u,v)—>( 00,00) 

when we take limit along (w, v) e R+ for suitable choice of 
representatives F^uv)(x) for F(uvJ

>s [2, 3]. Similarly we will write 
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0 " SUP F(«*,v) 
(w,v)>0 

if we take the supremum over pairs of positive rationals. 

2. Preliminaries. 

(2.1) Existence of the time constant. We will give the existence of yF in the 
continuous parameter case and the proof in the discrete case follows along 
the same lines [18, 8]. 

THEOREM 2.2. [18] Let F = {F(UV)}(uv)(EC be a positive superadditive 
process with respect to a positive strongly continuous semigroup of Markov i an 
operators °ll = [U^tr)}(fr)GR2 such that U0 = I. Then 

lim / 1-^dïi = yF. 
(M,v)-»(oo,oo) J UV 

Proof. Let 

g(n, v) = J F{uv)dii. 

Since 

1 
yF = sup —g(w, v), 

(w,v)>0 UV 

it is enough to show that 

yF = lim inf —g(w, v). 
(w,v)-K) UV 

First, assume yF = y < oo. Given e > 0, one can pick (w0, v0) e C such 
that 

1 
g("o' vo) > Y ~ €-

wovo 
Let (w, v) e C Without loss of generality, one can assume («, v) > (w0, v0). 
Then there exist integers n, m e N such that 

(w, v) = (/2W0 -f 5j, mv0 + 52) 

where 0 ^ 8{ < u0 and 0 ^ S2 < v0. Then 

g(w, v) â g(wi/0, mv0) + g(ww0, S2) + g(S,, mv0) + g ^ , 82). 

Moreover, successive applications of (1.6) (a) and (b) gives that 

g(nu0, mv0) â nmg(u0, v0). 

Hence we have 
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#(w, v) _ nm 
(2.3) ^ _ ! è — g(u0, v0) 

uv uv 

+ — [ g ( " « 0 ' 5 2) + #(51> m V o ) + # ( 5 1 ' Ô2) I-
UV 

Now, for any fixed 8X and S2, the functions g{8v s) and g(/, 52) are 
one-parameter superadditive functions of s and / respectively. It is a 
well-known result that [8, 12] for a superadditive function g(x) with 

1 
sup -g(x) < oo, 
*>o A: 

lim -g(jc) exists and is finite. Thus, 

lim 8(m°> ^ and lim g ( g " " ^ 

exist and are finite. Consequently 

l im inf —[g(nu0, 82) + g(8x, mv0) + g(8x, 82) ] = 0, 
(M,V)—>(oo,oo) WV 

since g(8j, 52) < oo. Therefore (2.3) implies that 

lim inf —g(w, v) = y — e. 
(u,v)-*(oo,oo) UV 

Since c > 0 is arbitrary, this completes the proof when y < oo. If y = oo, 
let M > 0 be an arbitrary large number. Pick (w0, v0) e C such that 

1 
g("o» vo) > M -

wovo 
Similarly, as in the case y < oo, one obtains 

g(w, v) mn 
= — g ( % v0) 

wv wv 
where w, « are as above. Then 

lim inf —g(w, v) > M, 
(w,v)->(oo,oo) WV 

which completes the proof in case y = oo. 

Note that the condition ||£//rrJloo < 1 f° r e a c n (*> r) e R+is not 
necessary for the above theorem. Also one needs only superadditivity. 

(2.4) Additive Processes. A classical example of an additive process 
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G = iGt}t>0 0 r G = {G(W,v)}(W,v)^C i s 

(2.5) Gt = f'o Tjds or 

Jo Jo U(s^. G<^) = JoJoU(^2)fdSldS2 

f o r / G Lj, where 

T = {^h^O a n d # = {*W</,r)eR2 

are one and two dimensional strongly continuous semigroups of (positive) 
Lj-contradictions with T0 = I and U0 = /, and the integrals are defined as 
the L,-limit of the corresponding Riemann sums. These kinds of additive 
processes have been studied quite extensively in the literature [1, 15, 9, 16, 
17]. Concerning the a.e. convergence of t~xGt or u~2Gu as t —» oo or 
u —> oo, the properties of the additive processes of the form (2.5) are 
shared with general r-additive and ^-additive processes. For, suppose 
G = {Gn}n(EN is a T-additive process where T = {Tk}k(=N for some 
(positive) L,-contraction T. Then 

G„ = 2 rc„ 

hence 

1 " " ' 

»-'<?, — 2 re,. 
« <=o 

Similarly for G = {G(„,m)}(„,m)e>-., we have 

7iGn = 2 2 r'̂ 'G, 
« / = 0 7=0 

where G is ^-additive with 

where T and S are commuting positive L,-contractions. A.e. existence of 
the limit 

1 "" ' 

- 2 T'f 
n i=o 

is a classical result now [13, 9] for T is an Lx -contraction which is 
also an L^-contraction. We also have the following Maximal Ergodic 
Theorem [9]: 
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THEOREM 2.6. Let T be a positive linear L,-contraction with WTW^ = 1, 
and let G be a 7 = [T }k<=^-additive process. Then for each a > 0 

(2.7) ME) = i - ](a,\GxW 
2-j 

where 

e(a) = {x G X\ \Gx{x) \ > a} and 

i x e X: sup 
1 
-GnM > •}• 

Furthermore, let G be positive and bounded and T be Markovian. Then 

1<«) G'* - I G^ = -J G»dlk - ̂  
Therefore 

(2.8) >i(E) ^ -yG. 

For a continuous parameter positive T-additive process G = {G r } r > 0 we 
have 

(2.9) GA; ~ TnGr-n = Gr = Gn+\ + ^ / i 6 / - * 

where r is a rational number with n < r < n + 1 for some n e N + . If we 
let 

then 

G: 

q — sup Gv 
0</^l 

. Define 

« - 1 

= 2 7 > , fi ^ 1. 
/=o 

So, Gf = {G'n}nŒN is a positive additive process. Observing that co ^ G 
for any rational p with 0 < p ^ 1, we have 

r * G r - „ = Tn°> Gn+\ GL 

for any rational r with « < r < « + 1. Thus (2.9) implies that 

G„ - (G'n + X - G'„) ^Gr^ G„ + ] + (G ; + l - G'„). 

Since both {Gn}n(EN and {G^)nGN are (discrete) positive additive 

processes, 

lim -Gn and lim -G'n 
AJ—>oo n n^oo n 
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exist and are finite a.e. Consequently 

q — l im(l//)G r exists a.e. 

Moreover, we also have the maximal ergodic theorem for continuous 
parameter additive processes. Before giving this theorem, for convenience, 
we will adopt the following notation: It is known that f*0 Tjds is defined 
as the Lj-limit of the corresponding Riemann sums. For our purposes, we 
will take a particular type of Riemann sums given as I^f — 0 and 

i [ak\ 

ik
tf=-k 2 r2*/ 

^ / = 0 

for any integer k ^ 1 and / > 0 a n d / e Lx, where [a] is the largest integer 
strictly less than a for any a e R. 

THEOREM 2.10. Let G = {G,} / > 0 be a bounded, positive, r-additive 
process, where T = {^}^o ^ a stron^y continuous Markovian semigroup. 
Then, for each a > 0, 

KE) ^ - yG, 
a 

where 

E = \ x\q — sup -GAx) > a }. 
I t>0 t J 

Proof. Let / e B and let A: be a positive integer such that 2kt <E N + . 
Then 

1 2kt~\ 

Gt = L, — lim -£ 2 Tl
2 kG2 k. 

Let 
i m~ 1 

f\ = sup — 2 Tl
2 kG2 k. 

l ^ m < o o m / = o 

Then for each c > 0, there exists «0 e N+ with 

f*^-G( — e a.e. for /c ^ H0. 

Thus 

lim inf / £ = -Gt a.e. 
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Since {G(}t>0 is continuous in / on (0, oo) by additivity and boundedness, 
we have 

sup -Gt = q — sup -G r , 
t-^o t r>o r 

thus 

Let 

then 

lim inf/£ = q — sup -Gr. 

f* = q - sup -G r , 
r > 0 T 

l iminf/*(x) ^ / * ( x ) a . e . 

Let Ek = (JC:/^(JC) > a} , then 

£ c lim inf Ek. 
k~*oo 

Now, by Fatou's Lemma, 

JJL(E) ^ lim inf (x(Ek). 
k^oo 

Therefore, 

- /x(£) ^ lim i n f - / i ^ ) 
2 * 2 

^ lim inf / Ĝ  kda 

by Theorem 2.6, where e(a) = {x:G2 * > a} . Since 

J G2 *J/x ^ YG
2 > 

we have 

- ju(£) ^ lim inf ^ 
2 ^ ^-oo 2* 

In the two dimensional case the a.e. existence of 

lim -jGn 
A7->00 ÏI 

is proved by A. Brunei [6]. Although it is not stated and proved in [9] all 
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the necessary arguments for the proof of this result are included in [9] 
which are actually straightforward and self-contained. Brunei's proof, 
which is different from the arguments in [9], involves more complicated 
tools. That is why we will, nevertheless, sketch a proof for this theorem for 
general additive processes following the arguments in [9]. First we will 
need the following lemma which is stated and proved in [9], but we will 
state it here in terms of general additive processes. 

LEMMA 2.11. Let T and S be two Markovian operators which commute 
andWn^ ^ \andWSWn ^ I. Let 

and let 

G = ( G(/!,/W )}(/!,/* )€E.^. 

be a positive, bounded, ^-additive process. If 

f* = sup (l/fl2)Gn, 

then there exists a constant K > 0, independent of G and <% such that 

IL(E) ^ — yG for each a > 0, 
A • a 

where E = {x:f*(x) > a}. 

THEOREM 2.12. Let T, S and <%be as in Lemma 2.11. If 

is a bounded, ^-additive process, then 

lim -2Gn 
H—>oo n 

exists and is finite a.e. 

Proof. 

Gn = 2 TiSjGl 

for any n e N + . The conclusion of the theorem is true if Gx e L , p > 1, 
and in this case Gn e L for each n e N+; p > 1 [9]. 

Now, first, without loss of generality one can assume that G is positive. 
Since Lx n L is dense in Lx for each/? > 1 in Lj-topology, given e > 0, 
there exists g e L, Pi L such that 

HGi " glli < c. 
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Also 

n-\ 

4 2 TiSJGl 
n2 ij=o 

-2 2 TiSJ(Gl ~ S) + 1 2 7""S>g. 
« /j=o « /,./=o 

Consider the set 

{ x: lim sup ^ G n ( x ) > lim inf -^Gn f. 

Then to prove the theorem it is enough to show that this set has measure 
zero. Since G{ = (Gx — g) + g and since 

1 '7 _ 1 

lim ~2 2 T'S-Jg exists a.e., 

it is enough to consider G{ — g instead of Gx and it is enough to show 
fi(E) = 0 where 

{ 1 " 
x: lim sup -2 2 r'S-'lG! - s| 

1 "_1 1 
- lim inf —2 2 r 'S^lG, - s\ > a >, 

,7-»oo A7 / , y = 0 ' 

for any a > 0. Let 

£ ' = { JC: lim sup -^ 2 r ' S^Gj - s| > a } 

Then E Q E' and hence fx(E) ^ ju(£'). By Lemma 2.11 

ka 

where y' is the time constant of the process given by 

T1SAG. - s\ \ 

But y' = ||G, - g||, < €. Hence 

ka 
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giving the result desired. 

Remark 2.13. The conditions WTW^ = 1 and WSW^ ta 1 are necessary 

since if this condition is dropped, then a.e. convergence may not hold 
[7]-

(2.14) Reduction of Dimension. In this section, given any two-
dimensional strongly continuous semigroup 

of positive Lx-contractions and a bounded ^-additive process 

we will define a one-dimensional semigroup r and a T-additive process 
H = {Ht}t>Q by using a technique introduced by N. Dunford and J. T. 
Schwartz [9] and further developed by T. R. Terrell [19] and M. A. 
Akçoglu and A. del Junco [2]. Here we will only give the results and 
properties of this technique and omit the details, for it is given in [19] and 
[2] explicitly with proofs. 

For any x e (0, oo) and /? e R, let 

(2.15) 0,08) 
0-* 'V* 2 ' 4 ' i f j 8 > 0 

2V)8 

0 if /3 ^ 0 

and for (w, v) e R+, define 

Qx(u, v) = Qx(u) • <&x(v). 

Then, for each fixed x e (0, oo), $X:R2 —» R is a nonnegative continuous 
function vanishing on R 2 \R+ . Moreover, 

i 
' 2 $*("> v)dudv = 1 and 

[R2 $ X ( / - ii, r -v)0>v(w, v)</urfv - $,+,(*, r) 

for each (/, r) e R+ and JC, j> G (0, oo). 
Given any strongly continuous semigroup 

of positive Lx -contractions, if we define 

(2.16) LJ= fRl<t>x(u,v)U(uv)fdudv, 

for x G (0, oo) and / e L p then T = {^ x } x > 0
 n a s t n e following 

properties: 
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(2.17) Lx is a positive linear contraction on L, for any x > 0. 
(2.18) LxLY = Lx + y for each x, y e (0, oo). 
(2.19) HLJoo ê 1 for each x e (0, oo) if 

>2 Hf/(/,r)lloo ^ 1 for each (/,/•) e R + 

(2.20) Lx is Markovian for each x e (0, oo) if ^ is Markovian. 
(2.21) {Lx}x>0 is strongly continuous. If ^ i s strongly continuous with 

U0 = /, then {Lx} is also continuous at x = 0 and L0 = /. 
Let G = {G ( w v )} ( w v ) ( E C ^ e a (positive) ^-additive process. For x e 

(0, oo) define 

(2.22) hx = JR2 <D>, v)G(du, dv), 

and also define a new process H = {Ha}a>0 by 

H«=fl (2.23) 7/fl = J0hxdx, a>0. 

Here we use the definition (1.10). Then this new process H is a (positive) 
T-additive process. Also, the following lemma is known [2]: 

LEMMA 2.24. Given a positive, bounded ^/-additive process 

then there exists a constant 8 > 0, independent of G and &, such that 

(2.25) -2Ga ^ ~H^-a 
a y a 

for each a > 0, where H = {Ht } / > 0 and r are as defined in (2.23) and (2.16) 
above. 

3. Ergodic theorems. Before proving the main result, we will give two 
technical lemmas. The first one is originally due to R. T. Smythe [18], in 
the one-dimensional case, in the form we will give here, is given by M. A. 
Akçoglu and L. Sucheston [5], and by R. Emilion and B. Hachem [10] in 
the two-dimensional case. But [10] is available only as an announcement 
and the lemma is stated in it without proof. For this reason we provide a 
proof. Before stating it, we find it convenient to give a notation: for any 
(/Î, m) e ^Tand k, I e N + , let 

tà F — F 
^kr(n,m) — r{n + k,my 

<¥%,m) = F(n,m + l) a n d 

TkF(n,m) = (®* ~~ U(k,0))F(n,my 

°lF(n,m) = (*/ ~ U(0,l))F(n,m)-
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Notice that, in this case, (1.7) takes the form 

O"7 ' ) F(k,l) = °lTkF(n,my 

LEMMA 3.1. [5, 10] Let F = {F{nm)}{nm)Gjr be a bounded, positive, 
strongly ^-super additive process, where W = {TnSm} with T and S 
commuting Markovian operators such that WTW^ = 1 and WSW^ = 1. Then 
there exist positive ^-additive processes Gn\ m = 1 , 2 , . . . , such that 

.2) c : § ( i - - ) 2 f „ (3 

for each m = 1 and 1 ~ n < m. 

Proof. Let {r)(m) } m ^ ] be a sequence of elements in L, defined by 

1 m 

V(m) = - 2 2 [F(iJ) ~ TF{l_Xj) - SF{ij_V) + rSF(/_,,,__,)]. 
' îj = i 

Define a process Gm by 

« - 1 « - 1 

G : = 2 2 ^^(m), m ̂  1. 
A:=0 / = 0 

This is a ^-additive process. It is known that [5], for 1 ^ n < m, 

2 
A:=0 

2 , 7 * 2 (F(iJ) - rF,_W)) 
j / = 1 

m~\ n~\ 

(I - T") 2 F(l_f) + 2 7"F(miy) 

and 

j— 1 r m -I 

2 tf [2 (*=;,,,-SFf,,.,,)] 
/ i - l 

2 
/ = 0 

m ~ 1 /7— 1 

(/ - 5") 2 ^,„ + 2 SJF(tm). 
7 = 1 7: = 0 

Therefore, for m i^ 1 and 1 ^ « < m, 

, ! = (J - T"ï m2G^ 
m — 1 r m — l /J — 1 

= (/ - T") 2 (/ - S") 2 F(,y) + 2 5 % 
i = l L y = l 7 = 0 

n~ 1 r m— 1 n~ 1 -i 

+ 2 rUi - 5") 2 F(mJ) + 2 s^(mm) . 

m) 
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Moreover, if 

*„,„, = (/ - L") 2 F, + 2 VM, 
t=\ t=0 

where L is an operator on Lx and F is a process, then 

n~\ m~\ 

K,m = 2 /-, + 2 (f, - 5"F,_„) 
r = 1 f = « 

« - 1 

+ 2 (S'Fm - 5»Fm_„+,). 

r = 0 

Hence 

m2G": = "2 F W ) 

n~\ m~\ n~1 n— 1 

+ 2 2 °nF(i,j-n) + 2 2 SJOn_jF{i +j_n) 
i = l y = « / = 1 7 = 0 

m — 1 « ~ 1 m — 1 

+ 2 2 T„F(,_„ -, + 2 V ^ , . . ._„, 

m~\ n ~ 1 

+ Z i Zrf SJ7n°n-jF(i-n,m+j-n) 
i = n 7 = 0 

A7 — 1 A7 — 1 

~*~ ^ ^ * Tn~r(m + i-nJ) 
i = 0 7 = 1 

tt—1m—1 

+ 2 2 r/Tw_l.anF(/w+l._ ._n) 

/ = 0 7 = « 

« - 1 
+ , 2 J ^ ^ Tn-i°m-j*i(m + i-n,m+j-n) ' 

/ , 7=0 

Since /^wm) = 0 for each (n, m) e .yr+ and since 71 and S are positive 
operators, we have 

m~ 1 

/ „ „ „ 7) 

/,y = w 
Gn = 2 TnO„F(i_nJ_n) 

i,j = n 
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by (1.7'), giving (3.2). For all values of n, m with 1 ^ n < m, this process 
Gm = {G™}n^{ is positive since {F^nm)} is positive. Then, by additivity, it 
is positive for each n e N + . 

LEMMA 3.3. Let F and Wbe as in Lemma 3.1. If 

f* — lim sup —~F.n, 

//ze^ z7zer£ ex/'s/s « constant K > 0 w/z/'c/z /s independent of F on & such 
that 

/x(£) ^ -LY f . 
Aa 

/or each a > 0, w/zere £ = (JC:/*(.X) > a}. 

Proof By Lemma 3.1, for each m ^ 1, there is a positive, bounded 
^-additive process {G™)n^\ such that 

G™ i; ( 1 - - ) Fn f or « â / ! < m. 

On the other hand, as is shown in the proof of Lemma 2.11 following [9], 
there exists a constant d > 0, independent o f / and ^, and w = u{n) such 
that, for a n y / e Lj, 

where 

OO OO i j 

u\tr) = *-<'+'> 2 2 ^ - w 
/ = o y = o / ! / ! 

as in [9]. Also, by Lemma 2.24 there is a constant 8 > 0, independent of/ 
and 

*' = { ^ ) W R 2 . 
such that 

h I"* i>^fdtdr = WuH^ /GL" 
where / / = {#,},>0 is a positive, bounded, r-additive process, with 
T = ( M * i = o a n d 
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as defined in Section (2.14). Thus, for each m iï 1 and 1 ^ n < m, there is 
a u = u(n) and a constant K > 0, independent of F and T and S, such 
that 

(3.4) 
V m / A/ À7 

where 

"' = / I [X2 * > ' v)f/(H,v)^v]7,(m)^. 
Since / / = {// ,} r > 0 is a positive additive process, for any / > 0 with 

k - \ < t < k , k ^ N + , 

i)(m)dx. " , = 
k-2 

2 
/ = 0 

J0Li+xV(m)dx + / : 
-(*- -i) 

1) + ^ 

Since 

y o 
: - l ) 

L ( * - l ) + x'»(w' i)dx - / : V - ! ) + ,!?(• m)rfjc. 

we see that 

Ht*k 2-
/=0 

L', ïj(m), 

where 

ÏJO0 = J 0 LxK](m)dx 

is an Lj -function for each m ^ \. Now, 

Ht^ Hk= 2 ^ ( " O for A: - 1 < / < A:, A: e N + . 

Thus 

ël ^ (JL)¥k for* - 1<* <*. 
/ U - l / A: 

It is known [5] that for any positive bounded superadditive process 
{Hk}k^] there exists an Lx -function A such that 

k-\ 

Hk^ 2 L',A, /c ^ 1. 
/=o 

Thus, 
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Moreover 

J Ad/i = yH 

[5]. Now, if 

h* = lim sup -
k~*oo t 

k-\ 

2 L'A 
/ = 0 

then 

lim sup —- = h 
k^oo k 

* 

and consequently, 

lim sup (\/t)Ht 
k-^oo 

^ h*. 

Therefore, by (3.4), 

lim sup -1Fn ^ -/z* 

Thus 

f* < ^* 
K ' 

and hence 

M {*:/*(*) > a} ) ê tf {*:/**(*) > aK) ). 

Then, 

Since 

/ A /̂JH = yF = lim l -q(m)dfi, 

we have y^ = yF and hence 

/<£) ^ ±- yF. 
aK 

THEOREM 3.5. Let F = {F^m)}^m)^jrt be a bounded strongly 
<%• super additive process with 

^ — \^( / i ,m)/( / i ,m)< \jr> 
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where each U, m) is a Markovian operator on L, such that 

Ht/(n,w)lloo S 1, (n,m) GJT 

Then 

lim ~^Fn exists a.e. 
//—>oo n 

Proof. Given € > 0, find n0 e N + such that 

<w Then form a process 

Gn = 2J U(inoJn0)
Fn0' 

ij = 0 

Then G = {Gn}n^] is a bounded ^'-additive process, where 

Also 

yG = lim -5 J GJix 
n->oo n2 

= lim f-L / 2 I///w in)FndA 

and hence yG > yF — c. Notice that, by superadditivity, Fn = Gn on the 
points n = £n0, A: = 0, 1, 2, Thus F = {Fn}, where Fn = Fn - Gn is 
a positive, bounded, strongly ^-superadditive process for n = kn0, k = 0, 
1 , 2 , . . . . Moreover, 

V =
 YF - yG < e. 

Since 

lim —2 Gn exists a.e. 

by Theorem 2.12, and since 

KE) = —yF' = — > 

for each a > 0, where 

£ = {x: lim sup — — ^ - Gk )(x) > a} , 
A:̂ o (kn0f ^ ° 
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we see that 

lim —^Fn exists a.e. 
n~>oo n 

Next, we will prove the ergodic theorem for continuous strongly 
superadditive processes. 

THEOREM 3.6. Let F = { L V ) L V ) G C be a bounded strongly $/-
superadditive process where 

is a strongly continuous Markovian semigroup on Lx such that 

Hl/(,,r)lloo ^ 1 for each (t, r) e R2+ 

and U0 = I. Assume that 

Q = sup {\U(tr)F(uv)\:t,r,u,v e Q + , 

t + u ^ 1, r + v ^ 1} G L,. 

77zeft g — lim -^F u exists a.e. 

Proof. Let « e N + and r be a rational number with n < r < n + 1. By 
superadditivity, 

F ^ F -\- II F + IJ F -4- /V F 

«~1 «—1 

= ^n + -2d U(nJ)F(r-n,\) "*" 2 J ^(i%n)^(\,r-n) + ^ n ^ r - n * 
7=0 /=0 

Therefore, if 

« - 1 

• / = 0 

7 = 0 

then Fr^Fn- Yrn. Similarly, 

/ i - l 

/ = 0 
= F r + 2a ^(/»[^(0,r-w)^(l,«+l-/-)] 

A 7 - 1 

~*~ 2^ ^(wj)[^(r- / i ,0)^(n+l-r , l ) ] 
7=0 
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~*~ ^ n [ ^ ( r - n , 0 ) ^ ( r t + l - r , r - r t ) 

+ U(c >,/* — n F 
r(r-

n,h i + l - r ) 

+ ut. -n^n i + l -J-
Therefore, if 

n~\ 

Zr,n- = 2 
i = 0 

w - 1 

UU,n ,1^(0 /" — n)r(\,n 

+ ^ ^(/i ,y)l^(r-Ai,0)^(w+l-r,l)l 
7=0 

+ ^ J l ^ ( r - / i , 0 ) ^ ( « + l - r , r - / i ) l 

+ l ^ (0 , r - / i ) ^ ( r - / i , / i+ l - r ) l 

+ | I / r _ n F n + 1 _ r | ] , 

then Fr ^ F n + 1 + Zrn. Hence we have 

Since Yrn i? 0 and Z r w ^ 0 and since 

lim -jFn exists a.e. 

by Theorem 3.5, to prove the theorem it is enough to show that 

(3.7) -^>Yrn —-> 0 a.e. as n —» oo, and 
n ' 

(3.8) -~ Z r / I —> 0 a.e. as n —> oo. 

If we show that 

(3.9) 0 â y r„ ë G n + 1 - Gn and 

(3.10) 0 ^ Zrn â 3(Gn + 1 - Gn) 

for some bounded additive process {G^mnA9 then (3.7) and (3.8) will 
follow from (3.9) and (3.10) respectively. Since 

lim 1 Gn exists a.e. 
n~*oo n 

by Theorem 2.12. For, let 
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n— 1 m~\ 

G^m) = 2 2 U(iJ)Q. 

Obviously G = {G(nm)}(nm)^jrt is a positive, bounded additive process. 
Then 

Y„ ^ 2 u(ttJ)a + 2 i/(,B)a + t/na = cn + , - G„ 
7=0 / = 0 

and 

Zr,„ ^ 2 U(nJ)Q + 2 t/(l>)Q + 3£/nG = 3(Gn+1 - G„) 
7 = 0 / = 0 

giving (3.9) and (3.10) respectively. 

Further remarks. The results we have obtained are valid if °U is a strongly 
continuous semigroup of positive Lx -contractions, not necessari
ly continuous at the origin. If Q£ is such a semigroup, then for any 
a e (0, oo), {U,a(ar)} is a one-dimensional strongly continuous semi
group of Lj-contractions, (/, r) e C. Then there exists a unique partition 
{% QJ) of X into its initially conservative and dissipative parts # and Q) 
respectively [1, 2] such that 

(i) xU{Uryf = 0 for a n y / e L, and (/, r) e C. 
(ii) The restriction of ^ t o Lx(ê) is a strongly continuous semigroup of 

positive ^(^-cont rac t ions which is also continuous at the origin where 

Lx(<g) = { / e L, : support of/ ç # } . 

If F = {^(WV)}(WV)GC *s a bounded ^-additive process and {% 3} is the 
partition of X as above, then 

X9F{u,v) = ° 

for each (w, v) G C [2], that is F^uv) e L ^ ^ ) . Thus we are allowed to 
restrict °U to #, and hence consider it as a semigroup which is strongly 
continuous at the origin also. Moreover, for the results of our work, there 
is no loss of generality in assuming that U'0 = /, the identity operator, 
where U'0 belongs to the restriction of ^ t o #[2, 3]. Hence one obtains the 
conclusions of Theorem 3.5 and Theorem 3.6 on fé7. It is obvious that in 
general there is no convergence on Sd. 

For notational convenience, all the proofs were given in the two-
dimensional case. However, as seen from the method of proof that the 
extension of it to the «-dimensional case, n ^ 2 is straightforward. 
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