NORMALITY IN ELEMENTARY SUBGROUPS OF GHEVALLEY GROUPS OVER RINGS

JAMES F. HURLEY

1. Introduction. In [6] we have constructed certain normal subgroups G_{I} of the elementary subgroup G_{R} of the Chevalley group $G(L, R)$ over R corresponding to a finite dimensional simple Lie algebra L over the complex field, where R is a commutative ring with identity. The method employed was to augment somewhat the generators of the elementary subgroup E_{I} of G corresponding to an ideal I of the underlying Chevalley algebra $L_{R} ; E_{I}$ is thus the group generated by all $x_{r}(t)$ in G having the property that $t e_{r} \in I$. In $[\mathbf{6}, \S 5]$ we noted that in general E_{I} actually had to be enlarged for a normal subgroup of G_{R} to be obtained. In the present paper, we note that G_{I} is in fact the minimal normal subgroup of G_{R} which contains the $x_{r}(t)$ with r positive and $t e_{r} \in I$; i.e., G_{I} is the normal closure of U_{I} in G. In his review of [6], I. Stewart has asked to what extent I is recoverable from G_{I}. This question is answered in Theorem 3.2 and its corollary. There then follows a study of normal closures in G_{R} of root elements $x_{r}(t)$ which correspond to transvections considered by Klingenberg $[7 ; 8]$, and we obtain analogues for G_{R} of a result of Klingenberg for $G L(n, R)$. As in $[\mathbf{6}]$ it is assumed that 2 and 3 are not zero divisors (or 0) in R.

In $[7 ; 8 ; \mathbf{9}]$, Klingenberg and Mennicke have shown that if R is the ring of integers or a local ring, and $n \geqq 3$, then any normal subgroup N of $G L(n, R)$ satisfies $K_{I} \subseteq N \subseteq Z_{I}$ for I an ideal of R. Here $K_{I}=S L(n, R) \cap \operatorname{Ker} f_{I}$ where f_{I} is the natural map of $G L(n, R)$ onto $G L(n, R / I)$, and $Z_{I}=f_{I}^{-1}\left(C_{I}\right)$ where C_{I} is the center of $G L(n, R / I)$. Apart from some exceptions in low dimension, Abe [1] obtained this result for the Chevalley group $G(L, R)$ corresponding to a simple, simply connected Chevalley-Demazure group scheme over a local ring R of characteristic 0 or a prime $p \neq(l, l) /(s, s)$ where l is a long root and s is a short root. He did this by first showing that $G(L, R)=$ G, the elementary subgroup considered in [6]. Thus G is a natural group in which to study congruence subgroups (in the sense of [1]). The negative solution of the congruence subgroup problem by Bass-Milnor-Serre and Matsumoto [2;9] warns us in advance that the results of Klingenberg and Abe should not generalize to commutative rings R with identity. Recently however, Wilson [15] has obtained similar (but of course weaker) sandwiching results for $G L(n, R)$ for such general rings R if $n \geqq 4$. He has, in fact, shown that if N is normal in $G L(n, R)$, then $P_{I} \subseteq N \subseteq Z_{I}$, where P_{I} is the normal closure of the elementary subgroup E_{I} in $G L(n, R), I$ an ideal of R.

Received May 13, 1975.

In the present paper, we identify the groups G_{I} of [6] with groups considered by Abe, and obtain analogues for G of Proposition 2 of [7], one of the two key results Klingenberg needed to obtain his sandwiching results mentioned above. These results relate the normal closures of root elements in G_{R} to ideals in the Chevalley algebra L_{R} corresponding to the principal ideals generated by the coefficients t in R.
2. Chevalley algebras and groups; elementary subgroups. For a detailed discussion of the construction of Chevalley groups over fields see $[\mathbf{4} ; \mathbf{1 3}]$. Details regarding the construction of Chevalley algebras over rings can be found in $[\mathbf{5}]$, and in $[\mathbf{1} ; \mathbf{6} ; \mathbf{1 2}]$ can be found fairly complete discussions setting forth the constructions of the elementary subgroups of Chevalley groups over rings. For notational convenience we set down here an outline.

Let L be a finite dimensional simple Lie algebra over the complex field, H an n-dimensional Cartan subalgebra, with S the set of nonzero roots of L relative to H, ordered consistently with heights, and P the positive roots. Let $B=\left\{e_{r} \mid r \in S\right\} \cup\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ be a Chevalley basis of L, and $L_{\mathbf{Z}}$ the free abelian group on B. Then $L_{R}=R \otimes_{\mathbf{z}} L_{\mathbf{Z}}$ is the (adjoint) Chevalley algebra of L over R. The elementary subgroup G of the (adjoint) Chevalley group of L over R is the group generated by all $x_{r}(t)=\exp \left(\operatorname{ad} t e_{r}\right)$ for $t \in R$ and $r \in S$. We use U_{R} and V_{R} to represent the subgroups generated by those $x_{r}(t)$ where r is in P or, respectively, $-r \in P$.

The principal result of [6] is the following. Let $I \nsubseteq H_{R}\left(=R \otimes_{\mathbf{Z}} H_{\mathbf{Z}}\right.$, where $H_{\mathbf{Z}}$ is the free abelian group on $\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$) be an ideal of L_{R}. Let E_{I} be the subgroup of G generated by all $x_{r}(t)$ for which $t e_{r} \in I$. We call E_{I} the elementary subgroup corresponding to I. We use U_{I} to represent the subgroup of G generated by all $x_{r}(t)$ for which $r \in P$ and $t e_{r} \in I$. Let C_{i} be the inner automorphism of G given by conjugation by $x_{-r}\left(u_{i}\right)$ for i odd and given by conjugation by $x_{r}\left(u_{i}\right)$ for i even, where $u_{i} \in R$. Then G_{I} is the subgroup of G generated by E_{I} and all iterated conjugates $C_{k} \circ C_{k-1} \circ \ldots \circ C_{1}\left(x_{\tau}(t)\right)$ as r runs over S and $t \in R$ satisfies $t e_{r} \in I$. Then G_{I} is normal in G. We call G_{I} the normal subgroup in G corresponding to I.
3. Minimality of G_{I} as a normal subgroup containing U_{I}. A natural question is whether E_{I} needs to be enlarged as much as it was in constructing G_{I}, in order to obtain a normal subgroup of G. This question is answered affirmatively by our first result. Before stating it, we introduce for t a unit in R the "Weyl element" $\omega_{r}(t)=x_{r}(t) x_{-r}\left(-t^{-1}\right) x_{r}(t)$. For $\omega_{r}(t)$ we have the corresponding Weyl reflection w_{r}, where $\omega_{r}(1) x_{s}(y) \omega_{r}(1)^{-1}=x_{w_{r}(s)}(\pm y)$.

3.1 Theorem. G_{I} is the normal closure of U_{I} in G.

Proof. Let N_{I} be the normal closure of U_{I} in G. Then $N_{I} \subseteq G_{I}$ since G_{I} is normal in G and $U_{I} \subseteq G_{I}$. Moreover, N_{I} is the subgroup of G generated by all conjugates of the generators $x_{r}(t)\left(r \in P, t e_{r} \in I\right)$ of U_{I} by elements of G
[11, p. 53]. Among these elements are all the $x_{r}(t)$ themselves with $r \in P$ and also those $x_{r}(t)$ with r negative since $\omega_{r}(1) x_{r}(t) \omega_{r}(1)^{-1}=x_{-r}(\pm t)$. Also among these elements are all conjugates of elements $x_{r}(t)$ by elements of the form $x_{ \pm r}\left(u_{k}\right) \ldots x_{-r}\left(u_{3}\right) x_{r}\left(u_{2}\right) x_{-r}\left(u_{1}\right)$, the first factor having a plus sign associated with r if and only if k is even. The conjugates by these latter elements are themselves generators of G_{I} denoted by $C_{k} \circ C_{k-1} \circ \ldots \circ C_{1}\left(x_{r}(t)\right)$. Thus among the generators for N_{I} as a group are all those for G_{I}. Thus $G_{I} \subseteq N_{I}$, so $G_{I}=N_{I}$ as desired. (This result has also been obtained by R. Swan [14, Theorem 4.2].)

We note in passing that Theorem 3.1 (or [6] itself) shows that G_{I} is also the normal closure of E_{I} in G. We make use of this in § 4 .

The question we now consider concerns the relationship between I and G_{I}. Given I, G_{I} is uniquely defined, but the correspondence is not bijective, for notice that in defining G_{I}, we are concerned only with $I \cap E_{R}$, which (see [5]) may coincide with $I^{\prime} \cap E_{R}$ even when $I \neq I^{\prime}$. Our next result says that $I \cap E_{R}$ is uniquely determined by G_{I} in all but one case.
3.2 Theorem. For all non-symplectic algebras $L, G_{I}=G_{I^{\prime}}$ if and only if $I \cap E_{R}=I^{\prime} \cap E_{R}$.

Proof. As we just observed, if $I \cap E_{R}=I^{\prime} \cap E_{R}$, then clearly $G_{I}=G_{I^{\prime}}$. For the converse we distinguish the cases in which L has one and two root lengths, and we make use of the following rules giving the action of an element $x_{r}(t)$ on L_{R}.
(1) $x_{r}(t) e_{r}=e_{r}$
(2) $x_{r}(t) e_{-r}=e_{-r}+t h_{r}-t^{2} e_{r}$
(3) $x_{r}(t) h_{r}=h_{r}-2 t e_{r}$

$$
\begin{align*}
& x_{r}(t) h_{r i}=h_{r i}-t c\left(r, r_{i}\right) e_{r} \tag{4}\\
& x_{r}(t) e_{s}=e_{s}+\sum_{i=1}^{q} \pm\binom{ p+i}{i} t^{i} e_{s+i r} \tag{5}
\end{align*}
$$

(Here $s-p r$ and $s+q r$ are the extremes of the r-string of roots through s.) In the single root length cases, these formulas show that if $I \cap E_{R}=J E_{R}$ (3.4 of [5]), then any generating element $x_{r}(t)$ for G_{I} acts as the identity on L_{R} / I. If $I \cap E_{R}=J E_{R}$ differs from $I^{\prime} \cap E_{R}=J^{\prime} E_{R}$, then we can find, say $k \in J$, such that $k \notin J^{\prime}$, so $k e_{r} \in I, k e_{r} \notin I^{\prime}$. Then clearly $x_{r}(k) \in G_{I}$, but if we choose s so that $r+s$ is a root, (5) then gives $x_{r}(k) e_{s}=e_{s} \pm k e_{s+r} \not \equiv e_{s}$ modulo I^{\prime}. From this we conclude $x_{r}(k) \notin G_{I^{\prime}}$, since if it were a product of conjugates of generating elements $x_{u}(t)$ for $G_{I^{\prime}}$, each of which acts as the identity on L_{R} / I^{\prime}, then $x_{r}(k)$ would also act as the identity on L_{R} / I^{\prime}. Thus $G_{I} \neq G_{I^{\prime}}$.

In case L is of type $B_{n}(n \geqq 3), F_{4}$, or G_{2}, then $I \cap E_{R}=J E_{L} \oplus J_{1} E_{S}$ where $J \subseteq J_{1} \subseteq m^{-1} J$ by 3.5 of [5]. Here m is the ratio of the squares of lengths of long and short roots. Suppose first that $I \cap E_{S}=J_{1} E_{S}=I^{\prime} \cap E_{S}$
but $I \cap E_{L}=J E_{L}$ differs from $I^{\prime} \cap E_{L}=J^{\prime} E_{L}$. Then we claim that any generating element $x_{r}(k), r$ long, for G_{I} acts as the identity on L_{R} / I. For if r is a long root and s is arbitrary, then $x_{r}(k) e_{s}=e_{s}$ or $e_{s} \pm k e_{r+s} \equiv e_{s} \bmod I$. Next, if r is short and s is long, then $x_{r}(k) e_{s}=e_{s} \pm k e_{r+s} \pm k^{2} e_{2 r+s}\left(e_{s} \pm k e_{s+r}\right.$ $\pm k^{2} e_{s+2 r} \pm k^{3} e_{s+3 r}$ in type G_{2}). Thus $x_{r}(k) e_{s} \equiv e_{s} \pm k^{2} e_{2 r+s}\left(e_{s} \pm k^{3} e_{s+3 r}\right.$ in type G_{2}) modulo I. Finally, if r and s are short, then in type B_{n} if $r+s$ is a root, it must be long. In this case or type F_{4} when $r+s$ is long, we have $x_{r}(k) e_{s}=e_{s} \pm 2 k e_{r+s}$. In type F_{4} when $r+s$ is short, we have $x_{r}(k) e_{s}=$ $e_{s} \pm k e_{r+s}$. In type $G_{2}, x_{r}(k) e_{s}=e_{s} \pm 2 k e_{r+s} \pm 3 k^{2} e_{2 r+s}$ or $e_{s} \pm 3 k e_{r+s}$ if $r+s$ is a root (2.10 of [5]). So in all cases if $t e_{r} \in I$, then $x_{r}(t) e_{s} \equiv e_{s} \bmod I$ since $m J \subseteq J \subseteq J_{1}$ (and in type $G_{2}, 2 J \subseteq J_{1}$). Now if r is long and we choose say $k \in J, k \notin J^{\prime}$, then we claim $x_{r}(k) \notin G_{I^{\prime}}$. For we can find a long root s such that $r+s$ is long, so that $x_{r}(k) e_{s}=e_{s} \pm k e_{r+s} \not \equiv e_{s} \bmod I^{\prime}$. Then as before $x_{r}(k)$ can't be a product of conjugates of generators for $G_{I^{\prime}}$ since all such conjugates would either fix $e_{s} \bmod I^{\prime}$ or would send e_{s} to $e_{s} \pm \sum c_{i} e_{s+m v(i)} \bmod$ I^{\prime}, where $s+m v(i)$ is a long root. In no event then could a product of such elements send e_{s} to $e_{s} \pm k e_{r+s} \bmod I^{\prime}$. Thus $x_{r}(k) \notin G_{I^{\prime}}$. Since $x_{r}(k) \in G_{I}$, $G_{I} \neq G_{I^{\prime}}$.

In case L is of type $B_{n}, n \geqq 3, F_{4}$, or G_{2} and $I \cap E_{S}=J_{1} E_{S} \neq J_{1}^{\prime} E_{S}=$ $I^{\prime} \cap E_{S}$, pick $k \in J_{1}$ such that $k \notin J_{1}{ }^{\prime}$ say. Given any short root r and long root s such that r and s form a system of type B_{2} (respectively, G_{2}) we have $x_{r}(k) e_{s}=e_{s} \pm k e_{s+r} \pm k^{2} e_{s+2 r} \equiv e_{s} \pm k^{2} e_{s+2 r} \bmod I$ (respectively, $=e_{s} \pm$ $\left.k e_{s+r} \pm k^{2} e_{s+2 r} \pm k^{3} e_{s+3 r} \equiv e_{s} \pm k^{3} e_{s+3 r} \bmod I\right)$. Then we claim $x_{r}(k) \notin G_{I^{\prime}}$. For if $x_{r}(k)$ were a product of conjugates of generating elements for $G_{I^{\prime}}$, then those involving long root generators $x_{u}(t)$ would fix $e_{s} \bmod I^{\prime}$ (since the long roots form a system of type D_{n} or A_{2}) and those involving short root generators $x_{v}(t)$ would map e_{s} to $e_{s} \pm \sum c_{i} e_{s+m w(i)}$ where $s+m w(i)$ is a long root. In no event then would a product of such elements send $e_{s}+I^{\prime}$ to $e_{s} \pm k e_{r+s} \pm$ $k^{2} e_{s+2 r}+I^{\prime}$ (respectively, $e_{s} \pm k e_{r+s} \pm k^{2} e_{s+2 r} \pm k^{3} e_{s+3 r}+I^{\prime}$). But the latter is precisely the action of $x_{r}(k)$ on $e_{s}+I^{\prime}$. So $x_{r}(k) \notin G_{I^{\prime}}$ and $G_{I} \neq G_{I^{\prime}}$ then. This completes the proof.

Turning now to case $C_{n}, n \geqq 3$, we have $I \cap E_{S}=J E_{S}$. If $I \cap E_{R}$ and $I^{\prime} \cap E_{R}$ differ in their intersections with E_{S}, then use of 2.5 and 2.6 of [$\left.\mathbf{5}\right]$ in conjunction with (5) above gives $G_{I} \neq G_{I^{\prime}}$. If $I \cap E_{R}$ and $I^{\prime} \cap E_{R}$ differ in their intersections with $E_{L}+H_{R}$ (cf. 5.4 of [5]), then the result of the theorem may fail. Consider for example the ring $R=\mathbf{Z}$ of integers. Suppose $I=$ $\langle 2\rangle L_{R}$. Let I^{\prime} be the ideal generated by $\langle 2\rangle E_{S}, H_{R}$, and the element $e=\sum_{l \text { long }} e_{l}$. Then I^{\prime} is an ideal in $L_{R}, I^{\prime} \neq I$, but $\left\{t \in R \mid t e_{r} \in I\right\}=\left\{t \in R \mid t e_{r} \in I^{\prime}\right\}=$ $\langle 2\rangle$, and so $G_{I}=G_{I^{\prime}}$ even though I and I^{\prime} differ in their intersections with E_{R}. (Note $e \in I^{\prime} \cap E_{R}, e \notin I \cap E_{R}$.)

If L is not symplectic, then let $\mathscr{I}\left(L_{R}\right)$ be the set of all ideals of L_{R}. We introduce the equivalence relation \sim on $\mathscr{I}\left(L_{R}\right)$ by $I \sim I^{\prime}$ if and only if $I \cap E_{R}=I^{\prime} \cap E_{R}$. Theorem 3.2 now takes the following simple form.
3.3 Corollary. For non-symplectic algebras L, the set of normal sub-groups G_{I} is in one-to-one correspondence with the set $\mathscr{I}\left(L_{R}\right) / \sim$ of equivalence classes of ideals of $\mathscr{I}\left(L_{R}\right)$.

We close this section with the remark that the groups G_{I} occur in [1] with the notation $E(R, J), J$ an ideal of R. For the restrictions on R in [1] (described in $\S 1$ above) assure that save for type A_{n} the only ideals in L_{R} have the form $J L_{R}=L_{J}$ (by 3.3 of [5]). Also G_{I} is an analogue of the group P_{J} of [14], and an exact analogue if m and the determinant of the Cartan matrix are invertible in R.
4. Normal closures of root elements. In [7;8] a key fact used to obtain the sandwiching relation quoted in § 1 above is Proposition 2 of [7] (Satz 3 of [8]). This is as follows. The order of an element $\sigma \in G L(n, R)$ is defined as the smallest ideal J of R such that $f_{J}(\sigma) \in C_{J}$. Then a transvection τ of order J has normal closure K_{I}, provided in dimension 2 that R / I does not have characteristic 2 . What corresponds to a transvection in the present setting? A natural candidate is a root element $x_{r}(t)$ [$\left.\mathbf{6}, \mathrm{pp} .1067-1068\right]$. Corresponding to the order of a transvection as just defined we have the ideal $J=\langle t\rangle$ of R. In this section we show that a result analogous to that just described for $G L(n, R)$ holds for G in several cases, namely, $x_{r}(t)$ has normal closure G_{I} where I is an ideal of the Chevalley algebra L_{R} which arises in a natural way from the ideal $J=\langle t\rangle$ in R. The theorems of this section make these remarks precise.
4.1 Theorem. If L has rank at least two and a single root length, then the normal closure N of $x_{r}(k)$ is $G_{I}, I=J L_{R}, J=\langle k\rangle$.

Proof. Choose a root s so that $r+s$ is a root. Then $\left(x_{s}(1), x_{r}(k)\right)=$ $x_{r+s}(\pm k) \in N[13, \mathrm{p} .24]$. Then $\left(x_{r+s}(\pm k), x_{-r}(1)\right)=x_{s}(\pm k) \in N$. Now given any root $u \neq r$, find a sequence $s_{0}=r, s_{1}, \ldots, s_{m}=u$ of roots such that $s_{i+1}-s_{i}$ is a root for $0 \leqq i \leqq m-1[5,4.1]$. Using the successive s_{i} in place of s just considered, we obtain $x_{u}(\pm k) \in N$. For any $y \in R,\left(x_{s}(y)\right.$, $\left.x_{u}(\pm k)\right)=x_{s+u}(\pm k y)$, so $x_{u}(k y) \in N$ for any $y \in R$. Thus every generating element of the elementary subgroup E_{I} belongs to N. Hence the normal closure G_{I} of E_{I} is included in N. But G_{I} is a normal subgroup of G_{R} which contains $x_{r}(k)$, so $G_{I} \supseteq N$. Thus $N=G_{I}$ as desired.
4.2 Theorem. Suppose L is of type $B_{n}, n \geqq 3$, or F_{4}. If r is a long root, then the normal closure N of $x_{r}(k)$ is $G_{I}, I=J L_{R}, J=\langle k\rangle$. If L is of type G_{2}, then $G_{2_{I}} \subseteq N \subseteq G_{I}$.

Proof. Recall that in type B_{n} or F_{4} the long roots form a system of type D_{n} $[\mathbf{5}, 2.3]$ and in type G_{2} form a system of type A_{2}. Then as in 4.1, every $x_{u}(\pm k y)$ $\in N$ for all long roots u and all $y \in R$. We now distinguish the cases B_{n} and F_{4} from the case G_{2}. Supposing the first case, let any short root v be given. We want to obtain $x_{v}(\pm k y) \in N$ for arbitrary $y \in R$. To this end, find a long
root u so that u and v form a system of type B_{2}. From $x_{u}(\pm k) \in N$ we get $\left(x_{v}(y), x_{u}(\pm k)\right)=x_{u+v}(\pm k y) x_{u+2 v}\left(\pm k y^{2}\right) \in N$ by the Commutator Lemma of [6]. For $c_{1,1, u, v}=n_{u, v}= \pm 1$ since $u-v$ is not a root, and

$$
c_{1,2, u, v}=\frac{1}{2!} n_{v, u} n_{v, u+v}=\left(\frac{1}{2}\right)(\pm 1)(\pm 2)= \pm 1
$$

since $u+v-v$ is a root, but $u+v-2 v$ is not a root. Now since $u+2 v$ is a long root, we know $x_{u+2 v}\left(\pm k y^{2}\right) \in N$. Thus $x_{u+v}(\pm k y) \in N$. Let w be an element of the Weyl group such that $v=w(u+v)$. Such a w exists since v and $u+v$ are short [3, p. 151, Prop. 11]. Write $w=\prod_{i=1}^{q} w_{i}$ where w_{i} is the Weyl reflection corresponding to the simple root $r_{i}[\mathbf{1 3}$, p. 269, Theorem 16] , and let $\omega=\prod_{i=1}^{q} \omega_{i}(1)$. Then $\omega x_{u+v}(\pm k y) \omega^{-1}=x_{v}(\pm k y) \in N$. Thus all generators of E_{I} are in N, so $G_{I} \subseteq N$. Hence as in 4.1, $G_{I}=N$.

Supposing next that we are in case G_{2}, again let v be any short root. Find a long root u so that u and v form a system of type G_{2}. Then we have ($x_{u+v}(1)$, $\left.x_{-u}(\pm k)\right)=x_{v}(\pm k) x_{u+2 v}(\pm k) x_{2 u+3 v}(\pm k) x_{u+3 v}\left(q k^{2}\right)$ where $q= \pm 1$ or ± 2, since

$$
\begin{aligned}
& c_{1,1, u+0,-u}=n_{u+v,-u}= \pm 1 \\
& c_{2,1, u+0,-u}=\frac{1}{2!} n_{u+v,-u} n_{u+0, v}= \pm 1 \\
& c_{3,1, u+0,-u}=\frac{1}{3!} n_{u+v,-u} n_{u+v, v} n_{u+v, u+2 v}= \pm 1, \\
& c_{3,2, u+v,-u}= \pm q c_{3,1, u+0,-u} n_{-u, 2 u+3 v}=q .
\end{aligned}
$$

Since $u+3 v$ and $2 u+3 v$ are long roots, $x_{2 u+3 v}(\pm k) \in N$ and $x_{u+3 v}\left(q k^{2}\right) \in N$ by the beginning of the proof. So our calculation yields $x_{v}(\pm k) x_{u+2 v}(\pm k) \in N$. Now

$$
\begin{aligned}
& \left(x_{u+v}(y), x_{v}(\pm k) x_{u+2 v}(\pm k)\right. \\
& =\left(x_{u+v}(y), x_{v}(\pm k)\right) x_{v}(\pm k)\left(x_{u+v}(y), x_{u+2 v}(\pm k)\right) x_{v}(\pm k)^{-1} \\
& =x_{u+2 v}(\pm 2 k y) x_{u+3 v}\left(\pm 3 k^{2} y\right) x_{2 u+3 v}\left(\pm 3 k y^{2}\right) \\
& \quad \times x_{v}(\pm k) x_{2 u+3 v}(\pm 3 k y) x_{v}(\pm k)^{-1}
\end{aligned}
$$

since

$$
\begin{aligned}
& c_{1,1, u+v, v}=n_{u+v, v}= \pm 2, \\
& c_{1,2, u+v, v}=\frac{1}{2!} n_{v, u+v} n_{v, u+2 v}= \pm 3, \\
& c_{2,1, u+v, v}=\frac{1}{2!} n_{u+v, v} n_{u+v, u+2 v}= \pm 3, \\
& c_{1,1, u+v, u+2 v}=n_{u+v, u+2 v}= \pm 3
\end{aligned}
$$

Since $x_{2 u+3 v}\left(\pm 3 k y^{2}\right)$ commutes with $x_{v}(\pm k)$ and since $x_{u+3 v}\left(\pm 3 k^{2} y\right)$,
$x_{2 u+3 v}(\pm 3 k y)$, and $x_{2 u+3 v}\left(\pm 3 k y^{2}\right)$ are in N by the beginning of the proof, we thus obtain $x_{u+2 v}(\pm 2 k y) \in N$. Then as in the B_{n} and F_{4} cases we can use the fact that there is an element w in the Weyl group such that $w(u+2 v)=v$ to produce an element $\omega \in G$ such that $\omega x_{u+2 v}(\pm 2 k y) \omega^{-1}=x_{v}(\pm 2 k y) \in N$. Thus we have all the generators of $E_{2_{I}}$ in N, so $G_{2_{I}} \subseteq N$. As $N \subseteq G_{I}$ is clear, the proof is complete.
4.3 Theorem. If r is a short root and L is of type $B_{n}, n \geqq 2, C_{n}, n \geqq 3$, or F_{4}, then the normal closure N of $x_{r}(k)$ in G satisfies $G_{2_{I}} \subseteq N \subseteq G_{I}$, where $I=J L_{R}$, $J=\langle k\rangle$.

Proof. Find a long root s so that r and s form a system of type B_{2}. Then $\left(x_{s+r}(y), x_{r}(k)\right)=x_{s+2 r}(\pm 2 k y) \in N$, for the only positive integers i and j such that $i(s+r)+j r$ is a root are $i=j=1$, and $c_{1,1, s+r, r}=n_{s+r, r}= \pm 2$ $\left(s+r-2 r\right.$ is not a root). As in 4.2 we can now obtain $x_{u}(\pm 2 k y) \in N$ for any long root u and $y \in R$. Also $\left(x_{-r}(1), x_{s+2 r}(\pm 2 k y)\right)=x_{s+r}(\pm 2 k y) x_{s}(\pm 2 k y)$ $\in N$ since $s+3 r$ is not a root and

$$
c_{2,1,-r, s+r}=\frac{1}{2!} n_{-r, s+2 r} n_{-r, s+\tau}= \pm 1 .
$$

Since s is a long root, $x_{s}(\pm 2 k y) \in N$, hence $x_{v}(\pm 2 k y) \in N$ for all short roots v. Thus $G_{2_{I}} \subseteq N$. On the other hand, G_{I} is a normal subgroup of G containing $x_{r}(k)$, so $G_{I} \supseteq N$. This completes the proof.

In the case of $C_{n}, n \geqq 3$, we are in a position to describe N more exactly.
4.4 Theorem. Let L be of type $C_{n}, n \geqq 3$. If r is a short root, then the normal closure of $x_{r}(k)$ is G_{I}, where $I=J E_{S} \oplus J^{\prime} E_{L} \oplus\left(J^{\prime} H_{L}+J H_{S}\right), J=\langle k\rangle$, $J^{\prime}=\langle 2 k\rangle$.

Proof. Note by 3.6 of [5] I is the smallest ideal of L_{R} such that $I \cap E_{S}=$ $J E_{S}$. Next note that if we consider just the short roots of L, then we have a system of type D_{n}. The reasoning of 4.1 thus shows that for any short root v, $x_{v}(\pm k y) \in N$. Given a long root u, find a short root v so that u and v form a system of type $B_{2}=C_{2}$. We have $x_{v}(\pm k y)$ in N and then as in $4.3, x_{u}(\pm 2 k y)$ $\in N$. With all the generators of E_{I} in N, we once again come to the desired conclusion.

If r is a long root of L of type $C_{n}, n \geqq 3$ or a short root of L of type G_{2}, then the normal closure N of $x_{T}(k)$ is certainly contained in G_{I} for $I=J L_{R}$, $J=\langle k\rangle$. But attempts to obtain a lower bound for N in the manner of 4.3 are obstructed by the nature of the root systems. An explicit description of N in these cases (as well as in those of 4.3) would be desirable.
5. Normal closures of products of root elements. In [6] it was remarked that if $R=\mathbf{Z}$ and N is any normal subgroup of G, then $N \subseteq G_{I}$ where I is
the ideal in $L_{\mathbf{Z}}$ generated by all $d_{r} e_{r}$ where d_{r} is the g.c.d. of
$\left\{n \in \mathbf{Z} \mid x_{r}(n)\right.$ is a factor of some element of $\left.N\right\}$.
(Here we write each element of N in one way as a reduced product of generators $x_{r}(n)$, i.e. any abutting terms $x_{r}(-n) x_{r}(n)$ are cancelled.) In fact for any ring R, if J is the ideal generated by all t such that $x_{r}(t)$ is a factor of some element of N, and $I=J L_{R}$, then we easily see that $N \subseteq G_{I}$. If \bar{I} is an ideal of L_{R} maximal relative to the property that $G_{\bar{I}} \subseteq N$, then a natural question is how \bar{I} and I are related and whether the sandwich relation $G_{\bar{I}} \subseteq N \subseteq G_{I}$ can be refined to obtain a result analogous to that of Wilson mentioned in § 1 above. First we remark, in the single root length case at least, if for each $\prod_{i=1}^{m} x_{r_{i}}\left(t_{i}\right) \in N$, we have $x_{r_{i}}\left(t_{i}\right) \in N$ for each i, then $N \supseteq G_{I}$ since for any $y \in R$ we obtain $x_{r_{i}}\left(t_{i} y\right) \in N$ as in the proof of 4.1 . Thus in this circumstance the only normal subgroups of G would be of the form G_{I}, I an ideal of L_{R}. In this direction we have the following result for the case $m=2$.
5.1 Theorem. Let L have a single root length and rank at least two. Then the normal closure N of $x_{r}\left(t_{1}\right) x_{s}\left(t_{2}\right), r \neq s$, is $G_{I}, I=J L_{R}, J=\left\langle t_{1}, t_{2}\right\rangle$.

Proof. Find $q \neq-r$ so that $r+q$ is a root, but $s+q$ is not a root. (One verifies easily that this is always possible for L of type A_{2} or A_{3}, so for all L considered here.) Then

$$
\begin{aligned}
&\left(x_{q}(y), x_{r}\left(t_{1}\right) x_{s}\left(t_{2}\right)\right)=\left(x_{q}(y), x_{r}\left(t_{1}\right)\right) x_{r}\left(t_{1}\right)\left(x_{q}(y), x_{s}\left(t_{2}\right)\right) x_{r}\left(t_{1}\right)^{-1} \\
&=x_{q+r}\left(\pm t_{1} y\right) \in N
\end{aligned}
$$

Also $x_{r}\left(t_{1}\right)^{-1} x_{r}\left(t_{1}\right) x_{s}\left(t_{2}\right) x_{r}\left(t_{1}\right)=x_{s}\left(t_{2}\right) x_{r}\left(t_{1}\right) \in N$. Now find $q^{\prime} \neq-s$ so that $r+q^{\prime}$ is not a root but $s+q^{\prime}$ is. We have

$$
\begin{aligned}
\left(x_{Q^{\prime}}(y), x_{s}\left(t_{2}\right) x_{r}\left(t_{1}\right)\right)=\left(x_{q^{\prime}}(y), x_{s}\left(t_{2}\right)\right) x_{s}\left(t_{2}\right)\left(x_{q^{\prime}}(y),\right. & \left.x_{r}\left(t_{1}\right)\right) x_{s}\left(t_{2}\right)^{-1} \\
& =x_{q^{\prime}+s}\left(\pm t_{2} y\right) \in N .
\end{aligned}
$$

Now using the reasoning of 4.1, we get all $x_{u}\left(\pm t_{1} y\right)$ and $x_{u}\left(\pm t_{2} y\right)$ in N. Thus $G_{I} \subseteq N$ and so $G_{I}=N$ as desired.

A similar result holds for the normal closure of a product $x_{r_{1}}\left(t_{1}\right) x_{r_{2}}\left(t_{2}\right) x_{r_{3}}\left(t_{3}\right)$, but it is more complicated in this case to break off single factors as we have done in 5.1. Then is the normal closure of $\prod_{i=1}^{q} x_{r_{i}}\left(t_{i}\right)=G_{I}$ where $I=J L_{R}, J=$ $\left\langle t_{1}, t_{2}, \ldots, t_{q}\right\rangle$? The method of 5.1 fails to generalize without some efficient tool for writing factors in a systematic way. In obtaining the result mentioned in § 1, Abe made heavy use (cf. § 3 of [1]) of a normal form (2.8 of [1]) for writing products in G as $u h v$, where $u \in U_{R}, v \in V_{R}$, and $h \in T_{R}{ }^{\prime}$, the subgroup of G generated by $h_{r}(t)=\omega_{r}(t) \omega_{r}(1)^{-1}, t$ a unit on R. The development of this normal form in turn relied on R being a local ring. Some added hypotheses on R seem to be essential in order to obtain such a normal form. The difficulty is that in the absence of a tool like 2.8 of [1] , repeated application of the scheme used in
proving 5.1 yields longer and longer products of generating root elements, even after as much reduction as possible has been effected by conjugation.

Acknowledgement. The author is indebted to Professor G. I. Lehrer for 3.1 in the form given here.

References

1. E. Abe, Chevalley groups over local rings, Tôhoku Math. J. 21 (1969), 474-494.
2. H. Bass, J. Milnor and J.-P. Serre, Solution of the congruence subgroup problem for $S L_{n}(n \geq$ 3) and $S p_{2 n}(n \geq 2)$, Inst. Hautes Études Sci. Publ. Math. 33 (1967), 59-137.
3. N. Bourbaki, Groupes et algèbres de Lie, Chap. IV, V, et VI (Hermann, Paris, 1968).
4. C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. 7 (1955), 14-66.
5. J. Hurley, Ideals in Chevalley algebras, Trans. Amer. Math. Soc. 137 (1969), 245-258.
6. - Some normal subgroups of elementary subgroups of Chevalley groups over rings, Amer. J. Math. 93 (1971), 1059-1069.
7. W. Klingenberg, Linear groups over local rings, Bull. Amer. Math. Soc. 66 (1960), 294-296.
8. -L Lineare Gruppen über lokalen Ringen, Amer. J. Math. 83 (1961), 137-153.
9. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Ecole Norm. Sup. (4) 2 (1969), 1-62.
10. J. Mennicke, Finite factor groups of the unimodular group, Annals of Math. 81 (1965), 31-37.
11. W. Scott, Group theory (Prentice-Hall, Englewood Cliffs, New Jersey, 1964).
12. M. Stein, Generators, relations, and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965-1004.
13. R. Steinberg, Lectures on Chevalley groups, Yale Univ. Math. Dept., New Haven, Conn., 1967-68.
14. R. Swan, Excision in algebraic K-theory, J. Pure App. Alg. 1 (1971), 221-252.
15. J. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Phil. Soc. 71 (1972), 163-177.

The University of Connecticut, Storrs, Connecticut

