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Abstract

A Kirkman square with index A, latinicity p, block size k and v points, KSk(v; /i, X), is a t X t array
(t = \(v — l)/fi(k - 1)) defined on a u-set V such that (1) each point of V is contained in precisely
p cells of each row and column, (2) each cell of the array is either empty or contains a A:-subset of V,
and (3) the collection of blocks obtained from the nonempty cells of the array is a (v, k, X)-BIBD. For
fi = 1, the existence of a KSk(v; fi, X) is equivalent to the existence of a doubly resolvable (v, k, X)-
BIBD. In this case the only complete results are for k = 2. The case k = 3, X = 1 appears to be quite
difficult although some existence results are available. For k = 3, X = 2 the problem seems to be more
tractable. In this paper we prove the existence of a ^S3(u; 1,2) for all v = 3 (mod 12).

1980 Mathematics subject classification (Amer. Math. Soc): 05 B 30.

1. Introduction

A Kirkman square with index X, latinicity fi, block size k and v points,
KSk(v; n, X), is a t X t (t = \(v - l)/n(k - 1)) array defined on a i>-set V such
that

(1) each point of V is contained in precisely /i cells of each row and column,
(2) each cell of the array is either empty or contains a A>subset of V, and
(3) the collection of blocks obtained from the nonempty cells of the array is a

(v, A:,X)-BIBD.
The existence question for KS2(v; n, X) has been completely settled [5]. For
H = 1, the existence of a KSk(v; /i, X) is equivalent to the existence of a doubly
resolvable (v, k, X)-BIBD. A doubly resolvable (v, k, X)-BIBD is denoted by
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DR{v, k, X)-BIBD. The existence question for DR(v, k, X)-BIBDs with k > 3 is
open. Of particular interest to us is the case k = 3. A necessary condition for the
existence of a KS3(v;l,l) is v = 3 (mod 6). The best result, thus far, for
KS3(v; 1, l)s is asymptotic.

THEOREM 1.1 [8]. There exists a constant v1 such that for all v 3* v1 and v = 3
(mod 6) there exists a KS3(v; 1,1).

In this paper, we consider the next case k = 3 and X = 2. KS3(v; l,2)s are
equivalent to DR(v, 3,2)-BIBDs and have been called doubly resolvable twofold
triple systems of order v (DRTTS(t;)) ([1]). A necessary condition for the
existence of a KS3(v; 1,2) is v = 0(mod3). A KS3 (3; 1,2) defined on {oo,0,l} is

ooOl

ooOl

It is known that there do not exist KS3(6;l,2) and KS3(9;1,2) [6]. The next
smallest design has recently been constructed. A KS3(\2;\,2) appears in [4].
KS3(v; 1,2)s are also known to exist for v = 15, 18, 21, 24, 27, 30 and 33. These
designs were constructed using starters and adders ([1], for v = 33, Lemma 3.6).
In the next section, we give some recursive constructions for KS3(v; 1,2)s. In the
last section, we apply these constructions to prove the existence of KS3(v; l,2)s
for v = 3 (mod 12).

2. Constructions

Let V be a set of v elements. Let Gx, G2,-,Gm be a partition of V into m
sets. A { Glt G2,...,Gm }-frame F with block size k, index X and latinicity \i is a
square array of side v which satisfies the properties listed below. We index the
rows and columns of F by the elements of V.
(1) Each cell is either empty or contains a fc-subset of V.
(2) Let Ft be the subsquare of F indexed by the elements of G,. Ft is empty

for / = 1,2,..., m.
(3) Let j G Gj. Row j of F contains each element of V — Gt \i times and

column j of F contains each element of V — G, ft times.
(4) The collection of blocks obtained from the nonempty cells of F is a

GDD(v; k; G&,..., Gm; 0, X) (see [14] for GDD notation).
If |G,| = h for i = 1,2,..., m, we call F a (ju, X; k, m, /i)-frame.
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131 Kirkman squares of index 2 35

We will use frames to provide some product constructions for KS3(v; l ,2)s .
The first result uses a (1 ,2 ,3 ; m, l)-frame.

THEOREM 2.1. If there exists a (1,2; 3, m, X)-frame, a KS2(n + 1; 1,2) and three
mutually orthogonal Latin squares of side n, then there is a KS3(mn + 1; 1,2) which
contains as a subarray a KS3(n + 1; 1,2).

PROOF. Let V = ( 1 ,2 , . . . , «} and let Vt•= Vx {i'} for i = 1,2,..., m. Let Lv

L2 and L3 be a set of three mutually orthogonal Latin squares of side n defined
on V. L will denote the array of triples formed by the superposition of Lx, L2

and L3. LjJk is the n X n array of triples formed by replacing each triple (a, b, c)
in L with the triple (a,, bj, ck) where a, e Vt, bj e Ky- and ck e Kt.

Let A:, be a tfS3(n + 1; 1,2) defined on Vt U {oo}. Let F be a (1,2; 3, m, 1)-
frame defined on ( 1 , 2 , . . . , m } such that i is missing from cell (/',/') for ; =
1,2, . . . , /w.

We construct a KS3(mn + 1; 1,2) on (V X ( 1 ,2 , . . . , m}) U {oo} as follows.
Replace each triple (/', j , k) in F with the n X n array Lijk. In each cell (i, i) of
F, place the « X n array # , for / = 1,2,..., m. The resulting array A has size
m« X mn. Each distinct pair in ( F x {1,2 , . . . , m}) U {oo} occurs twice in A.
Each element i n ( F x {1,2, . . . , m } occurs once in each row and each column of
A. Thus, A is a KS3(mn + 1; 1,2).

The next result will be used for (1,2; 3, m, A)-frames with h = 1,3 and 6. This
construction also appears in [2].

THEOREM 2.2. If there exists a (1,2; 3, m, h)-frame, a KS3(hn + w; 1,2) which
contains as a subarray a KS3(w; 1,2) (w > 3) and f/iree mutually orthogonal Latin
squares of side n, then there is a KS3(hmn + w; 1,2) which contains as a subarray a
KS3(w;l,2).

PROOF. Let V = {x[,x2,...,x'h\l < i < m} and let G, = {x[, x'2,..., x'h) for
/ = l , 2 , . . . , m . Let W = {oo^ o o 2 , . . . , oo,,,} and let N = ( l , 2 , . . . , n ) .

Let Lv L2 and L 3 be a set of three mutually orthogonal Latin squares of side

n defined on N. L will denote the array of triples formed by the superposition of

Lv L2 and L3. Lijk is the n X n array of triples formed by replacing each triple

(a, b, c) in L with the triple (a, , b}, ck) where a, e N X {/}, bj & N X {j} and

Let F be a (1 ,2 ,3 ; w, A)-frame defined on V. F is a {G 1 ? ( J 2 , •••,Gm}-frame.

Construct an hmn X Jimn array H from F by replacing each triple (x, y, z) in .F

with the n X n array Lx>,2. / / contains a diagonal oi mhnX hn empty arrays.
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Let Kt denote a KS3(hn + w; 1,2) defined on (N X Gt) U W which contains
as a subarray a •KS v̂v; 1,2) defined on W. Let 4̂ denote the subarray defined on
W. Kt can be partitioned as follows.

' }w- 1A

c, A

where /I and D, are square arrays of side w — 1 and A respectively.
We now construct a new array /f from H and the ^,'s for / = 1,2,..., m. K is

defined on ( # X F) U W.

A E
Cj L

C2

1
i

1
1

cn

n D
i B-i ' * ' -O™
1 Z tJl

\ H

D2

A" is a square array of side hnm + w — 1. Each element of (NX V)U W occurs
precisely once in each row and each column of K. Every distinct pair in
(N X V) U W occurs twice in K. Thus, K is a KS3(hmn + w; 1,2) which
contains as a subarray a KS3(w; 1,2)(^4).

The last construction in this section is an indirect product for KS^(v; l,2)s.
Before describing the construction, we recall the definition of an IA(n, k, s). Let
V be a finite set of size n. Let K be a subset of size k of F. An incomplete
orthogonal array IA(n,k,s) is an n2 — k1 X 5 array written on the symbol set V
such that every ordered pair of symbols in FX V - (K X K) occurs in any
ordered pair of columns from the array. We may think of an IA(n, k, s) as a set
of s — 2 mutually orthogonal Latin squares of order n which are missing a
subsquare of order k. We need not be able to fill in the k x k missing subsquares
with Latin squares of side k.

THEOREM 2.3. Let u, v and w be non-negative integers such that 0 < u < w < v.
Suppose that v - u = Q (mod h) and w - u = 0 (mod h). If there exists a
(1,2,3; m, h)-frame, and IA((v - u)/h,(w - u)/h,5), a KS3(v + 1; 1,2) which
contains as a subarray a KS3(w + 1; 1,2), and a KS3(m(w — u) + u + 1; 1,2),
then there exists a KS3(m(v — u) + u + 1; 1,2).

PROOF. Let F = {x{,x'2,...,x'h\l < 1 < m), W= {1,2,...,(0 - u)/yh), Wx

= (1, 2, . . . , (w - u)/h] and U = {oox, oo2, . . . , oou+1}. Let G, =
{*!> x'2, • • •, x'h).
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Let F be a (1,2; 3, m, /i)-frame defined on V such that F is a
(G1,G2,... ,Gm}-frame.

We construct a set of three mutually orthogonal Latin squares of order
(v - u)/h defined on W which are missing subsquares of order (w - u)/h
defined on W1 in the upper left hand corners of the arrays from the
IA((v - u)/h,(w - u)/h,5). Let / be the (v - u)/h X (v - u)/h array of
triples formed from the superposition of these three squares. The array Iijk will be
the array of triples formed by replacing each triple {a, b,c) in / with the triple
(a,., bj,ck) where at<=Wx {/}, b} e W X {j} and ck e W X {k}.

Next we construct an m(v — u) X m(v — u) array from F by replacing each
triple (/, j , k) in F by the (v - u)/h X (v - u)/h array Iijk. (Empty cells in F
are replaced by (v - u)/h X (v — u)/h empty arrays.) Call the resulting array
H'. H' contains a diagonal of m (v - u) X (v - u) empty arrays. We can
partition H' into m2 (v - u) X (v - u) arrays. Denote these subarrays by H'i} for
i, j = l,2,...,m. We can permute the rows and columns of H' so that each
subarray H/j contains an empty (w - u) X (w - u) array in the upper left hand
corner. Call this array H. H also contains a diagonal ofmv — uXv — u empty
arrays. H is defined on W X V.

Let Ai be a KS3(v + 1; 1,2) on (WxGJUU such that the subarray
KS3(w + 1; 1,2) is defined on (W1 X Gt) U U. We can partition At as follows.

w

v — w

•{
v — u

v — u

We now construct a square array of side m{v - u) + u using the At and i / .
This array will be called B1 and has the following form.

E

E

Cx
E
C2

E

cm

E

E

Tx

E

E

*i

Si

E R2

E

E S2

T2 K2

E

E

E Rm

E

H

E Sm

Tm Km
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The arrays labelled E in B1 are empty. They form an m(w — «) + u X
m(u - u) + u array. Place a KS3(m(w - u) + u + 1; 1,2) defined on (Wx X V)
U [/ in this array. The resulting array B is a ^ 5 3 ( W ( D - M) + M + 1; 1,2) on
(W X K) U (/. Every pair of distinct elements in (W X V) U U occurs precisely
twice in B since F and the Kirkman squares used to construct B had index
X = 2. It can be verified that each element in (W X V) U U occurs once in each
row and each column of B.

3. Applications

In order to apply the constructions from the previous section, we will need the
following results on frames from [2].

THEOREM 3.1. [2] There exist (1,2; 3, m,3)-frames for m ^ 5 except possibly for
m e (6, 10, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 38, 39, 42, 43, 44, 46, 47, 48,
51, 52, 59, 118, 123}.

THEOREM 3.2. [2] There exist (1,2; 3, m,6)-frames for m > 5 except possibly for
m e {10,11,14,15,17,18,19,20,23,24,27,28,32,34,39}.

We note that one more value can be deleted from the list of exceptions to
Theorem 3.1.

LEMMA 3.3. There exists a (1,2; 3,48,3)-frame.

PROOF. Apply the frame singular direct product [2] using a (1,2; 3,6,6)-frame,
three mutually orthogonal Latin squares of side 4 and a (1,2; 3,8,3)-frame.

The constructions also require the existence of some ^S3(u; l,2)s which
contain as subarrays KS3(w; 1,2)s where w > 3.

LEMMA 3.4. There exists a KS3(v; 1,2) which contains as a subarray a KS3(3; 1,2)
for v = 15, 21, 27, 39, 51, 63 and 81. Furthermore, there exists a KS3(63; 1,2)
which contains as a subarray a -KS3(15; 1,2).

PROOF. A KS3(15;1,2) is displayed in Figure 1. A starter and adder for a
KS3(21; 1,2) are listed in [1]. Since there exist KS3(v; 1,1) for v = 27, 39, 51, 63
and 81 ([3],[9],[11],[12]), there exists KS3(v;l,2) which contain as subarrays
KS3(3;1,2) for v = 27, 39, 51, 63 and 81. To construct a KS3(63;1,2) which
contains as a subarray a ATS^IS; 1,2), we apply Theorem 2.2 using a
(1,2; 3,5,3)-frame, a KS3(15; 1,2) which contains a ^S3(3; 1,2) and 3 mutually
orthogonal Latin squares of side 4.
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FIGURE 1.
A KS, (15; 1,2) which contains a KS3 (3; 1,2).

Finally, we require three designs which we constructed directly using starters
and adders and the following result. For definitions and results on 1-rotational
(t;,3,l)-BIBDs,see[7].

LEMMA 3.5. Let k = (v - 3 ) /6 . Let (B0,B1,...,Bk) be a starter for a 1-

rotational (v,3,1)-BIBD defined on Zv_1 U {oo}. Let A = (a0, au..., ak) be an
adder for S. Suppose S and A have the following properties.

(1) Bo = {oo,0,(i; - l ) / 2 } anda0 = 0.
(2) Ifb e Bt for some i, 1 < 1< k, then -b <£ Bj forj = 0 , 1 , . . . , k.
(3) For i = 1 ,2 , . . . , k, a,, # 0 or (v- l ) / 2 .
(4) at + a} £ 0 (mod v - 1) for 1 < i, j < k.
Then there exists a KS3(v; 1,2).

PROOF. If 5, = {x, y, z), define -Bt = {-x, -y, -z) = (v - 1 - x, v - 1 -

y, v - 1 - z). A starter for a KS3(v; 1,2) is S U {-B1,-B2,...,-Bk} and a
corresponding adder is A U {-a1; ~a2,..., -ak).

It is known that 1-rotational {v, 3, l)-BIBDs exist if and only if v = 3 or 9
(mod 24), [7].

LEMMA 3.6. There exist KS3(v; 1,2) for v = 33, 57 and 75.

PROOF. In Table 3, we list the starters and adders required to apply Lemma 3.5.

https://doi.org/10.1017/S1446788700031347 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700031347


40 E. R. Lamken and S. A. Vanstone

We are now in a position to prove our main result.

[81

THEOREM 3.7. There exist a KS3{v; 1,2) which contains a subarray KS3(3; 1,2)
forv = 3 (mod 12).

TABLE 3

Starters and adders for KS3 ( v; 1,2) for v = 33, 57 and 75

Starter
Adder

Starter
Adder

Starter
Adder

oo 016
0

oo 0 28
0

oo 0 37

1 2 8
4

1214
1

19 25 45
19

1 2 1 7
1

16 22 49
35

15 26 45
15

7 9 21
22

3 5 27
2

33 40 50
12

3 5 34
2

44 5165
8

27 39 63
56

3 6 14
1

4 7 22
13

917 36
7

4 7 24
4

54 62 14
47

15 19 28
27

44 48 13
42

15 24 38
51

6 10 38
10

33 42 55
7

510 20
14

30 35 46
35

8 13 31
11

18 28 53
52

PROOF. Let v = 12m + 3. By Lemma 3.4, there exist KS3(l2m + 3; 1,2) for
m = 0,1,2,3 and 4. All of these arrays contain a KS3(3; 1,2) as a subarray.

Let Nx = {10,14,16,18,22,24,26,30,34,38,42,46}, N2 = (24,39,51,123), N3

= {20,28,32,44,52} and N4 = {6,43,47,59,118}. Let N = Uf ,^ ,
Since there exist (1,2; 3, m, 3)-frames for m > 5, m £ N (Theorem 3.1, Lemma

3.3), we can apply Theorem 2.2. We first use it with h = 3, w = 3 and n = 4.
Since there exist three mutually orthogonal Latin squares of side 4 and a
KS3(15; 1,2) with a KS3(3; 1,2) as a subarray, there exist KS3(12m + 3; 1,2) for
m > 5 and m £ N.

Since there exists a KS3(21; 1,2) with a KS3(3; 1,2) as a subarray and three
mutually orthogonal Latin squares of side 8, we apply Theorem 2.2 with h = 3,
w = 3 and n = 8 to construct AS3(24m + 3; 1,2) for m > 5, m £ N. This will
construct KS3(12m + 3; 1,2) for m e Nv Similarly, we can apply Theorem 2.2
with h = 3, w = 3 and n = 12 to construct KS3(3(>m + 3; 1,2) for m > 5,
m € N. This will construct KS3{\2m + 3; 1,2) for m e N2. Applying Theorem
2.2 again with A = w = 3 a n d « = 16will construct KS3(48m + 3; 1,2) for
m > 5, m £ N. This will provide ^S3(12m + 3; 1,2) for m e Â 3.

There are now five values of m left to consider, me iV 4 = {6,43,47,59,118}.
By Lemma 3.6, there exists a KS3(\2 • 6 + 3; 1,2). We construct a
KS3{\2 -43 + 3; 1,2) by applying Theorem 2.1 with m = 31 and n = 14 since
12 • 43 + 3 = 37 • 14 + 1. (A (1,2; 3,37, l)-frame is constructed in [13].) A
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KS3(l2 • 118 + 3; 1,2) can be constructed by applying Theorem 2.2 with m = 59,
h = 6, w = 3 and n = 4.

We use the indirect product (Theorem 2.3) for the two remaining values of m.
There exist a (1,2; 3,10, l)-frame [1], a KS(63; 1,2) which contains as a subarray
a A53(87; 1,2) and an IA(56,8,5). By applying Theorem 2.3 with the parameters
v = 62, w = 14, u = 6, h = 1 and w = 10, we construct a £S3(12 -47 + 3; 1,2).
Since there exists a (1,2; 3,13,6)-frame (Theorem 3.2), a #S3(63;1,2) which
contains a KS3(15; 1,2), a #S3(87; 1,2) and an IA(9,1,5), we can apply Theorem
2.3 again with m = 13, h = 6, « = 62, w = 14 and M = 8 to construct a
ATS3(13(54) + 9; 1,2). This is a ATS3(12 -59 + 3; 1,2).

Note that each of the arrays that we have constructed contains as a subarray a
tfS3(3;l,2). D
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