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BOUNDARY BEHAVIOUR OF SOLUTIONS OF THE
NON-PARAMETRIC LEAST AREA PROBLEM

LEON SIMON

Previous work concerning boundary regularity of solutions of the

non-parametric least area problem leaves open the question of

regularity of solutions at points where the mean curvature of the

boundary of the domain vanishes. We here prove that the

solutions may be discontinuous at such points, even when the

given boundary data is smooth. We also give a sufficient

condition which will ensure continuity at such points.

Suppose E is an open portion of the boundary dQ of a Cr domain

B c R , and let Hy be the mean curvature of E relative to the inward

pointing unit normal.

It is known (P, 2], [4]) that solutions of the non-parametric least

area problem

(0.1) [ \/l+\Du\2 + I \u-\p\drf1'1 -*• min , u € BV(Q) ,

h ha
where tp is a given Lipschitz function on 8ft , are u(Q.) n fT' (Q)

functions which attain the given boundary data ty on E provided

S £ > 0 . It is also known ([4]) that if E is C and H~ < 0 on E ,

then the trace of u on L is a locally Lipschitz function on E . In

either of these two cases (#_ > 0 on E , #„ < 0 on E ) it is known
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I 8 Leon S i m o n

( [ ? ] , [4, 5]) that u extends to be Holder continuous on £2 u E .

These results leave open the case when H- changes sign on £ and

the case when fij, 5 0 on E with H- = 0 at some point of £ . We want

to discuss these cases here. It is shown (Theorem 2) that, for the case

Hy — 0 , u may have quite pathological trace on E and may exhibit

k
discontinuities, even in case £ is C and IJJ is constant on E . On

the other hand in case H- changes sign at a point 5 € E where 9j-#v ̂  0

[dy equals tangential gradient operator on I ), u must be continuous at

E, . In fact, at such points £ , it is shown (in Theorem l) that the trace

of u on E satisfies a Lipschitz condition, and u itself satisfies a

Holder condition.

Both the above theorems depend on construction of barriers, using a

somewhat non-standard method of construction. For convenience the

constructions here are carried out only in case n = 2 , but the reader

will see that only purely technical modifications are needed to give

analogous results for arbitrary n .

1. Barriers

As mentioned above, we here assume n = 2 , so that E is a

CT arc c R and H- denotes the curvature of E relative to the inward

unit normal.

The existence of boundary barriers for solutions of the minimal

surface equation (and solutions of the non-parametric least area problem)

in case H- > 0 on E has been discussed by many authors. (See for

example [3], [6], [7].) Here we take a slightly different approach to the

question, and obtain some new results.

To begin, we introduce convenient coordinate axes for R . We

suppose 0 € I and that (0, l) is the inward pointing unit normal to E

at 0 , and we introduce new coordinates [y , y , y ) for R with

yi = Xl ' y2 ~ X3 ' a n d y3 = X2 ' T h e n s i n c e E i s C w e h a v e 6 > °
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N o n - p a r a m e t r i c least area problem 19

so that the boundary cylinder [l n {x : \xI < 6}) x IR can be expressed

as
2,

R3 : i/3 = wQ^, y2) , lyj < 6J awhere a) is a CT

(0) = 0 , andfunction on ( -6 , S) x R w i t h 3co/3i/2 E 0 and ^

where

(1-D M ^ 2/2)l Sil^l for \yx\ < 6 .

flj. , when considered as a function on [l n {x : \x | < 6}) x R which is

constant on vertical lines, is given by

(1-2) ffzK' X 2 ' ̂  = flZ^l* ^2' ^3^

= -M(u)[yx, y2) .

Here A/ is the minimal surface operator defined by

i=l

(Notice that since 3w/3y = 0 , we can compute

AVL
With regard to the operator M , we need the following technical

lemma, the proof of which is a simple algebraic computation. In this lemma

we let the operator M be given by

j , 2 D.WD.W
MAw) = {l+\Dw\ )*M{w) = Aw - V J D.D.W .

0 ij=l 1 2 l J

LEMMA 1. £et M fee the operator defined above and let Z, , t, be

(T with \Dc, \, |£>c I 5 l . Then

where a is an absolute constant.

We are going to use this lemma, to construct functions w on conical

domains in the {y , y ) variables, such that M(w) > 0 and such that the
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graph J/_ = w[yx, y2) transforms to a graph x = W ^ , xg) (under the

transformation y = x , y~=x y = x ). Notice that then we have

A/(w) = -M(y) 5 0 . In this way we construct solutions of M(w) 5 0 ; the

reason for the indirect approach [via the coordinates y , y^, J/o ) is that

the computations in the y coordinates are simpler, especially in view of

the form we choose below for the function w .

We in fact look for a function w of the form

(1-3) w{y±, y2) = ui(yr y2) + ay^^y^y^ ,

where k, a (constants) and <f> are to be chosen. We first note that,

writing f{y±, y2) = y2 <i>{y1/y2) , we have

(y) = (k+2)^+1<j»(t) - yfht'U) , t =

-(2k+

Thus in particular we deduce that

Combining these calculations, and using Lemma 1, we deduce (taking w

as in (1.3)) that, for K\t\ 2 1 ,

(l.U) | J|
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with C > 1 depending only on k, £ , provided a|D/| 2 1 .

We now assume that

f(1.5) «0(u) » yj^ + tffc/J , ItffeJI s L«^ s f 1^1 . \yx\ < 6 .

for some positive constants y, L, 6 . L, 6 will (without loss of

generality) be taken to coincide with the constants L, 6 of (l.l).

Under the assumption (1.5), we want to discuss the possibility of

selecting (|> so that (l.U) implies M{w) > 0 . To do this, we take k = 1

in the above discussion, we let e € (0, 4>) be arbitrary, and let <j>- be

a C1'1 function on the interval [-e2, l] with <f> (-e2) = <f>0(l) = 0 ,

4>£ = 1 on [-e2, e] , |<|>»| s 2e on' [e, l] , 1^1 5 2e on [-E2, l] ,

t^(t) 5 24>0(t) on [-e2, l] , and 0 < $Q < 2e on (-e2, l) . (it is

left to the reader to check that such a function <J>Q exists.) Then we let

(1.6) (J)(t) = K~24>Q(Kt) (K > 1 arbitrary).

With such a choice of ((> (and with k = 1 ) one readily checks that

(l.lf)-(l.6) imply, for -e2 5 Kt 5 l , that

(1.7) MAw) > \iy + ay E{t) - CaXy': (l+ey )* - Lyt ,
U J. d. d v d. X

where E(t) > % for -e2 S Xt < e and E(t) > -6e for E < ft S 1 ,

provided a|#/| S 1 . This last restriction is guaranteed if we take

8ay2e S I . We now restrict a, e such that

(1.8) eK 2 l , 9ye2/# < 9a < y*e/UC) , y* = min{y, l} .

Notice that K is still arbitrary. Also, we can ensure that a/ 2 6 ,

a|Z)/| < 1 for 0 2 y < K , -e2 5 Kt < 1 , |y | 5 6 , by taking

(1.9) 8aeX s 6 .

(Then 6 6 (0, l) is also arbitrary.)

Subject to these restrictions one now easily checks from (1.7) the
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fol lowing:

( i ) for - e 2 S Kt £ e and 0 2 j / g < X and Iz/J < 6 ,

( i i ) for E S tt ; l and 0 2 z/2 5 X and | # | < 6

Thus subject to the restrictions (1.8), (1.9) we conclude

(1.10) Mi) 2 0 for -E2 S ffi 5 1 , 0 < #2 5 X6 , IjyJ 5 6 .

This will be used in the next section in the manner we have already briefly

alluded to above.

Next we wish to consider the possibility that, instead of (1.6), there

holds

(1-11) «(U) 2 -]x\yx\
k , 2 6

where k is a positive integer and y > 0 .

In this case we take arbitrary e € (o, %) and take any

<J) € < 7 L > 1 ( [ - 1 , 1 ] ) s u c h t h a t 0 < <|> o n ( - 1 , l ) , |<f>'| + |<j)| 5 e o n

[ - 1 , 1 ] , U t ) = • ( - * ) ,' t € [ - 1 , 1 ] , < K - D = <j>(D = 4 > ' ( - l ) = * ' ( 1 ) = 0 ,

(1.12) ())» < -% on (-e, e) , |<ji»| s 2e on [-1, l] ~ [-e, e] .

Provided that {k+2)ay^ e < l (which ensures that a\Df\ S I ), we

deduce from (l.U) and (l.ll) the following:

(i) for |t| £ e , 0 < y2 2 1 , lyj S 6 ,

s 0 ,
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provided 6 + a £ (16C)"1 , e < 1/(32(fc+2)2) ;

( i i ) for t € [-1, 1] ~ [-£, e] , 0 < y2 S 1 , l y j S 6 ,

5 0 ,

provided a 5 ye / (l+U(fc+2)2) , a + & S ]sek/(2C) .

Thus in any case we have

(1.13) M(w) 5 0 for \y±\ 2 6 , 0 < y2 5 6 , 1^1/^ S 1 ,

provided we take e = l/(32(7c+2) J and provided the constants a, 6 are

chosen such that

(l.lU) a s \i*&tk/[l+h(k+2)2) , 6 2 \i*ek/(l6C) , y* = min{y, l} .

Notice that subject to these restrictions we automatically have

a\Df| 2 1 and af < 6 .

We should also mention that in each of the above cases we have chosen

<t> such that t<J>'(£) 5 2(j>(t) . This ensures that 3//3i/ > 0 (/as in

(l.3)J and hence that the graph y = w[y~ , y^j does transform to a graph

X- = w[x , x J are required.

2. Main results

We now use the barrier results of §1 to prove the theorems mentioned

in the introduction. First we make a precise statement of the theorem

concerning continuity of u at points %, € £ when H satisfies the

conditions

(2.1) Hy(Z,) = 0 , |3j;fly| - 3 > 0 on 9ft n BJE,) , Z € C2'1 ,

where 3, <S are positive constants and where 3v#j- denotes the tangential

derivative of H~ along E .
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24 Leon Simon

THEOREM 1. Suppose (2.1) holds, and let u be any C2^) n &rL'1(fi)

solution of the non-parametric least area problem (O. l ) . Then

(2.2) |u(ar)-iK€)| ~ c | x - 5 | 1 / 3 , \x-E,\ < & , x I Q. ,

and

(2.3) | M U ) - * ( C ) | 2 e | x - 5 | , |x-C| < 6 , x € £ ,

where o depends only on £ , sup |u| and Lip if) , and where u

denotes the trace of u on E ,

Proof. We may assume that ? = 0 , <J>(0) = 0 , and that (0, l) is

the inward pointing normal to 3fi at 0 .

For a suitable portion £ of 8fi the condition (2.1) then guarantees

that (1.5) holds for suitable y, 6 , and hence by the discussion of SI we

know that for any preassigned K > l there is a neighbourhood U of

£ n {x : |a: I < 6} with U n dQ = L n {x : \x \ < &} and a

C°(^ n SI) n C2(y n JJ) function u satisfying M(u) 5 0 , u(0) = 0 ,

w| y _ > A:6 , and w(x) > ̂ |x I , x € E n £/ . Thus taking X such that

K6 ^ 2 max{sup|i|j| , Lip tfj} we can assert that u i ij) on Z n U and w >u

on 3£/ n $2 . [Here we assume 6 is chosen small enough to ensure that

(l.l) holds with L6 < 1 .} Hence by standard barrier results for

solutions to (O.l), we conclude that u 5 w everywhere in U n Q, . The

results (2.2), (2.3) now follow because, by construction of w , we have

w(x) 5 o\x\ ' for x € U n £2 and w(x) 5 c|x| for x € E n £/ , with e

depending only on 3, <S , and K .

We want to conclude this paper by presenting, for each integer

k > 1 , examples to show that u may have no limit at E, € 3Q even when

E = 3f2 is C^ ' and when the curvature HAx) > -|X| ,

x € £ n S^(^) , for some 6 > 0 . Indeed we give an example to show that

u may have no limit at E, even when the function if) of (O.l) is constant

in a neighbourhood of E, .

2
To do this we take any two bounded domains fi and Q c R with

0 € 3£2 n 3fi , E. = 3J2. n Bpr(O) connected, Q c £2 s
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Q ~ fi c S. . (0) , and such tha t the following conditions hold, in which

H. denotes the curvature of E . r e l a t i v e to the inward unit normal n •
0 3 J

of E. :
J

on E , n (0) = (0, l ) ,

(2.U)
[ < k , x € l_. , o = 0, 1 ;

(2.5) - I ^ J * S flQ(x) S - * | x 1 | f c ,

and

E E 0 on V for some neighbourhood V of
<7

where {5OJ, {C_} are sequences of points in R with

lim £ = lim CQ = 0 . (it is left to the reader to check that such domains

n and fi can be constructed in such a way that both 3fJ and 8f2 are

«&+l 1

u ' . We emphasize that, apart from the above restriction, fi. and fl

are quite arbitrary.)

Now let U be an arbitrary neighbourhood of {x € £ : |x | < 6}

with (/ n 3tl = [/ n E = (i E 3S1O : |x | < 6} . Evidently, since ff < 0

on £/ n (z ~ {o}) , we can find a solution u of the problems (0.1) with

fi_ in place of fi and lji in place of \\i , where \\) = 1 on
E n {x : |x I < 6/2} and

lim sup uAO < -1 for all x € W n Q

(One achieves this by taking ijj- S 1 everywhere on 3ft and I(J S -L on

3fl0 - {x : |x1j > 36A} , where L is a sufficiently large constant.)

We now introduce coordinates y , y , y for R as described in §1.
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Then (2.5) implies that (l.ll) holds with £ in place of E and with

y = % . Hence, by the discussion of the latter part of §1, we can find a

/+ 4function w = w{y y ) = u> + ou/2
+ 4>(y,/2/2) with M(u) £ 0 on

W = {{h^ h2) • 0 < h2 < 6, 1 ^ 1 / ^ < 1, \y±\ < 6} and with graph w

corresponding, in the [x , x x J coordinates, to graph U , where

W d C2[U n ft ) with i/ n 3ft = {a: € E • |a: I < 6} . From construction w

has the proper t ies :

= °° (in the sense that lim Du(E,)'T]Ax) = °° for each x (. I n u) ,
dw

0 ^*x
Ceynft

0 < w £ 6 on UnQ w = 6 on 3i/ n ft

M(ZJ) > 0 on y .

Hence we have M{-W) 5 0 , 3(-u)/8n = -°° , -6 5 -w < 0 on U n ft

-W = -6 on 3i/ n ft . Since, as described above, we can arrange

u < -1 < -W on 3£/ n ft 5 we then deduce from a standard comparison

principle that u £ -W on f . In particular we deduce u £ 0 on

y n 3ftQ .

If we now let u be the solution of (O.l) with ft in place of ft

and with ^ in place of ip , where ^ £ 1 everywhere and i(/ = ̂  on

3ft n 3ft . Then, since by the maximum principle M £ 1 £ i|i on

E n ft , we deduce u £ u on fl . On the other hand it is standard,

since H = 0 on V , that u = ̂  on V . Combining these facts we

have, for all q large enough to ensure that |C | < 5/2 and

|t | < 6/2 , M (£ ) = 1 and u (5 ) £ u (t; ) £ 0 . Thus û  is not

continuous at 0 .

Thus we have established the following theorem.

THEOREM 2. iet ft , ft be any CT ' domains as described above
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(in (2.10, (2.5)., (2.6)) and let u be the solution of (O.l) with Q in

place of Q and with tj; in place of ty . (i>. as described above.)

Then lim u (x) does not exist. In fact the trace of u on 9ft has
x+0 L

no limit at x = 0 .
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