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Effective population size when fertility is inherited*
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Kimura & Crow (1963) have shown that the variance effective size of a population is
given by

where N and a are the actual population size and departure from Hardy-Weinberg
proportions of genotype frequencies, respectively, in the parental generation, and k and
Vk refer to the mean and variance of progeny number. This formula is satisfactory
when progeny number or fertility is not inherited. There are, however, many evidences
that fertility is inherited (Fisher, 1930, and others).

When fertility is inherited, the progeny of an individual which gives rise to a large
number of progeny again tends to produce a large number of progeny because of
transmission of the genes controlling fertility. This process continues until the average
fertility of the progeny reaches the population mean through segregation and recombina-
tion. Thus, any genes which are associated with a high-fertility gene, i.e. the genes
which are carried by individuals with a high-fertility gene, will, in the long run, be
represented in a higher frequency than those associated with a low-fertility gene. Hence,
the probability that such genes become homozygous due to inbreeding is larger than
that expected when fertility is not inherited. In other words, the variance of frequency
of genes other than the fertility genes will be increased, and the effective size is corre-
spondingly reduced.

The rigorous mathematical treatment of the effect of fertility inheritance on the
effective size is not easy, but an approximate solution is readily obtained. Robertson
(1961) studied a similar problem arising in artificial selection for a quantitative character,
but he was not interested in the inheritance of fertility itself, which appears very
important in natural populations.

Let us first consider a population of monoecious organism, in which the number of
progeny per individual is affected by genetic and environmental factors as well as
sampling errors. Thus, the variance of progeny number can be written as

vk= vg+ve+v,

where Vg, Ve, and F8 refer to the additive genetic, environmental (including the non-
additive genetic), and sampling variances, respectively, and no interaction between
genotypic and environmental effects is assumed. In the following it is also assumed that
the frequencies of fertility genes are in equilibrium owing to the balance between mutation
and selection, so that Vg remains the same for all generations.
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As mentioned previously, if fertility is inherited or Vg is not negligible, the genes
associated with high-fertility genes are destined to increase in frequency in the subsequent
generations, while those genes associated with low-fertility genes are to be reduced. This
has an effect equivalent to increasing the additive genetic variance. In obtaining the
increased additive genetic variance, the argument analogous to that made by Robertson
(1961) in connexion with artificial selection may be used. As is well known, the first
generation progeny of an individual with breeding value g with respect to progeny number
has the breeding value of \g, the second generation has \g, and so on, the breeding value
being halved in each generation (cf. Falconer, 1960). So the accumulated breeding value
will increase as Ig, \g, \g,... to a limiting value of 2g. Thus, the additive genetic variance
to be obtained is 4Vg. Substituting Vg by 4Vg in Kimura and Crow's formula and
assuming that a = 0, we have

where h2 and G are the heritability and coefficient of variation of progeny number,
respectively. If k = 2, this formula turns out to be

It is important to note that this formula refers to genes other than fertility genes.
In dioecious organisms with equal numbers of male and female Vk in Kimura and

Crow's formula should be replaced by £Ffc(m) + £F W ) where Vk(m) and Vhif) refer to the
variance of progeny number for male and female, respectively. In the case of monogamy
Fi(m) and F ^ are the same. Further, there is a possibility that a completely different
set of genes control the male and female fertilities. To examine this effect, let the breeding
value for a male be gm and gy, where gm is the effect on male fertility and gj on female
fertility, and the corresponding value of his mate be g'm and g'f. One-half of the progeny
will be male with expected fertility (gm+g'm)l2 and one-half female with expected

The accumulated breeding value of the male is then

. tf lit • t/J i *7 W | of
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Thus, if gm and gy have equal variances, the increased additive genetic variance is given
by J(5 + 3r) Vg, where r is the correlation between gm and gf. The same arguments apply
to the variance of female, whose accumulated breeding value is i{g'm + 3g'f)- Therefore,
the effective population size is given by

N

where subscripts m and / refer to the values of male and female, respectively. If the
same set of genes exert the same effect on male and female fertilities, r is unity and the
above formula becomes equal to that in the case of monoecious organisms. On the other
hand, if a completely different set of genes control the two, r is zero and the effects of
heritabilities of fertility are reduced to a half.

Fisher (1930), Huestis & Maxwell (1932), and Berent (1953) studied the mother-
daughter correlation of sibship size in man and obtained 0-21, 0-12 and 0-19, respectively.
These data suggest that the heritability of female fertility is 0-2 to 0-4. No data on male
fertility are available. Crow & Morton (1955) estimated the value of Vklk to be 1-5 when
k is adjusted to 2. Thus, Vk is 3. Therefore, if we take hz = OZ for both male and female
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and assume that the same set of genes control the male and female fertilities, Ne becomes
0-522 .̂ On the other hand, if h2 were 0, Ne would become O-82V, so that the heritability
of 30% has reduced the effective size by 28%. Note, however, that the estimate of
h2 = 0-3 was obtained^ from data on families with k much larger than 2. It seems that
in a population with k = 2 the heritability is smaller than 0-3.

Most natural populations are considered to be in approximate equilibrium with respect
to gene frequencies. It is, therefore, important to know how the fertility or fitness is
inherited at equilibrium. If the genes controlling the fitness are maintained in the
population by the mechanism of overdominance, there remains no additive genetic
variance at equilibrium, so that the heritability of fitness is 0. On the other hand, if the
genes are maintained by the balance of mutation and selection, there may arise a
considerable amount of additive genetic variance. Studying the genotypic parent-
offspring correlation of fitness at equilibrium, Haldane (1949) showed that, if the mutant
genes are completely recessive, the correlation is practically 0, while if they reduce the
fitness of heterozygotes by h relative to the homozygotes for normal genes, the genotypic
correlation becomes \y/(\ — h) approximately. This formula is satisfactory if h is larger
than 6%. However, the data on lethal and semi-lethal genes in Drosophila suggest that
h is 2-12% on the average for female fertility (Hiraizumi & Crow, 1960; and others).
Thus, we examined the genotypic parent-offspring correlation for small values of h with
mutation rate of 10~5. The result obtained is graphically shown in Fig. 1. In this figure
s represents the selection coefficient for mutant homozygotes. It is clear that the correla-
tion is quite high for h of 2-12%. This suggests that the heritability of fertility could be
appreciably high, although in reality the environmental and sampling variations dilute
its effect.
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Fig. 1. Selection coefficient for heterozygotes and genotypic parent-offspring
correlation. Symbol a stands for the selection coefficient for mutant homozygotes.
The abscissa is on a logarithmic scale.

SUMMARY

A formula for effective population size when fertility is inherited is worked out . I t is
shown tha t the effective size decreases as the heritability of fertility or progeny number
increases.

We wish to thank the referee for his helpful criticisms and suggestions.
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