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Abstract
The present work discusses the use of a weakly-supervised deep learning algorithm that reduces the cost of labelling pixel-level masks for
complex radio galaxies with multiple components. The algorithm is trained on weak class-level labels of radio galaxies to get class activation
maps (CAMs). The CAMs are further refined using an inter-pixel relations network (IRNet) to get instance segmentation masks over radio
galaxies and the positions of their infrared hosts. We use data from the Australian Square Kilometre Array Pathfinder (ASKAP) telescope,
specifically the EvolutionaryMap of theUniverse (EMU) Pilot Survey, which covered a sky area of 270 square degrees with an RMS sensitivity
of 25–35 μJy beam−1. We demonstrate that weakly-supervised deep learning algorithms can achieve high accuracy in predicting pixel-level
information, including masks for the extended radio emission encapsulating all galaxy components and the positions of the infrared host
galaxies. We evaluate the performance of our method using mean Average Precision (mAP) across multiple classes at a standard intersection
over union (IoU) threshold of 0.5.We show that themodel achieves amAP50 of 67.5% and 76.8% for radiomasks and infrared host positions,
respectively. The network architecture can be found at the following link: https://github.com/Nikhel1/Gal-CAM
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1. Introduction

Recent technological advances in radio astronomy have enabled
us to significantly reduce the integration time to survey the sky.
This has led to a new era in radio surveys, producing deep con-
tinuum images of hundreds of square degrees of radio sky at
unprecedented depths. Advanced radio interferometers like the
Australian Square Kilometre Array Pathfinder (ASKAP: Johnston
et al. 2007; DeBoer et al. 2009; Hotan et al. 2021), the Murchison
Wide-field Array (MWA: Tingay et al. 2013; Wayth et al. 2018),
MeerKAT (Jonas & MeerKAT Team 2016), the Low Frequency
Array (LOFAR: van Haarlem et al. 2013) and the Karl G. Jansky
Very Large Array (JVLA: Perley et al. 2011) are among the instru-
ments being used for these surveys. The upcoming multi-million
catalogues of radio sources from these surveys will greatly enhance
our knowledge of the Universe. To fully harness the potential of
these surveys, there is a need to increase the efficiency of the data
analysis techniques.

The improved resolution of wide-field radio surveys has led to
the detection of increasingly more extended radio galaxies. These
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galaxies may have multiple components with separate peak emis-
sions. While the related components of a galaxy may be connected
to each other, for many galaxies these components may be sepa-
rated by some distance. A non-trivial task here is the process of
morphological identification of all related components of a radio
galaxy. Currently, existing methods for component identification
are primarily based on visual inspection which does not scale up
to the massive data volumes of this decade. Without redesigning
these component identification methods, the radio source cat-
alogues from the next-generation surveys may not be ideal for
further scientific analysis.

Machine learning (ML) based on computer vision has become
a powerful tool for extracting and modelling high-dimensional
information from images in recent years. The available data for
learning usually determines computer vision tasks, which are
categorised into four types: supervised, self-supervised, semi-
supervised, and weakly-supervised methods. In supervised learn-
ing, the model is trained on image-label pairs, where the labels
correspond to the true and exact information necessary to train
the model for a specific prediction. Recently, these ML methods
have been used for morphological classifications of radio sources
(e.g. Lukic et al. 2018; Alger et al. 2018;Wu et al. 2019; Bowles et al.
2020; Maslej- Krešňáková, El Bouchefry, & Butka 2021; Becker
et al. 2021; Brand et al. 2023), but these models cannot be used for
learning without precise training labels. Labelling a large training
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dataset is expensive, and with multi-million radio detections in
future surveys, obtaining true and exact labels for a reasonably
large fraction is not feasible.

Self-supervised learning refers to the use of unsupervised
methods to train models on the structure of the data without the
need for explicit labels. This approach has been used to iden-
tify new types of galaxies in radio surveys (e.g. Galvin et al.
2020; Mostert et al. 2021; Gupta et al. 2022). Since it does not
rely on truth labels for training, self-supervised learning produces
less reliable results compared to supervised learning methods
that do rely on labelled data. Semi-supervised learning can be
used to address this issue by combining labelled and unlabelled
data during training, as has been done for the classification of
radio galaxies (Slijepcevic et al. 2022). This approach may also
reduce the amount of labelled data needed for training compared
to supervised learning methods. Alternatively, weakly supervised
learning can use noisy, restricted, or indirect labels for the entire
training data, which can reduce the labelling effort required for
large datasets by using indirect information for each galaxy as a
supervisory signal.

Various methods have been developed to classify radio galax-
ies and identify their associated components. Among the labelling
efforts, image ‘tags’ or ‘classes’ are considered to be cost-effective,
informative, and helpful in investigating and interpreting the
underlying physics (e.g. Rudnick 2021). The Galaxy Zoo por-
tal is one of the most effective efforts to tag images, which is
publicly accessible for citizen scientists to participate in solving
astronomical problems. Citizen scientists are typically individuals
from society who have not received formal training in the scien-
tific field. An example relevant to the present work is the Radio
Galaxy Zoo (RGZ; Banfield et al. 2016). In the case of RGZ, citizen
scientists were tasked with providing tags to radio sources to deter-
mine the number of associated peaks and components for each
galaxy. While these tags are helpful for supervised classification
tasks (e.g.Wu et al. 2019), they cannot be directly used to generate
pixel-level information, such as segmentation masks for galaxies
in radio images. It should be noted that such segmentation masks
are crucial for identifying related radio components in the image.

This work presents a weakly-supervised instance segmentation
method. In addition to the radio galaxy segmentation masks, we
also detect positions of the infrared host galaxies using keypoint
estimation. Our weakly-supervised deep learning model achieves
high accuracy in predicting pixel-level information, including
masks for the extended radio emission encapsulating all galaxy
components and the positions of the infrared host galaxies. We
evaluate the performance of our deep learning algorithm to pro-
duce instance segmentation masks from weak labels. The posi-
tional accuracy of infrared hosts is also evaluated.

The paper is structured as follows. In Section 2, we describe
the radio and infrared data and labels used for training and infer-
ence. Section 3 is dedicated to the methods that include image
pre-processing, a description of the deep learning pipeline, and
details about the network training. In Section 4, we present our
findings from the trained network. We summarise our findings in
Section 5 and provide directions for future work.

2. Data

This section presents the radio and infrared observations and the
labels utilised for training and performing inference with a weakly-
supervised ML network.

2.1 Radio observations with ASKAP

Located at Inyarrimanha Ilgari Bundara, the Murchison Radio-
astronomy Observatory (MRO), ASKAP is a radio telescope
equipped with phased array feed (PAF: Hay et al. 2006) technol-
ogy, which allows for a wide instantaneous field of view, resulting
in high survey speed. ASKAP has 36 antennas with varying base-
lines, most located within a 2.3 km diameter and the outer six
extending the baselines up to 6.4 km (Hotan et al. 2021). Recently,
ASKAP completed the first all-sky Rapid ASKAP Continuum
Survey (RACS: McConnell et al. 2020) covering the entire sky
south of Declination +41◦, with a median RMS of approximately
250 μJy beam−1. This survey has opened up the possibility of
conducting subsequent deeper surveys using ASKAP.

A planned survey known as the Evolutionary Map of the
Universe (EMU; Norris 2011) aims to observe the entire Southern
Sky, with an expected catalogue of up to 40 million sources.1
Taking steps in this direction, the EMU Pilot Survey (EMU-
PS: Norris et al. 2021) was conducted towards the end of 2019.
Covering a sky area of 270 deg2 with 301◦ < RA< 336◦ and
−63◦ <Dec< −48◦, EMU-PS is composed of 10 tiles, with a total
integration time of about 10 h for each tile. It achieved an RMS
sensitivity of 25–35 μJy beam−1 and a beamwidth of 13′′ × 11′′
FWHM. The operating frequency range of EMU-PS is from 800
to 1 088 MHz, centred at 944 MHz. The ASKAPsoft pipeline
(Whiting et al. 2017) was used to process the raw data. To avoid
any potential systematic errors associated with automated source
detectors, we rely for this on a catalogue of Double Radio sources
Associated with Active Galactic Nuclei (DRAGN; Leahy 1993)
wherein source identification is conducted solely through visual
inspections. The detailed process of identifying sources for the
DRAGN catalogue will be outlined in Yew et al. (in preparation).
Here, we provide a summary of the procedure.

In the initial step, the EMU-PS radio image was quickly
scanned for any obvious DRAGNs, and a circular region was
defined around each of them. In the subsequent step, a thorough
visual scan of the complete radio image was carried out by system-
atically examining each part, identifying and categorising sources,
and setting a circular region encompassing the diffuse radio emis-
sion for each. A third and final step involved an extensive scan
to identify any sources that might have been missed and were
not associated with a circular region. After the identification pro-
cess, each source’s centroid position and approximate size were
recorded in the catalogue. Using the centroid position, we created
7′ × 7′ cut-outs for each DRAGN source. The resulting image is
210× 210 pixels in size, with a pixel size of 2′′. The selected cut-out
size is appropriate as the largest source measures 6.5′.

2.2 Infrared observations

Infrared images were obtained at the exact locations of the radio
source cut-outs. We use the Wide-field Infrared Survey Explorer
(WISE; Wright et al. 2010), which is an infrared survey of the
entire sky that detects radiation in the W1, W2, W3, and W4
bands corresponding to 3.4, 4.6, 12, and 22μmwavelengths. In the
present study, we focused only on the W1 band from the AllWISE
(Cutri et al. 2013) dataset, which has a 5σ point source sensitivity
of 28 μJy and angular resolution (FWHM of the major axes of the
PSF) of 6.1′′.

1Forecast based on the allocated time for the EMU 5-yr survey programme (see
https://www.atnf.csiro.au/projects/askap/commissioning_update.html).
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2.3 Data labelling

The radio and infrared image cut-outs contain four types of labels,
which are class-level labels indicating the types of radio sources,
and pixel-level labels that include bounding boxes placed at the
locations of radio sources covering their connected or separate
components, segmentation masks for radio sources, and positions
of potential host galaxies in the infrared. Our objective in this
study is to evaluate the efficacy of a weakly-supervised deep learn-
ing algorithm trained with a restricted amount of labelled data.
Therefore, we solely employ class-level labels during training, and
pixel-level labels are exclusively utilised for model inference. We
will briefly overview the labelling procedure here, and a detailed
discussion will be presented in Yew et al. (in preparation).

2.3.1 Infrared hosts

To determine the infrared host galaxy associated with each radio
source, we performed a manual identification process by super-
imposing radio and infrared images. The likely infrared host is
typically near the geometric centre of radio sources. In the case
of asymmetric jets for radio sources that are brighter towards
the geometric centre, the position of the likely infrared host is
expected to be in proximity to the radio emission ridge line. For
edge-brightened sources, it should be roughly equidistant from the
two lobes and lie in close proximity to the major axis of the source
or ridge. In cases where we could not locate a suitable host, we
removed the source from our catalogue.

2.3.2 Radio source characterisation

The classification of radio galaxy morphology according to
Fanaroff & Riley (1974) is typically based on two parameters: the
distance between the peak emissions of the opposite lobes and the
total extent of the radio emission. In this study, we employed a pri-
marily manual identification process to identify these parameters,
utilising the CARTA visualisation package (Comrie et al. 2021).
Specifically, we measured the distance a between the two emis-
sion peaks and determined the rectangular bounding box that just
encompassed the 5σ contour of the source, where σ represents the
local RMS noise. This bounding box is aligned with the major axis
of the jet at a position angle θ , and its length and width are denoted
by b and c, respectively.

We also experimented with a Laplacian of Gaussian (LoG) fil-
ter to identify the locations of the two emission peaks, determine
the distance a between them, measure the orientation of the major
axis of the radio galaxy, and fit a bounding box as described above.
However, we visually inspected each algorithm-derived fit and
only considered it if it matched our manual estimate. We observed
that the LoG filter produced correct results in approximately 25%
of cases.

According to the criteria of Fanaroff & Riley (1974), the galax-
ies are classified as FR-I and FR-II if a/b< 0.5 and a/b> 0.5,
respectively. However, some sources have a/b∼ 0.5, which means
a small measurement error or noise can lead to a misclassification
from FR-I to FR-II or vice versa. To account for such cases, we
label these sources with a/b= 0.5± 0.05 as FR-X sources, which
are considered to have an unreliable classification. Consequently,
FR-I and FR-II radio sources are classified with a/b< 0.45 and
a/b> 0.55, respectively. Some barely resolved sources have only
one peak or no peak outside the central component, and for
those, a is assigned as 0, and we classify them as R (for ‘resolved’)
even though we must await future higher-resolution images to see

whether they feature two jets or lobes. Our dataset contains 328
FR-I, 128 FR-II, 110 FR-X, and 196 R radio sources, which are sit-
uated in the South-Western area of the EMU-PS survey. Further
efforts are underway to classify about three thousand DRAGN
sources in the complete EMU-PS survey (Yew et al. in prepara-
tion). Note that there are different approaches to labelling data
for network training, including methods based on the number of
peaks/components (Wu et al. 2019) or the use of multiple tags for
each source (Rudnick 2021). In the present study, we have opted
to train the network using DRAGNs that are classified into FR-I,
FR-II, FR-X, and R type sources following Yew et al. (in prepa-
ration). For future work, it would be valuable to compare the
effectiveness of different class labels in generating segmentation
masks for radio sources.

2.3.3 Bounding boxes andmasks for radio sources

The dimensions of the rectangular regions b, c, and θ , are utilised
to obtain bounding boxes for radio sources. The segmentation
masks are obtained by identifying components with a signal-to-
noise ratio greater than three within the bounding boxes. After
visually examining all 762 radio sources, it was observed that
in 99% of cases, the masks within the bounding boxes correctly
included all linked radio source components. The inaccurate
masks for unrelated sources, such as nearby point sources located
within the same bounding boxes, were subsequently removed
from the ground truth labels.

3. Method

This section outlines the initial and important step in constructing
a deep learning model: data pre-processing to make it machine-
compatible. Additionally, we discuss the machine learning tech-
nique used in this study and model training.

3.1 Radio and infrared image pre-processing

The quality of data used for training machine learning models is
crucial for their performance. The ability of a machine to identify
important features and extract meaningful insights from the data
is key. ASKAP surveys, with their high sensitivity, present unique
challenges in terms of data pre-processing due to the high density
of sources in the survey images. To address this, we have developed
a pre-processing scheme that aims to enhance the relevant features
in the radio images.

• First step is to estimate the noise in each cut-out. To
achieve this, we measure the Median Absolute Deviation
(MAD) of the pixel values. Next, we apply two rounds
of data clipping to eliminate real sources. The thresh-
old for real sources is determined to be 3×MAD. After
clipping, we estimate the noise as the standard deviation
of the remaining distribution. In the top second panel
of Fig. 1, we display the full and clipped distributions of
image pixels in blue (filled) and orange (dashed) colours,
respectively.

• Weproceed by applying segmentationmasks to the islands
with pixel values greater than 3σ in each cut-out. Here, σ
is defined as the standard deviation of the clipped distri-
bution. At the locations of these islands, we apply a loga-
rithmic scaling to the pixel values and perform Min-Max
normalisation, which enhances the signal of the islands.
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Figure 1. The pre-processing methodology for radio (upper rows) and infrared (lower rows) images. Starting from the top left and moving rightwards, the first panel displays a
radio image captured by ASKAP. The secondpanel illustrates the complete distribution of image pixels (represented by the blue-filled histogram), aswell as the clippeddistribution
(indicated by the orange-dashed line), which is utilised to estimate the noise level as the standard deviation (σ ). The third panel presents the segmented islands located where
pixel values exceed 3σ . The pixel values are presented in a logarithmic scale and subjected to Min-Max normalisation. The pre-processing steps for the infrared images, displayed
in the lower rows, are identical, except that the islands are identified where the pixel value exceeds Median+3×MAD, depicted by a red vertical line in the second panel.

The remaining pixel values in the image are set to zero,
and the Min-Max normalisation of the segmented regions
rescales the image to the range of 0–1. In the resulting
image, shown in the top third panel of Fig. 3, the source
density is moderately high. Some of the islands may be
spurious noise fluctuations or artefacts.

• To address this issue, we establish a criterion for identi-
fying islands in the image by setting a threshold on the
number of pixels they comprise. Specifically, we retain
only those islands where the signal is dispersed across
a substantial number of pixels. After several rounds of
experimentation and visual examination, we determined
that the minimum island size should be 5 pixels (∼10′′),
eliminating most map noise fluctuations. However, it is
essential to note that this limit may also eliminate certain
low-brightness point sources. Nonetheless, this does not
affect our analysis, as the primary aim of this study is to
identify components of extended radio sources.

WISE images underwent a similar pre-processing sequence,
but the correlation among neighbouring pixels in WISE images
differs from that in radio-interferometric images. Additionally,
the WISE instrument’s noise characteristics are not entirely
Gaussian, and since the images are approaching the source con-
fusion limit, the lower limit of the estimated noise is determined
as Median+3×MAD. The criterion of a minimum island size
of 5 pixels is also applied when identifying islands in infrared
images. After pre-processing radio and infrared images, we com-
bine them into the 3-channel RGB images. To do this, we
first compress the original 32-bit radio and infrared images to
16-bit and 8-bit, respectively. Next, we fill the 8–16 bit and 0–8
bit radio information to the B and G channels, respectively,
while the 8–16 bit infrared information is inserted into the R
channel.

3.2 Machine learningmethod

The objective of weakly-supervised semantic segmentation
(WSSS) is to reduce the cost of annotating ‘strong’ pixel-level
masks by using ‘weak’ labels like bounding boxes and image-level
class labels. This paper focuses on using image-level class labels
for training, which are cost-effective but challenging. The pipeline
involves training amulti-label classificationmodel, extracting class
activationmaps, and using all-class masks as pseudo labels to learn
the instance segmentationmodel. Additionally, we also discuss the
detection of infrared host galaxies using keypoint estimation.

3.2.1 Class activation maps

Class Activation Map (CAM; Zhou et al. 2016) is a technique
to get the discriminative image regions used by a convolutional
neural network (CNN) to identify a specific class in the image.
In other words, a CAM lets us see which regions in the image
were relevant to a particular class. In addition, CAM also pro-
vides further insight into the network’s learning process since it
provides object localisation for the predicted class without requir-
ing explicit bounding box labelling by the user. In the initial phase
of CAM, a multi-label classification model is trained using global
average pooling (GAP) along with a prediction layer, typically
implemented as a fully connected (FC) layer. The prediction loss
is calculated using the binary cross-entropy (BCE) loss function.

BCE= − 1
C

C∑
k=1

[
yk log (pk)+ (1− yk) log (1− pk)

]
, (1)

where C is the number of object classes, yk is the true label (either
0 or 1) of the k-th class, and pk is the predicted probability of the
positive class calculated from the sigmoid function σS as

p= σS (FC (GAP (f (x)))), (2)
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where x is the input image and f (x) represents the feature map of
x before the GAP. The BCE loss penalises the model for predicting
low probabilities for positive and high probabilities for negative
examples. Once the model converges, the CAM can be calculated
mathematically using the following equation:

CAMk(x)= αk f (x), (3)

where CAMk(x) is the class activation map for class k, and αk
denotes the classification weights of the FC layer for class k.

A recent study by Chen et al. (2022) has shown that the BCE
may not be effective in producing satisfactory pseudo masks for
the segmentation model. Pseudo masks are artificial masks gener-
ated by applying a threshold to activation maps, with the intention
of approximating the shape and position of objects in an image.
The effectiveness of BCE in generating accurate pseudo masks is
hindered by the sum-over-class pooling feature, which may cause
each pixel in CAM to respond to multiple classes co-occurring
within the same receptive field. Consequently, the hot CAM pix-
els, which correspond to the regions in the input image that had
the greatest influence on predicting a specific class, may mistak-
enly encompass areas that belong to other classes. Additionally,
non-hot pixels could be inaccurately classified as belonging to the
target class.

In light of this, Chen et al. (2022) proposed a solution dubbed
ReCAM, which effectively reactivates the converged CAM using
softmax cross-entropy loss (SCE). SCE involves two steps: the
first step uses the softmax function to convert the model’s output
scores into probability distributions over the classes. In contrast,
the second step calculates the cross-entropy between the predicted
probabilities and the true class labels. SCE aims to minimise the
difference between the predicted and actual probability distribu-
tions, thereby improving the model’s accuracy in classifying the
input data. Specifically, given an image, the CAM extracts the fea-
ture pixels fk(x) for each class. Then it uses them and the class label
to train another fully connected layer (after the backbone) using
SCE. Once the model has converged, ReCAM is obtained in the
same way as CAM. Since SCE is contrastive, the pixel response is
divided into distinct classes, reducing ambiguity in pseudo masks.
In the present work, we use the ReCAM architecture to get the
CAMs for all images containing radio sources.

3.2.2 Inter-pixel relation network & instance segmentation

Instance segmentation is a computer vision task that simultane-
ously estimates individual objects’ class labels and segmentation
masks. While CAMs can provide a rough estimate of the areas
belonging to each class by examining how local image regions
contribute to the classification score of the class, they have cer-
tain limitations that prevent them from being used directly as
supervision for instance segmentation. For example, CAMs often
have limited resolution and highlight only partial areas of objects.
Additionally, they cannot distinguish between different instances
of the same class, further restricting their usefulness. To overcome
these limitations of CAMs, Ahn, Cho, & Kwak (2019) introduced
Inter-pixel Relation Network (IRNet). The network is a weakly-
supervised learning approach to instance segmentation that aims
to overcome the limitations of traditional instance segmentation
methods that require pixel-level annotations. Instead of relying on
fully annotated datasets, this approach uses weak supervision in
the form of class labels to learn to segment objects in an image.

IRNet consists of two separate branches that work together to
estimate instance segmentation. The first branch predicts a dis-
placement vector field, where a two-dimensional vector is assigned
to each pixel in the image. This vector indicates the location of
the centroid of the instance that the pixel belongs to. Using this
displacement field, an instance map is generated by assigning the
same instance label to pixels with displacement vectors point-
ing to the same location. The second branch of IRNet detects
class boundaries between different object classes by analysing the
features extracted from the input image. It employs a boundary
prediction module that takes the features extracted from interme-
diate layers of the network as input and focuses on capturing the
distinctive patterns and characteristics that signify the boundaries
between different object classes. By analysing these features, the
boundary prediction module identifies regions in the image where
transitions between object classes are likely to occur. To enhance
accuracy, post-processing techniques like non-maximum suppres-
sion and thresholding refine the boundarymap. Using the detected
boundaries, pairwise semantic affinities are computed so that two
pixels separated by a strong boundary are considered a pair with
a low semantic affinity. This allows IRNet to accurately distin-
guish between different object instances and produce high-quality
instance segmentation results.

Subsequently, instance-wise CAMs are generated by combin-
ing CAMs with instance maps. These instance-wise CAMs are
further improved by propagating their attention scores to related
areas according to the semantic affinities between neighbouring
pixels. Finally, an instance segmentation mask is produced by
choosing the instance label with the highest attention score in the
instance-wise CAMs at each pixel.

In the present work, IRNet is trained efficiently using inter-
pixel relations obtained from ReCAM. This involves gathering
pixels with high attention scores and using their displacements
and class equivalence to train the network. This means that no
additional supervision, besides image-level class labels, is used to
train ReCAM and IRNet effectively. Fig. 2 shows an overview of
this weakly-supervised framework to generate island segmenta-
tion masks from class labels of extended radio galaxies.

3.2.3 Keypoint detection for infrared hosts

In addition to the instance segmentation masks for radio galax-
ies, we determine the most likely host galaxy from the infrared
images. We do this without relying on any supervised infrared
signals. Our approach involves using instance-wise CAMs to ini-
tially detect all instances in the radio channel. As the instance-wise
CAMs indicate attention for radio sources, we multiply them by
the corresponding pre-processed infrared channel to detect host
galaxies. At the positions of each instance mask, we find pixels
where the activation maximises in the infrared-weighted instance-
wise CAMs. These pixels are then identified as the infrared host
galaxies.

3.3 Training

The radio and infrared dataset used in this work (see Section 2) is
partitioned into two sets: the train and test sets. The train and test
sets comprise 610 (80%) and 152 (20%) 3-channel images, along
with their corresponding labels. The training set consists of 100
FR-I, 261 FR-II, 90 FR-X, and 159 R sources. In the test set, there
are 28 FR-I, 67 FR-II, 20 FR-X, and 37 R sources. The labels and
dataset information are compiled in a ‘JSON’ file that contains
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Figure 2. Overview of the weakly-supervised framework to generate instance segmentation masks from the class labels.

four annotations. For each source, the radio annotation is stored
as ‘categories’, and ‘segmentation’ for radio galaxy classes and seg-
mentation masks encapsulating the full extent of radio emission,
respectively. The positions of the infrared hosts are stored as ‘key-
points’ that are important landmarks or features that can be used
to identify specific points of interest within an image.

The weakly-supervised deep learning model explained in
Section 3.2 and depicted in Fig. 2, receives 3-channel images
(consisting of two radio channels and one infrared channel) and
class labels as input. It then produces both instance segmentation
masks for radio emission and positions of infrared host galax-
ies as output. Our deep learning framework employs ReCAM in
combination with IRNet, which utilises class labels and can seg-
ment and locate radio galaxies and their hosts without the need
for supervision.

The CAMs are generated using a combination of CAM and
ReCAM networks. The CAM network is trained first, and the out-
put activation maps from the network are used to train ReCAM
further. We use ResNet-50 as a backbone network for both CAM
and ReCAM. ResNet-50 is a convolutional neural network archi-
tecture that addresses the problem of vanishing gradients in very
deep neural networks. It has 50 layers and uses skip connections
or residual connections to allow gradients to flowmore easily dur-
ing training (He et al. 2015). Using a batch size of 4 for CAM
and ReCAM networks, we pass the images and class labels from
the training set through these networks. The neural network’s
weights are updated using gradient descent and backpropaga-
tion in batches. Gradient descent enables the model to minimise
the difference between predicted and actual output by adjusting
the model’s parameters in the direction of the negative gradi-
ent of the loss function. Backpropagation propagates the error
backward through the network to compute gradients of the loss
function with respect to themodel parameters.We use a Stochastic
Gradient Descent (SGD; Robbins & Monro 1951) optimiser with
a learning rate of 0.01 for the CAM network and 0.0001 for
the ReCAM network to optimise the network. The learning rate

determines the step size at which the gradient descent algorithm
updates the model parameters during training. The CAM and
ReCAM networks are trained for 30 and 15 epochs, respectively,
where one epoch is defined as passing the entire training data
once through the neural network. As these networks are used for
obtaining attention maps, they require a small number of epochs
for training. This also helps to reduce the risk of over-fitting.

Moreover, to improve the generalisation capability of the CAM
and ReCAM networks, prevent over-fitting, and further enhance
the dataset’s balance, we incorporate data augmentations during
the training phase.We incorporate a random set of augmentations
at each iteration of the training phase to expose the networks to
a diverse range of data representations and scenarios. These aug-
mentations include resizing the images, which helps to standardise
their dimensions. By resizing the images, we bring them to a com-
mon scale, allowing the network to learn and extract features
irrespective of variations in size. Another important augmentation
is random cropping, which involves selecting a random region
of the image. By randomly cropping the images around the cen-
tre, we provide the network with a rich set of training examples
that encompass various placements and arrangements of the radio
sources. Furthermore, random flipping and rotation of the images
are employed to expose the network to patterns and features in
various orientations. By incorporating these diverse augmenta-
tions, the network becomes more adept at handling a wide range
of image variations. It learns to generalise well to different scales,
positions, and orientations of radio sources, thus enhancing its
overall predictive power and adaptability to different scenarios.

The IRNet architecture has two output branches: one predicts
a displacement vector field, and the other predicts a class bound-
ary map. Both branches use the same ResNet-50 backbone and
take feature maps from the backbone as inputs. The convolu-
tion layers in both branches are followed by group normalisation
(Wu & He 2018) and ReLU (Agarap 2018), except for the last
layer. The displacement field branch uses a top-down pathway
to merge the feature maps, upsample the low-resolution feature
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maps, concatenate them, and process them with a 1× 1 convolu-
tion layer. Finally, a displacement field is decoded through three
1× 1 convolution layers. The boundary detection branch uses
a 1× 1 convolution layer for dimensionality reduction, and the
results are concatenated and fed into the last 1× 1 convolution
layer, which produces a class boundary map. We use stochastic
gradient descent to optimise the network and apply polynomial
decay (Liu, Rabinovich, & Berg 2015) to decrease the learning rate
at each iteration. The network is trained with a batch size of 16 for
three epochs. We start with a learning rate of 0.1. During training,
the ResNet-50 backbone of IRNet remains frozen, and the dis-
placement field branch receives gradients that are amplified by a
factor of 10. Training for the CAM, ReCAM, and IRNet models is
performed on a cluster with two NVIDIA P100 GPUs and 16 GB
of memory and takes approximately two hours to complete.

4. Results

Our weakly-supervised deep learning model, trained using images
andweak image-level labels, predicts pixel-level information in the
radio and infrared channels. The weak image-level labels used for
training are the radio source classes, i.e. FR-I, FR-II, FR-X and
R radio sources (see Section 2.3). The expected predicted pixel-
level information includes masks for the extended radio emission
encapsulating all galaxy components and the positions of the
infrared host galaxies. Our objective is to assess the effectiveness of
a weakly-supervised deep learning algorithm with limited labelled
data. Thus, we exclusively use class-level labels during training and
utilise pixel-level labels solely for model inference. Therefore, we
report the results for both training and test datasets as the net-
works are trained on class-level labels only and the predictions are
at the pixel level. While we do not expect weakly-supervised net-
works to perform as well as supervised networks due to the lack
of training supervision for pixel-level labels, we observe that our
weakly-supervised network achieves high accuracy in predicting
pixel-level information.

We use the benchmark evaluation metrics defined by Lin et al.
(2014) for computer vision tasks. We estimate the Intersection
over Union (IoU), a metric used to evaluate the performance
of image segmentation algorithms. The mean Intersection over
Union (mIoU) is calculated as the mean of the intersection over
union values for each class. The intersection over union is the ratio
of the intersection between the predicted and true segmentation
masks to the union of the twomasks. Themetric can be written as

mIoU= 1
nC

∑
c∈C

n∑
i=1

TP(i)
c

TP(i)
c + FP(i)

c + FN(i)
c
, (4)

where C represents all the classes in the dataset, n is the total num-
ber of samples in the dataset, and TP(i)

c , FP(i)
c , and FN(i)

c represent
the number of true positive, false positive, and false negative pre-
dictions, respectively, for class c on sample i. In the context of
image segmentation, each pixel in the predicted segmentation is
evaluated to determine whether it is a true positive (TP), false pos-
itive (FP), or false negative (FN) with respect to the ground truth
segmentation. Specifically, a pixel is considered TP when it is cor-
rectly predicted as part of the object in the ground truth, FP when
it is predicted as part of the object but is actually not part of it in the
ground truth, and FN when it is part of the object in the ground
truth but not predicted as such by themodel.WemeasuremIoU=
40.8% and 38.4% for training and test datasets, respectively, for
class activation maps generated from the ReCAM network.

Figure 3. The figure illustrates precision-recall curves for segmentation (first column)
and keypoint detection (second column) tasks, covering both the training and testing
samples. Each curve represents the precision-recall values for the four classes. These
curves provide a comprehensive view of the model’s performance across different
classes and tasks, demonstrating its precision and recall capabilities.

For keypoint detections, we estimate Object Keypoint
Similarity (OKS) metric. OKS measures the similarity between
predicted keypoint locations and ground truth keypoint locations.
The OKS metric is calculated by first computing the Euclidean
distance between each predicted keypoint and its corresponding
ground truth keypoint, normalised by the size of the object
instance. Then, a Gaussian function is applied to each distance as

OKS= exp
(

− d2

2s2k2

)
, (5)

where d is the Euclidean distance between the ground truth and
predicted keypoint, s is the area of the bounding box divided by
the image cut-out area, and k is keypoint constant set to 0.5. The
resulting OKS score is between 0 and 1, where 1 indicates perfect
keypoint localisation.

We use Average Precision (AP) to measure the performance
of instance segmentation radio masks and the infrared host posi-
tions generated by IRNet. AP is a standard metric used to evaluate
object detection or segmentation models. Precision is the ratio of
true positives (correctly identified objects) to the total number of
objects identified as positive (both true positives and false posi-
tives). The recall is the ratio of true positives to the total number of
objects with truth labels. The precision-recall curve is a graph that
shows the trade-off between precision and recall as the detection
threshold is varied. Fig. 3 illustrates the precision-recall curves for
every class, covering both segmentation and keypoint tasks. The
curves represent the performance on both the training and test-
ing samples, providing a comprehensive evaluation of the model’s
precision and recall capabilities. The precision-recall curve is first
computed for a set of test images to calculate AP. Then, the area
under the curve (AUC) is calculated, averaging this value across
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Figure 4. Shown in the rows from top to bottom are examples of FR-I, FR-II and R radio sources, along with the precisely predicted labels obtained using our weakly-supervised
network. Each row includes a 3-channel image of the corresponding radio (blue-green) and infrared (red) sky region in the first column, truth labels for the radio galaxy classes,
segmentationmasks over the radio emissions (yellow), and infrared host galaxy positions (pink circles) in the second column (see Section 2.3). The third columndisplays predicted
segmentation masks (yellow) and infrared hosts (green squares), while the fourth column only shows the predicted positions of infrared hosts (green squares) and ground truth
positions (pink circles) overlaid on the corresponding infrared images. It is worth noting that our network is trained solely with class labels, yet it is capable of predicting both the
radio masks and infrared host positions.
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Figure 5. The presented examples showcase FR-I and FR-II radio sources where the network fails to predict labels precisely. The columns align with those in Fig. 4. The top two
rows showmultiple radio sources per image where the network’s predictions are inaccurate. In the first row, the network fails to predict one of the lobes of an FR-II source. In both
rows, the network also struggles to accurately predict the infrared hosts because of a brighter nearby infrared galaxy. In the third and fourth rows, the network sometimes fails to
predict the correct radiomasks in the case of adjacent double-lobed or point sources. Additionally, for FR-II type sources, the network sometimes cannot predict a complete radio
mask for all components when a component is too far from the central host emission, as shown in the lowest row.
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Table 1. Comparison of the IRNet predicted radio segmentation masks and
infrared host position keypoints with the ground truth for training and test
datasets. The AP50 refers to the average precision for each class at IoU and OKS
thresholds of 0.5. mAP50 is the mean AP50 over all classes.

FR-I FR-II FR-X R All

AP50 AP50 AP50 AP50 mAP50

(%) (%) (%) (%) (%)

Train Segmentation 60.9 61.5 70.0 51.8 61.1

Keypoints 81.9 83.7 81.8 63.8 77.8

Test Segmentation 73.8 77.1 87.1 32.0 67.5

Keypoints 93.7 84.3 87.1 42.2 76.8

all classes or objects of interest. AP is in a range of 0 and 1, and a
higher AP indicates better model performance regarding precision
and recall. We calculate mean average precision (mAP), the aver-
age of AP values across multiple classes at a standard IoU andOKS
threshold of 0.5 (mAP50) for segmentation masks and keypoints,
respectively. The IoU threshold describes that the prediction is
correct if its intersection over union with the ground truth is
above this value. The OKS threshold means that a predicted key-
point is considered correct if its similarity score is above this
value.

The instance segmentation and positional accuracy of infrared
host keypoints for the training set achieve a mAP50 of 61.1% and
77.8%, respectively. Similarly, for the test dataset, we obtain a
mAP50 of 67.5% and 76.8% for instance segmentation and posi-
tional accuracy of infrared host keypoints, respectively. Table 1
also shows the AP50 values for each radio galaxy class. It is worth
noting that the AP50 values for the R sources are lower than those
of other sources. While the exact reason behind this is difficult to
determine, one possibility is the unique small-scale characteristics
of R sources, such as having one peak or no clear peak outside
the central component. As a result, augmentations like random
flipping and rotation may have a smaller impact on these sources
compared to the FR-I, FR-II and FR-X sources, which have two
distinct peaks.

Examples of galaxies with precisely predicted radio masks and
infrared hosts by our weakly-supervised network are demon-
strated in Fig. 4. The presented examples show the predicted
labels of radio sources obtained through our weakly-supervised
network. Each row depicts a 3-channel image of the radio (blue-
green) and infrared (red) sky region, followed by the truth labels
for radio source classes, segmentation masks for radio emissions,
and positions of infrared host galaxies. The third column displays
all predicted labels. The fourth column shows only the predicted
positions of infrared hosts (in green squares) overlaid on the cor-
responding infrared images, along with the ground truth positions
(in pink circles). To showcase the predictive power of our net-
work, we examine three specific scenarios. In the first scenario, we
deliberately position the radio sources near the edges of the image.
Despite the network being trained on images with sources at the
centre, it can accurately predict the positions and characteristics of
these edge sources. This is made possible by the random cropping
augmentations applied during training, which simulate the pres-
ence of sources away from the centre. In the second scenario, we
consider images with multiple radio sources. Although there are
only a limited number of such images in our training and test sets
(39 and 13, respectively), the network exhibits the ability to locate

the presence of multiple sources within a single image. The third
scenario involves images where the radio sources are positioned at
the centre.

The first row displays an FR-I radio galaxy, where the net-
work’s predicted masks encompass the entire radio region. The
second row shows an FR-II radio galaxy near the edge of the image,
where the predicted and true radio masks have the same orienta-
tion angle in the sky. In the third row, the network successfully
detected an R source near the edge. Interestingly, it also identi-
fied an additional small-scale R source towards the centre, despite
its absence in the labelled data. The fourth and fifth rows exhibit
FR-II galaxies with radio components separated by some distance.
Even though there is no visible connection between the lobes in
one case and one FR-II is located near the edge in the other case,
our network accurately predicts these galaxies’ masks, orientation,
and morphological details. The network predicts correct infrared
host galaxy positions in all these examples.

Contrary to the highly accurate predictions, Fig. 5 shows exam-
ples where the network fails to predict the radio masks and/or
infrared positions precisely. In the top two rows, each image con-
tains multiple radio sources. In the first row, the network fails to
predict one of the lobes of an FR-II source correctly. Additionally,
in both rows, the network inaccurately predicts the positions of the
infrared hosts due to the presence of a brighter nearby infrared
galaxy. In the third and fourth rows, the network fails to predict
the precise radio masks in the presence of nearby double-lobed
and point sources. Moreover, for FR-II galaxies, the network occa-
sionally fails to generate a complete radio mask for all components
when a component is far from the central host emission, as shown
in the final row.

5. Conclusions

Recent advancements in radio astronomy have allowed for deep
continuum imaging of large areas of the radio sky, producing
multi-million catalogues of radio galaxies. However, these sur-
veys have also led to the detection of increasingly complex radio
galaxies with multiple components, making it challenging to iden-
tify all related components using traditional methods powered by
human intelligence. In recent years, machine learning has emerged
as a powerful tool for extracting and modelling high-dimensional
information from images. While image tags are informative and
cost-effective, they cannot be used to generate pixel-level informa-
tion, such as segmentation masks, crucial for identifying related
radio components in images.

The present work discusses the weakly-supervised semantic
segmentation (WSSS) technique that aims to reduce the cost of
annotating pixel-level masks using weak image-level class labels.
We use image-level class labels to train a multi-label classifica-
tion model, which then extracts class activation maps (CAMs)
to learn the instance segmentation model. We also discuss the
Inter-pixel Relation Network (IRNet) for instance segmentation,
which overcomes the limitations of traditional supervised meth-
ods that require pixel-level annotations. Additionally, we discuss
the detection of infrared host galaxies using keypoint estimation.

We use the data from Australian Square Kilometre Array
Pathfinder (ASKAP) telescope. The ongoing Evolutionary Map of
the Universe (EMU), aims to observe the entire Southern Sky.
The EMU Pilot Survey (EMU-PS) was conducted in 2019, cov-
ering a sky area of 270 square degrees with an RMS sensitivity
of 25–35 μJy beam−1. In this pilot survey, a catalogue of Double
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Radio sources Associated with Active Galactic Nuclei (DRAGN)
was created, with source identification conducted through visual
inspections (Yew et al. in preparation). We obtain infrared images
at the exact locations of the radio source cut-outs using the Wide-
field Infrared Survey Explorer. The radio and infrared image
cut-outs contain four types of labels, including class-level labels
indicating the types of radio galaxies and pixel-level labels that
include bounding boxes placed at the locations of radio galaxies,
segmentationmasks for radio galaxies, and positions of host galax-
ies in the infrared. The objective of the study is to evaluate the
efficacy of a weakly-supervised deep learning algorithm trained
with weakly labelled data.

The weakly-supervised deep learning model receives 3-channel
images (RGB), which consist of two radio channels (G and B
channels) and one infrared channel (R channel), and four radio
source class labels as input. The deep learning framework employs
ResNet-50 as a backbone network for both CAM and ReCAM
networks, and IRNet architecture has two output branches, one
predicts a displacement vector field, and the other predicts a class
boundary map.

We show that the weakly-supervised network achieves high
accuracy in predicting pixel-level information, including masks
for the extended radio emission encapsulating all galaxy compo-
nents and the positions of the infrared host galaxies. The predicted
positions of infrared hosts are demonstrated in Fig. 4 for FR-I and
FR-II radio galaxies.

We show that our weakly-supervised deep learning model pre-
dicts pixel-level information in the radio and infrared channels
of galaxies using weak image-level labels (FR-I, FR-II, FR-X and
R radio galaxies) for training. The model achieves high accu-
racy in predicting pixel-level information, including masks for
extended radio emissions and the positions of infrared host galax-
ies. We show examples of accurately predicted radio masks and
infrared hosts by the weakly-supervised network and examples
where the network fails to predict these features precisely. We use
Average Precision (AP) to measure the performance of instance
segmentation masks and infrared host galaxy position keypoints
generated by IRNet. We calculate mean average precision (mAP),
which is the average of AP values across multiple classes at a
standard IoU threshold of 0.5 (mAP50). The test dataset shows
mAP50 of 67.5% and 76.8% for radio masks and infrared host
positions, respectively. Although these results are promising con-
sidering the weakly-supervised approach used, further research
should focus on improving pixel-level detections to make the
method more suitable for next-generation large-scale catalogues.
Additionally, future studies should explore supervised and semi-
supervised approaches to address the radio component association
problem. Research efforts should expand to apply machine learn-
ing techniques to other types of radio galaxies, such as those
with peculiar radio morphologies, and other radio surveys with
different resolutions and noise properties. Furthermore, future
studies should compare machine learning methods with tradi-
tional source finders to assess their ability to efficiently group
associated components of radio galaxies and create consolidated
catalogues.
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Appendix A. Confusion Matrices for Radio Source Instances

In this work, we discuss a deep learning method that uses class
labels to obtain instance segmentation masks. To evaluate the
performance of instance segmentation, we utilise metrics such
as Average Precision (AP) and Mean Average Precision (mAP),
as shown in Table 1. These metrics assess both the accuracy of
detecting specific object classes and the quality of segmentation
masks. They provide a comprehensive evaluation by considering
the ability to localise objects of different classes and the accuracy of
their segmentation. To further evaluate our instance segmentation
method, we present confusion matrices that analyse localisation
and segmentation performance at the object level.

It is crucial to understand that the confusion matrix for
instance segmentation presented here, differs from the one used
in classification. In instance segmentation, an image can contain
multiple instances of the same or different classes. As a result,
the confusion matrix for instance segmentation can have multi-
ple true positive (TP), false positive (FP), and false negative (FN)
values for each class. In contrast, classification assumes only one
label per image, resulting in a confusion matrix with only one
TP, FP, and FN value for each class. For instance segmentation,
accurately localising and segmenting object boundaries are vital.
When computing the confusion matrix, we take into account the
spatial overlap between the predicted and ground truth segmen-
tations, which is evaluated using Intersection over Union (IoU).
This spatial overlap measurement enables us to assess the quality
of segmentation and spatial localisation performance, which are
critical factors in instance segmentation.

Figure A.1. displays the confusion matrices for the training
and testing datasets. These matrices focus on instances with an
Intersection over Union (IoU) threshold above 0.5. For easy com-
parison, the matrix is normalised based on the total number of
sources for each class. The diagonal values represent the TP values.
In this context, TP refers to instances that are correctly detected
and accurately segmented by the model. These instances have an
IoU greater than the specified threshold, indicating a strongmatch
with the corresponding ground truth instances. FP represents
instances detected and segmented by the model when, in reality,
there is no corresponding ground truth instance. These instances
have an IoU greater than the threshold but do not correspond
to any true objects. FN indicates instances that are missed or not
detected by the model. These instances are present in the ground
truth data but are not identified and segmented by the model,
meaning their predicted IoU falls below the specified threshold.

The provided TP, FP, and FN values in the top panel offer
insights into the instance segmentation performance of different
classes in the training set. For the FR-I class, we observe a TP value
of 0.74, indicating that the model correctly detected and accurately
segmented 74% of the FR-I source instances in the training set.

Figure A.1. Shown are the confusion matrices for the training (top) and testing (bot-
tom) datasets. The matrices are normalised based on the total number of sources for
each class. The diagonal values in the matrices indicate TP instances, representing
objects that are correctly detected and accurately segmented with an IoU thresh-
old above 0.5 compared to the ground truth instances. FP instances correspond to
model detections without corresponding ground truth instances, while FN instances
represent objects missed or undetected by the model at the same IoU threshold.

This suggests a reasonably good performance in identifying and
aligning with the ground truth FR-I instances. However, there is
a moderate number of false positives (FP= 0.21), meaning that
the model predicted 21% of instances as FR-I when they did not
correspond to any true FR-I instances. Additionally, there is a con-
siderable number of false negatives (FN= 0.26), implying that the
model missed or failed to detect 26% of the actual FR-I instances,
resulting in a lower IoU score. Similar patterns can be observed
for the FR-II, FR-X, and R classes. These classes also demonstrate
varying levels of TP, FP, and FN values. The FR-II class shows a TP
of 0.73, indicating a good rate of correct detection and segmenta-
tion, but with a relatively high FP of 0.26 and FN of 0.27. The FR-X
class exhibits even better performance with a higher TP of 0.81, a
lower FP of 0.17, and a lower FN of 0.19. Lastly, the R class has
a TP of 0.67, suggesting a moderate rate of correct detections but
a higher FP of 0.31 and FN of 0.33.

For the test set (bottom panel), the TP, FP, and FN values
for FR-I, FR-II and FR-X are relatively consistent with the train-
ing set. This indicates that the model’s performance in detecting
and segmenting these source instances remains stable across both
datasets. R class demonstrates a different performance pattern in
the test set, as also shown in Table 1 and discussed in Section 4.
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The TP value is relatively low at 0.45, indicating a moderate rate of
correct detections and higher FP and FN values.

In the test set, the TP, FP, and FN values for FR-I, FR-II, and
FR-X classes show consistency with the training set, indicating
stable performance in detecting and segmenting these sources. The
R class exhibits a different pattern in the test set, as highlighted

in Table 1 and discussed in Section 4. The TP value for the R
class is relatively low at 0.45, indicating a moderate rate of correct
detections, while the FP and FN values are higher. These findings
suggest that future studies should focus on potential modifications
or refinements to improve the model’s performance, particularly
for the R class.
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