THE EXISTENCE OF A CLASS OF KIRKMAN SQUARES OF INDEX 2

E. R. LAMKEN AND S. A. VANSTONE

(Received 15 August 1985; revised 20 January 1986)

Communicated by L. Caccetta

Abstract

A Kirkman square with index λ, latinicity μ, block size k and v points, $K S_{k}(v ; \mu, \lambda)$, is a $t \times t$ array ($t=\lambda(v-1) / \mu(k-1)$) defined on a v-set V such that (1) each point of V is contained in precisely μ cells of each row and column, (2) each cell of the array is either empty or contains a k-subset of V, and (3) the collection of blocks obtained from the nonempty cells of the array is a (v, k, λ)-BIBD. For $\mu=1$, the existence of a $K S_{k}(v ; \mu, \lambda)$ is equivalent to the existence of a doubly resolvable (v, k, λ) BIBD. In this case the only complete results are for $k=2$. The case $k=3, \lambda=1$ appears to be quite difficult although some existence results are available. For $k=3, \lambda=2$ the problem seems to be more tractable. In this paper we prove the existence of a $K S_{3}(v ; 1,2)$ for all $v \equiv 3(\bmod 12)$.

1980 Mathematics subject classification (Amer. Math. Soc.): 05 B 30.

1. Introduction

A Kirkman square with index λ, latinicity μ, block size k and v points, $K S_{k}(v ; \mu, \lambda)$, is a $t \times t(t=\lambda(v-1) / \mu(k-1))$ array defined on a v-set V such that
(1) each point of V is contained in precisely μ cells of each row and column,
(2) each cell of the array is either empty or contains a k-subset of V, and
(3) the collection of blocks obtained from the nonempty cells of the array is a (v, k, λ)-BIBD.
The existence question for $K S_{2}(v ; \mu, \lambda)$ has been completely settled [5]. For $\mu=1$, the existence of a $K S_{k}(v ; \mu, \lambda)$ is equivalent to the existence of a doubly resolvable (v, k, λ)-BIBD. A doubly resolvable (v, k, λ)-BIBD is denoted by
$D R(v, k, \lambda)$-BIBD. The existence question for $\operatorname{DR}(v, k, \lambda)$-BIBDs with $k \geqslant 3$ is open. Of particular interest to us is the case $k=3$. A necessary condition for the existence of a $K S_{3}(v, 1,1)$ is $v \equiv 3(\bmod 6)$. The best result, thus far, for $K S_{3}(v ; 1,1)$ s is asymptotic.

Theorem 1.1 [8]. There exists a constant v_{1} such that for all $v \geqslant v_{1}$ and $v \equiv 3$ $(\bmod 6)$ there exists $a K S_{3}(v, 1,1)$.

In this paper, we consider the next case $k=3$ and $\lambda=2 . K S_{3}(v ; 1,2)$ s are equivalent to $D R(v, 3,2)$-BIBDs and have been called doubly resolvable twofold triple systems of order v (DRTTS (v)) ([1]). A necessary condition for the existence of a $K S_{3}(v ; 1,2)$ is $v \equiv 0(\bmod 3)$. A $K S_{3}(3 ; 1,2)$ defined on $\{\infty, 0,1\}$ is

$\infty 01$	
	$\infty 01$

It is known that there do not exist $K S_{3}(6 ; 1,2)$ and $K S_{3}(9 ; 1,2)$ [6]. The next smallest design has recently been constructed. A $K S_{3}(12 ; 1,2)$ appears in [4]. $K S_{3}(v ; 1,2)$ s are also known to exist for $v=15,18,21,24,27,30$ and 33. These designs were constructed using starters and adders ([1], for $v=33$, Lemma 3.6). In the next section, we give some recursive constructions for $K S_{3}(v ; 1,2) \mathrm{s}$. In the last section, we apply these constructions to prove the existence of $K S_{3}(v ; 1,2)$ s for $v \equiv 3(\bmod 12)$.

2. Constructions

Let V be a set of v elements. Let $G_{1}, G_{2}, \ldots, G_{m}$ be a partition of V into m sets. A $\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$-frame F with block size k, index λ and latinicity μ is a square array of side v which satisfies the properties listed below. We index the rows and columns of F by the elements of V.
(1) Each cell is either empty or contains a k-subset of V.
(2) Let F_{i} be the subsquare of F indexed by the elements of $G_{i} . F_{i}$ is empty for $i=1,2, \ldots, m$.
(3) Let $j \in G_{i}$. Row j of F contains each element of $V-G_{i} \mu$ times and column j of F contains each element of $V-G_{i} \mu$ times.
(4) The collection of blocks obtained from the nonempty cells of F is a $G D D\left(v ; k ; G_{1} G_{2}, \ldots, G_{m} ; 0, \lambda\right)$ (see [14] for GDD notation).
If $\left|G_{i}\right|=h$ for $i=1,2, \ldots, m$, we call F a $(\mu, \lambda ; k, m, h)$-frame.

We will use frames to provide some product constructions for $K S_{3}(v ; 1,2)$ s. The first result uses a ($1,2,3 ; m, 1$)-frame.

Theorem 2.1. If there exists a $(1,2 ; 3, m, 1)$-frame, a $K S_{3}(n+1 ; 1,2)$ and three mutually orthogonal Latin squares of side n, then there is a $K S_{3}(m n+1 ; 1,2)$ which contains as a subarray a $\mathrm{KS}_{3}(n+1 ; 1,2)$.

Proof. Let $V=\{1,2, \ldots, n\}$ and let $V_{i}=V \times\{i\}$ for $i=1,2, \ldots, m$. Let L_{1}, L_{2} and L_{3} be a set of three mutually orthogonal Latin squares of side n defined on V. L will denote the array of triples formed by the superposition of L_{1}, L_{2} and $L_{3} . L_{i j k}$ is the $n \times n$ array of triples formed by replacing each triple (a, b, c) in L with the triple (a_{i}, b_{j}, c_{k}) where $a_{i} \in V_{i}, b_{j} \in V_{j}$ and $c_{k} \in V_{k}$.

Let K_{i} be a $K S_{3}(n+1 ; 1,2)$ defined on $V_{i} \cup\{\infty\}$. Let F be a $(1,2 ; 3, m, 1)$ frame defined on $\{1,2, \ldots, m\}$ such that i is missing from cell (i, i) for $i=$ $1,2, \ldots, m$.

We construct a $K S_{3}(m n+1 ; 1,2)$ on $(V \times\{1,2, \ldots, m\}) \cup\{\infty\}$ as follows. Replace each triple (i, j, k) in F with the $n \times n$ array $L_{i j k}$. In each cell (i, i) of F, place the $n \times n$ array K_{i} for $i=1,2, \ldots, m$. The resulting array A has size $m n \times m n$. Each distinct pair in $(V \times\{1,2, \ldots, m\}) \cup\{\infty\}$ occurs twice in A. Each element in $(V \times\{1,2, \ldots, m\}$ occurs once in each row and each column of A. Thus, A is a $K S_{3}(m n+1 ; 1,2)$.

The next result will be used for $(1,2 ; 3, m, h)$-frames with $h=1,3$ and 6 . This construction also appears in [2].

Theorem 2.2. If there exists a $\left(1,2 ; 3, m\right.$, h)-frame, a $K S_{3}(h n+w ; 1,2)$ which contains as a subarray a $K S_{3}(w ; 1,2)(w \geqslant 3)$ and three mutually orthogonal Latin squares of side n, then there is a $K S_{3}(h m n+w ; 1,2)$ which contains as a subarray a $K S_{3}(w ; 1,2)$.

Proof. Let $V=\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{h}^{i} \mid 1 \leqslant i \leqslant m\right\}$ and let $G_{i}=\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{h}^{i}\right\}$ for $i=1,2, \ldots, m$. Let $W=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{w}\right\}$ and let $N=\{1,2, \ldots, n\}$.

Let L_{1}, L_{2} and L_{3} be a set of three mutually orthogonal Latin squares of side n defined on N. L will denote the array of triples formed by the superposition of L_{1}, L_{2} and $L_{3} . L_{i j k}$ is the $n \times n$ array of triples formed by replacing each triple (a, b, c) in L with the triple $\left(a_{i}, b_{j}, c_{k}\right.$) where $a_{i} \in N \times\{i\}, b_{j} \in N \times\{j\}$ and $c_{k} \in N \times\{k\}$.

Let F be a $(1,2,3 ; m, h)$-frame defined on $V . F$ is a $\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$-frame. Construct an $h m n \times h m n$ array H from F by replacing each triple (x, y, z) in F with the $n \times n$ array $L_{x y z}$. H contains a diagonal of $m h n \times h n$ empty arrays.

Let K_{i} denote a $K S_{3}(h n+w ; 1,2)$ defined on $\left(N \times G_{i}\right) \cup W$ which contains as a subarray a $K S_{3}(w ; 1,2)$ defined on W. Let A denote the subarray defined on $W . K_{i}$ can be partitioned as follows.

$$
\left.K_{i}=\begin{array}{|l|l|}
\hline A & B_{i} \\
\hline C_{i} & D_{i} \\
\hline
\end{array}\right\} \neq-1
$$

where A and D_{i} are square arrays of side $w-1$ and h respectively.
We now construct a new array K from H and the K_{i} 's for $i=1,2, \ldots, m . K$ is defined on $(N \times V) \cup W$.

K is a square array of side $h n m+w-1$. Each element of $(N \times V) \cup W$ occurs precisely once in each row and each column of K. Every distinct pair in $(N \times V) \cup W$ occurs twice in K. Thus, K is a $K S_{3}(h m n+w ; 1,2)$ which contains as a subarray a $K_{3}(w ; 1,2)(A)$.

The last construction in this section is an indirect product for $K S_{3}(v ; 1,2)$ s. Before describing the construction, we recall the definition of an $\operatorname{IA}(n, k, s)$. Let V be a finite set of size n. Let K be a subset of size k of V. An incomplete orthogonal array $I A(n, k, s)$ is an $n^{2}-k^{2} \times s$ array written on the symbol set V such that every ordered pair of symbols in $V \times V-(K \times K)$ occurs in any ordered pair of columns from the array. We may think of an $\operatorname{IA}(n, k, s)$ as a set of $s-2$ mutually orthogonal Latin squares of order n which are missing a subsquare of order k. We need not be able to fill in the $k \times k$ missing subsquares with Latin squares of side k.

Theorem 2.3. Let u, v and w be non-negative integers such that $0 \leqslant u<w<v$. Suppose that $v-u \equiv 0(\bmod h)$ and $w-u \equiv 0(\bmod h)$. If there exists a (1,2,3; m, h)-frame, and $I A((v-u) / h,(w-u) / h, 5), a K S_{3}(v+1 ; 1,2)$ which contains as a subarray a $K S_{3}(w+1 ; 1,2)$, and a $K S_{3}(m(w-u)+u+1 ; 1,2)$, then there exists $a S_{3}(m(v-u)+u+1 ; 1,2)$.

Proof. Let $V=\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{h}^{i} \mid 1 \leqslant i \leqslant m\right\}, W=\{1,2, \ldots,(v-u) / y h\}, W_{1}$ $=\{1,2, \ldots,(w-u) / h\}$ and $U=\left\{\infty_{1}, \infty_{2}, \ldots, \infty_{u+1}\right\}$. Let $G_{i}=$ $\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{h}^{i}\right\}$.

Let F be a $(1,2 ; 3, m, h)$-frame defined on V such that F is a $\left\{G_{1}, G_{2}, \ldots, G_{m}\right\}$-frame.

We construct a set of three mutually orthogonal Latin squares of order $(v-u) / h$ defined on W which are missing subsquares of order $(w-u) / h$ defined on W_{1} in the upper left hand corners of the arrays from the $I A((v-u) / h,(w-u) / h, 5)$. Let I be the $(v-u) / h \times(v-u) / h$ array of triples formed from the superposition of these three squares. The array $I_{i j k}$ will be the array of triples formed by replacing each triple (a, b, c) in I with the triple $\left(a_{i}, b_{j}, c_{k}\right)$ where $a_{i} \in W \times\{i\}, b_{j} \in W \times\{j\}$ and $c_{k} \in W \times\{k\}$.

Next we construct an $m(v-u) \times m(v-u)$ array from F by replacing each triple (i, j, k) in F by the $(v-u) / h \times(v-u) / h$ array $I_{i j k}$. (Empty cells in F are replaced by $(v-u) / h \times(v-u) / h$ empty arrays.) Call the resulting array $H^{\prime} . H^{\prime}$ contains a diagonal of $m(v-u) \times(v-u)$ empty arrays. We can partition H^{\prime} into $m^{2}(v-u) \times(v-u)$ arrays. Denote these subarrays by $H_{i j}^{\prime}$ for $i, j=1,2, \ldots, m$. We can permute the rows and columns of H^{\prime} so that each subarray $H_{i j}^{\prime}$ contains an empty $(w-u) \times(w-u)$ array in the upper left hand corner. Call this array $H . H$ also contains a diagonal of $m v-u \times v-u$ empty arrays. H is defined on $W \times V$.

Let A_{i} be a $K S_{3}(v+1 ; 1,2)$ on $\left(W \times G_{i}\right) \cup U$ such that the subarray $K S_{3}(w+1 ; 1,2)$ is defined on $\left(W_{1} \times G_{i}\right) \cup U$. We can partition A_{i} as follows.

We now construct a square array of side $m(v-u)+u$ using the A_{i} and H. This array will be called B_{1} and has the following form.

E	E	R_{1}	E	R_{2}	E	E	R_{m}
E	E	S_{1}	E		E	E	
C_{1}	T_{1}	K_{1}					H
E	E		E	S_{2}			
C_{2}			T_{2}	K_{2}			
					-		
E	E				E	S_{m}	
C_{m}					T_{m}	K_{m}	

The arrays labelled E in B_{1} are empty. They form an $m(w-u)+u \times$ $m(u-u)+u$ array. Place a $K S_{3}(m(w-u)+u+1 ; 1,2)$ defined on $\left(W_{1} \times V\right)$ $\cup U$ in this array. The resulting array B is a $K S_{3}(m(v-u)+u+1 ; 1,2)$ on $(W \times V) \cup U$. Every pair of distinct elements in $(W \times V) \cup U$ occurs precisely twice in B since F and the Kirkman squares used to construct B had index $\lambda=2$. It can be verified that each element in $(W \times V) \cup U$ occurs once in each row and each column of B.

3. Applications

In order to apply the constructions from the previous section, we will need the following results on frames from [2].

Theorem 3.1. [2] There exist (1, 2; 3, m, 3)-frames for $m \geqslant 5$ except possibly for $m \in\{6,10,14,16,18,20,22,24,26,28,30,32,34,38,39,42,43,44,46,47,48$, $51,52,59,118,123\}$.

Theorem 3.2. [2] There exist (1,2;3, m,6)-frames for $m \geqslant 5$ except possibly for $m \in\{10,11,14,15,17,18,19,20,23,24,27,28,32,34,39\}$.

We note that one more value can be deleted from the list of exceptions to Theorem 3.1.

Lemma 3.3. There exists a (1,2; 3,48, 3)-frame.
Proof. Apply the frame singular direct product [2] using a (1,$2 ; 3,6,6$)-frame, three mutually orthogonal Latin squares of side 4 and a (1,2;3,8,3)-frame.

The constructions also require the existence of some $K S_{3}(v ; 1,2) \mathrm{s}$ which contain as subarrays $K S_{3}(w ; 1,2)$ s where $w \geqslant 3$.

Lemma 3.4. There exists a $K S_{3}(v ; 1,2)$ which contains as a subarray a $K S_{3}(3 ; 1,2)$ for $v=15,21,27,39,51,63$ and 81 . Furthermore, there exists a $K S_{3}(63 ; 1,2)$ which contains as a subarray a $K S_{3}(15 ; 1,2)$.

Proof. A $K S_{3}(15 ; 1,2)$ is displayed in Figure 1. A starter and adder for a $K S_{3}(21 ; 1,2)$ are listed in [1]. Since there exist $K S_{3}(v ; 1,1)$ for $v=27,39,51,63$ and 81 ([3],[9], [11], [12]), there exists $K S_{3}(v ; 1,2)$ which contain as subarrays $K S_{3}(3 ; 1,2)$ for $v=27,39,51,63$ and 81 . To construct a $K S_{3}(63 ; 1,2)$ which contains as a subarray a $K S_{3}(15 ; 1,2)$, we apply Theorem 2.2 using a (1,2;3,5,3)-frame, a $K S_{3}(15 ; 1,2)$ which contains a $K S_{3}(3 ; 1,2)$ and 3 mutually orthogonal Latin squares of side 4 .

$x 0 \overline{0}$	$2 \overline{4} \overline{5}$	$4 \overline{\overline{1}} \overline{1}$		$1 \overline{6} \overline{2}$			356						
	$x 1 \overline{1}$	$3 \overline{5} \overline{6}$	$5 \overline{4} \overline{2}$		$2 \overline{0} \overline{2}$			460					
		$x 2 \overline{2}$	$4 \overline{6} \overline{0}$	$6 \overline{5} \overline{2}$		$2 \overline{1} \overline{4}$			501				
$4 \overline{2} \overline{5}$			$x 2 \overline{2}$	$5 \overline{0} \overline{1}$	$0 \overline{6} \overline{4}$					612			
	$5 \overline{2} \overline{6}$			$x 4 \overline{4}$	$6 \overline{1} \overline{2}$	$1 \overline{0} \overline{5}$					023		
$2 \overline{1} \overline{6}$		$6 \overline{4} \overline{0}$			$x 5 \overline{5}$	$0 \overline{2} \overline{3}$						134	
$1 \overline{2} \overline{4} \overline{3} \overline{2} \overline{0}$		$0 \overline{5} \overline{1}$			$x 6 \overline{6} \overline{6}$							245	
356							$x 0 \overline{0}$	$2 \overline{4} \overline{5}$	$4 \overline{3} \overline{1}$		$1 \overline{6} \overline{2}$		
	460							$x 1 \overline{1}$	$3 \overline{5} \overline{6}$	$5 \overline{4} \overline{2}$		$2 \overline{0} \overline{3}$	
		501							$x 2 \overline{2}$	$4 \overline{6} \overline{0}$	$6 \overline{5} \overline{3}$		$2 \overline{1} \overline{4}$
			612				$4 \overline{2} \overline{5}$			$x 3 \overline{2}$	$5 \overline{0} \overline{1}$	$0 \overline{6} \overline{4}$	
				023				$5 \overline{3} \overline{6}$			$x 4 \overline{4}$	$6 \overline{1} \overline{2}$	$1 \overline{0} \overline{5}$
					1324		$2 \overline{1} \overline{6}$		$6 \overline{4} \overline{0}$			$x 5 \overline{5}$	$0 \overline{2} \overline{3}$
						245	$1 \overline{3} \overline{4}$	$3 \overline{2} \overline{0}$		$0 \overline{5} \overline{1}$			$x 6 \overline{6}$

Figure 1.
A $K S_{3}(15 ; 1,2)$ which contains a $K S_{3}(3 ; 1,2)$.

Finally, we require three designs which we constructed directly using starters and adders and the following result. For definitions and results on 1-rotational ($v, 3,1$)-BIBDs, see [7].

Lemma 3.5. Let $k=(v-3) / 6$. Let $\left(B_{0}, B_{1}, \ldots, B_{k}\right)$ be a starter for a 1rotational $(v, 3,1)$-BIBD defined on $Z_{v-1} \cup\{\infty\}$. Let $A=\left(a_{0}, a_{1}, \ldots, a_{k}\right)$ be an adder for S. Suppose S and A have the following properties.
(1) $B_{0}=\{\infty, 0,(v-1) / 2\}$ and $a_{0}=0$.
(2) If $b \in B_{i}$ for some $i, 1 \leqslant i \leqslant k$, then $-b \notin B_{j}$ for $j=0,1, \ldots, k$.
(3) For $i=1,2, \ldots, k, a_{i} \neq 0$ or $(v-1) / 2$.
(4) $a_{i}+a_{j} \equiv 0(\bmod v-1)$ for $1 \leqslant i, j \leqslant k$.

Then there exists a $K S_{3}(v ; 1,2)$.

Proof. If $B_{i}=\{x, y, z\}$, define $-B_{i}=\{-x,-y,-z\}=(v-1-x, v-1-$ $y, v-1-z\}$. A starter for a $K S_{3}(v ; 1,2)$ is $S \cup\left\{-B_{1},-B_{2}, \ldots,-B_{k}\right\}$ and a corresponding adder is $A \cup\left\{-a_{1},-a_{2}, \ldots,-a_{k}\right\}$.

It is known that 1 -rotational ($v, 3,1$)-BIBDs exist if and only if $v \equiv 3$ or 9 $(\bmod 24),[7]$.

Lemma 3.6. There exist $K S_{3}(v ; 1,2)$ for $v=33,57$ and 75.
Proof. In Table 3, we list the starters and adders required to apply Lemma 3.5.

We are now in a position to prove our main result.
Theorem 3.7. There exist a $K S_{3}(v ; 1,2)$ which contains a subarray $K S_{3}(3 ; 1,2)$ for $v \equiv 3(\bmod 12)$.

Table 3
Starters and adders for $K S_{3}(v ; 1,2)$ for $v=33,57$ and 75

$v=33$						
Starter	$\infty 016$	128	7921	3614	151928	51020
Adder	0	4	22	1	27	14
$v=57$						
Starter	$\infty 028$	1214	3527	4722	444813	303546
Adder	0	1	2	13	42	35
		192545	334050	91736	152438	
		19	12	7	51	
$v=75$						
Starter	$\infty 037$	1217	3534	4724	61038	81331
Adder		1	2	4	10	11
		162249	445165	546214	334255	182853
		35	8	47	7	52
		152645	273963			
		15	56			

Proof. Let $v=12 m+3$. By Lemma 3.4, there exist $\mathrm{KS}_{3}(12 m+3 ; 1,2)$ for $m=0,1,2,3$ and 4 . All of these arrays contain a $K S_{3}(3 ; 1,2)$ as a subarray.

Let $N_{1}=\{10,14,16,18,22,24,26,30,34,38,42,46\}, N_{2}=\{24,39,51,123\}, N_{3}$ $=\{20,28,32,44,52\}$ and $N_{4}=\{6,43,47,59,118\}$. Let $N=\cup_{i=1}^{4} N_{i}$.
Since there exist (1,$2 ; 3, m, 3$)-frames for $m \geqslant 5, m \notin N$ (Theorem 3.1, Lemma 3.3), we can apply Theorem 2.2. We first use it with $h=3, w=3$ and $n=4$. Since there exist three mutually orthogonal Latin squares of side 4 and a $K S_{3}(15 ; 1,2)$ with a $K S_{3}(3 ; 1,2)$ as a subarray, there exist $K S_{3}(12 m+3 ; 1,2)$ for $m \geqslant 5$ and $m \notin N$.

Since there exists a $K S_{3}(27 ; 1,2)$ with a $K S_{3}(3 ; 1,2)$ as a subarray and three mutually orthogonal Latin squares of side 8 , we apply Theorem 2.2 with $h=3$, $w=3$ and $n=8$ to construct $K S_{3}(24 m+3 ; 1,2)$ for $m \geqslant 5, m \notin N$. This will construct $K S_{3}(12 m+3 ; 1,2)$ for $m \in N_{1}$. Similarly, we can apply Theorem 2.2 with $h=3, w=3$ and $n=12$ to construct $K S_{3}(36 m+3 ; 1,2)$ for $m \geqslant 5$, $m \notin N$. This will construct $K S_{3}(12 m+3 ; 1,2)$ for $m \in N_{2}$. Applying Theorem 2.2 again with $h=w=3$ and $n=16$ will construct $K S_{3}(48 m+3 ; 1,2)$ for $m \geqslant 5, m \notin N$. This will provide $K S_{3}(12 m+3 ; 1,2)$ for $m \in N_{3}$.

There are now five values of m left to consider, $m \in N_{4}=\{6,43,47,59,118\}$. By Lemma 3.6, there exists a $K S_{3}(12 \cdot 6+3 ; 1,2)$. We construct a $K S_{3}(12 \cdot 43+3 ; 1,2)$ by applying Theorem 2.1 with $m=37$ and $n=14$ since $12 \cdot 43+3=37 \cdot 14+1$. (A (1,$2 ; 3,37,1$)-frame is constructed in [13].) A
$K S_{3}(12 \cdot 118+3 ; 1,2)$ can be constructed by applying Theorem 2.2 with $m=59$, $h=6, w=3$ and $n=4$.

We use the indirect product (Theorem 2.3) for the two remaining values of m. There exist a $(1,2 ; 3,10,1)$-frame [1], a $K S(63 ; 1,2)$ which contains as a subarray a $K S_{3}(87 ; 1,2)$ and an $\operatorname{IA}(56,8,5)$. By applying Theorem 2.3 with the parameters $v=62, w=14, u=6, h=1$ and $m=10$, we construct a $K S_{3}(12 \cdot 47+3 ; 1,2)$. Since there exists a (1,$2 ; 3,13,6$)-frame (Theorem 3.2), a $K S_{3}(63 ; 1,2)$ which contains a $K S_{3}(15 ; 1,2)$, a $K S_{3}(87 ; 1,2)$ and an $\operatorname{IA}(9,1,5)$, we can apply Theorem 2.3 again with $m=13, h=6, v=62, w=14$ and $u=8$ to construct a $K S_{3}(13(54)+9 ; 1,2)$. This is a $K S_{3}(12 \cdot 59+3 ; 1,2)$.

Note that each of the arrays that we have constructed contains as a subarray a $K S_{3}(3 ; 1,2)$.

References

[1] C. J. Colbourn and S. A. Vanstone, 'Doubly resolvable twofold triple systems', Congress. Numer. 34 (1982), 219-223.
[2] C. J. Colbourn, K. E. Manson and W. D. Wallis, 'Frames for twofold triple systems', Ars Combin. 17 (1984), 69-78.
[3] R. Fuji-Hara and S. A. Vanstone, 'On the spectrum of doubly resolvable designs', Congress. Numer. 28 (1980), 399-407.
[4] P. Gibbons and R. Mathon, 'Construction methods for Bhaskar Rao and related designs', J. Austral. Math. Soc. (to appear).
[5] E. R. Lamken, Coverings, orthogonally resolvable designs and related combinatorial configurations (Ph. D. Thesis, Univ. of Michigan, 1983).
[6] E. J. Morgan, 'Some small quasi-multiple designs', Ars Combin. 3 (1977), 233-250.
[7] K. T. Phelps and A. Rosa, 'Steiner triple systems with rotational automorphisms', Discrete Math. 33 (1981), 57-66.
[8] A. Rosa and S. A. Vanstone, 'Starter-adder techniques for Kirkman squares and Kirkman cubes of small sides', Ars Combin. 14 (1982), 199-212.
[9] A. Rosa and S. A. Vanstone, 'On the existence of strong Kirkman cubes of order 39 and block size 3,' Ann. Discrete Math. 26 (1983), 309-320.
[10] M. Skolem, 'On certain distributions of integers in pairs with given differences', Math. Scand. 5 (1957), 57-68.
[11] D. R. Stinson and S. A. Vanstone, 'A Kirkman square of order 51 and block size 3', Discrete Math. 55 (1985), 107-111.
[12] D. R. Stinson and S. A. Vanstone, 'Orthogonal packings in $P G(5,2)$ ', Aequationes Math. 31 (1986), 159-168.
[13] S. A. Vanstone, 'On mutually orthogonal resolutions and near resolutions', Ann. Discrete Math. 15 (1982), 357-369.
[14] S. A. Vanstone, 'Doubly resolvable designs', Discrete Math. 29 (1980), 77-86.
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario N21 3G1
Canada

