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A CLASS OF NONLINEAR ELLIPTIC PROBLEMS WITH
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Conditions for the existence of solutions of a class of elliptic problems with nonconvex constraints are given
in the general framework of pseudo-monotone operators. Applications are considered in unilateral problems
of free boundary type, yielding the solvability of a Reynold's lubrication model and of a biological
population problem with nonlocal terms and global constraints.
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Variational problems with side conditions in the classical calculus of variations lead
naturally to elliptic equations, as the Euler-Lagrange equations of the minimization
problems, and to the associated Lagrange multipliers, as formal derivatives of the infimum
with respect to the constraints (see, for instance, the contemporary monograph [15]). For
potential operator equations with side constraints, the direct variational methods and
optimization principles are well developed tools that have been used in different problems (see
[1], for instance). However all these methods fail for nonpotential operators, as arise in many
applications, like second order elliptic equations with convective or asymmetric terms.

In this work we are motivated by two examples arising in an elastohydrodynamic
lubrication problem and in a spatially aggregating population model, in which the
presence of nonlinear diffusion and convection with a prescribed side condition,
respectively, the load constraint and the total population, leads to a class of nonconvex
side conditions. For both examples, we were unable to apply directly the classical
variational methods, so that, developing a new technique based on convexity properties
and on the continuous variation of a real parameter, which can be considered a
generalized Lagrange multiplier for nonpotential and nondifferentiable problems, we
are able to obtain sufficient conditions for their solvability.

In fact, our main result is valid in a rather general framework, namely for coercive
pseudo-monotone operators with nonconvex constraints, that are given by level sets of
convex functions, and is based on a continuous dependence property of an auxiliary
family of elliptic variational inequalities (see [2], [9, Chapter 2.8] or [15, Chapter 54]).
We give sufficient conditions for the existence, and in some cases also uniqueness, of
solutions, that are found in the two examples of second order quasilinear elliptic
equations and in two problems from applied sciences.
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334 N. CHEMETOV AND J. F. RODRIGUES

1. Elliptic pseudo-variational inequalities

In the classical general framework of elliptic variational inequalities, (see [9], for
instance) we consider the new class of problems of finding

u e Kv : (Au, v-u) > 0, Vi> e Kv (1.1)

where we make the following assumptions: K is a nonempty, closed, convex subset of
a reflexive Banach space V with the norm || • || and V its dual; A : K c V -*• V is a
pseudo-monotone operator and, for a given / e R, we set

Kv = {veK:}¥(v) = I}. (1.2)

When *F : V -* ] — oo, +00] is a linear function, Ky is still a convex set and (1.1) is
a well studied variational inequality. We are interested here in the case of a convex,
lower semi-continuous function *¥Q¥ ^ +00), therefore when Ky is the intersection of a
convex set with a level set of a convex function. In this case, we call problem (1.1) an
abstract elliptic pseudo-variational inequality.

By recalling the definition of the sub-differential 3XP(M) of *F at u and the generalized
Lagrange multiplier rule (see [15], for instance), in the case K = V we can formally
rewrite the pseudo-variational inequality (1.1) as the problem of finding simultaneously
u e V and a real number X e R, such that

Au + XdV{u) 9 0 in V. (1.3)

This remark suggests that we consider, for each X 6 R, the auxiliary family of elliptic
variational inequalities

uxeK: (Aux, v - u>) + W(t>) - Ai^iO > 0, V» e K, (1.4),

for which we shall assume suitable assumptions to guarantee the respective existence
and uniqueness of the solutions. In the case of a convex constraint ¥ we consider (1.4)
with X > 0, but the limit case X = 0 taking the form

uoeKH DomSV : {AUQ, V - u,,) > 0, Vv e K n Dom*. (1.4)0

has also interest. Here DorrW — {v e V : ^ D ) < +00} is the effective domain of W,
DonW its closure in V, and we shall assume K n DomW ^ 0. We consider the following
abstract framework for pseudo-monotone operators, i.e., for bounded nonlinear
operators such that,

if «„ -»• u in V — weak and lim sup (Aun, un — u) < 0, then
n-*-+oo

lim inf {Aun, un — v) > {Au, u — v), Vu e V.
+oo
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Assumption I. The pseudo-monotone operator A is coercive in the sense that- there
exists a function a : R+ -» [0, +oo[ with <x.{r) -> +00 as r -*• +00, such that, for any
v0 e K n DomW there is a constant Co > 0 and

(Av, v-vo)> a(\\v\\)\\v\\ - Co, Vv e K; (1.5)

the convex function *F : DorriV n K c V -*• R is continuous for the weak topology of V.

Assumption I'. The pseudo-monotone operator A is strongly coercive in the sense that,
there exists a continuous function y, strictly increasing from [0, +oo[ to [0, +oo[, with
y(0) = 0 and y(r) -*• +00 as r ->• +00, such that for any v, w e KC\ Dom'V:

(Av -Aw,v-w)> M||i; - w||) - p(v - w))\\v - w||, (1.6)

where p : V —>• [0, -t-oo[ is a bounded function, satisfying p(z) —> 0 if z -*- 0 in V-weak;
*¥ : K c F - y R i s a co/ivex, /ower semi-continuous function.

In particular, each one of these assumptions is a sufficient condition for the existence
of at least one solution u; to (1.4); for each X > 0 (see [9], or [15], for instance). We
need also to assume the following strict inequality:

/_ = inf ¥(!,) < / + = sup T(u,). (1.7)

Theorem 1.1. Under Assumption I or I' suppose that (1.4);>0 admits exactly one
solution for every k > 0 anrf (1.7) AOWJ. Then for each

( / _ < / < +00 1/ J+ = +00), r/iere exisfs a? /eas/ one solution u, to the pseudo-variational
inequality (1.1).

Proof. If we show that the real function

4,: [0, +oo[ B X -+ 0(A) = *(«,) 6 ]/_, /+]

is such that:

(i) (j) is continuous;

(ii) (f>(X) ->• +00 as A - • 0 if / + = +00;

(iii) 0(A) ->• /_ if A -* +00,

then there exists a A. e [0, +oo[ such that #(A.) = / and the corresponding solution of
(1.4); w;̂  will solve also (1.1), proving the theorem.
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(i) We start with the continuity of </>, which is essentially the continuous dependence
property [0, +co[ B X -» ux e V for the weak (resp. strong) topology in case I (resp. case
I'). From (1.4); for X > 0 and using the coercivity (1.5) (or (1.6) which is stronger) we
have

(Aux, uA - vQ)
(1.8)

since, by convexity of 4*, we have ^ ( u j > - C , \\ux\\ - C2, for CUC2 e R.
From (1.8), if we take any convergent sequence An^> X 6 [0, +oo[, /„ > 0, we

immediately conclude that uXn is such that | |u;j | < C (independently of n -*• oo) and
there exists M. e K D DonW, such that, for a subsequence still denoted by n ->• oo,
uXn -»• «. in K-weak. If X > 0 or X — 0 and /+ < +cx>, by the lower semi-continuity of *¥
we have

u, )

n-KXJ

and

limsup </!«,„,»;.„ - u.) < limsup [A,,«P(«.) - k^uj] < 0.

n-*oo n-*oo

Since A is a pseudo-monotone operator, it follows that

l i m i n f (Au>n, u,n —v)> ( A u , , u . — v), Vu e /C
n—*oo

and passing to the limit in (1.4)^,*by the uniqueness of the limit problem (1.4);, we
easily conclude that u. = ux, showing the weak continuity in the first case I. If (1.6)
holds, letting v — ux in (1.4)^ and v = uXn in (1.4)A, after subtraction, we obtain(X - Xn)muJ - ¥(«,)] > (Aux - AuK, ux - u,J

and, since u^ ->- ux, when Xn -> X, we conclude also \\ux - uxj\ - • 0. Then, *F being a
convex function bounded in a neighbourhood of the point ux, it is then continuous at
M; and the continuity of (f> follows.

(ii) If X -*• 0 and ^(UQ) = +oo, u,, being the unique solution to (1.4)0, from (1.8), the
sequence ux is bounded in V, independently of 0 < X < 1, and we may assume ux -»• u,
in F-weak, for some u. e DonW n K. For e > 0, take uc e DotrFV n K such that
II". — «£ll <

 e» and we obtain, with v = uc in (1.4);
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lim sup {Au,, ux - u,) < Ce + lim sup (Aux, u, - ue)

<Ce + lim sup {A4'(u£) - M(ux)} < Ce,

since lim inf ̂ Q A*P(M;) > 0. Since e is arbitrary, we can use again the pseudo-
monotonicity of A and take the liminf;_0 in (1.4),,>0 with v € DomVnK in order to
conclude

(Au,, v - u.) > 0,

first for any v e DorriV n K, and by density, also for all v e DonW n K. Consequently
u, = u0 and lim inf^o ^(u,) > ̂ Vfuo) — +oo yields 0(A) -*• +oo when A -»• 0 and
/ + = +oo.

(iii) Using the coercivity (1.5), from (1.4)A for A > 0 we obtain

II - Co}

Consequently we obtain

(y) > lim sup ^ ( u j , Vi; e Dom'P n K.

Hence

which yields

lim inf ¥(M;) > inf ^(D) = /_ > lim sup
A + o o eKnDo*V

/ . = lim V(ux) = lim <KA),

concluding the proof. •

Corollary 1.2. Assuming (1.7) a/irf fAe Assumption I or I', / / r/ie operator A is also
strictly monotone, i.e.,

{Av -Aw,v-w)>O,Vv,weKn DonW, w / v, (1.9)

then there exists a unique solution u, to ( l . l ) /or each I e ]/_, /+] (/ < +oo if 7+ = +oo).

https://doi.org/10.1017/S0013091500019696 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019696


338 N. CHEMETOV AND J. F. RODRIGUES

Proof. It suffices to remark that (1.9) implies the uniqueness for the problems
(1.4);, VA > 0, as well as for (1.1). Indeed if u, and u2 are two different solutions of
(1.1), letting v = «, e Kv and v = u2 e K^, respectively, in (1.1) for u2 and for u,, after
subtraction we obtain

ut — Au2, u, — u2) < 0

and therefore u, = u2. D

Remark 1.3. Although the strict monotonicity of the operator A is a sufficient
condition it is not a necessary one for uniqueness, as we shall show in the next
section.

Analogously we may solve the pseudo-variational inequality (1.1) with a concave
function ¥ in the definition (1.2). In fact, since A*F is then a convex function for A < 0
it is sufficient to consider (1.4)A with negative A and replace the condition (1.7) by

J_ =infSK(uJ <J+ = sup 4 » . (1.10)

Theorem 1.4. Assuming (1.10) and the Assumption I or I', if (1.4)x<0 admits exactly
one solution for every A < 0 with *¥ concave, then for each I e [J_, J+[ (J+ > I > - co if
J_ — -co) there exists at least one solution u, to (1.1) with *¥ concave in (1.2). If, in
addition, A is strictly monotone, the solution o/( l . l ) is unique.

The strict inequality in (1.7) (resp. (1.10), for the concave case) are sufficient to
guarantee that Ky, defined in (1.2) is non-empty for / e ] — /_, /+] (resp. / e [J_, J+[),
but the determination of. / + (resp. J_) depends on A, K and ¥ through the auxiliary
problems (1.4)^ or (1.4)0. For instance, /„ = ^(u0), where «o solves (1.4)0, is a lower
(resp. upper) estimate for / + (resp. J_), but it can be its value exactly if additional
properties are known, as in the monotone case.

Suppose the Banach space V has a partial order relation where u < v is equivalent
to (w — v)+ = 0, for which we can define, for every u,v e K

uvv = u-\-(v-u)+ e K and u AV = v-(v-u)+ e K 0-H)

and assume, for the convex function *¥,

¥(1;,) + ^(uj) > ^(t;, v v2) + V(V] A v2), V»,, v2 6 DorriV, (1.12)

***(i>2) > ¥(«>,) if v2 > vi QV is increasing) (1.13)

and the operator A is strictly T-monotone in the sense that
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(Av - Aw, (v - w)+) >0,Vv,weK:0^(v- w) + , (1.14)

in particular, A is strictly monotone.

Proposition 1.5. Assuming (1.11)—(1.14), if ux = u,x and u2 = u>2 denote the solutions
0/(1.4;,) and{\A)^, respectively,

if A, > A2 > 0 then u2 > u,, (1.15)

and we can take / + = *¥(u0) in (1.7), where UQ solves the variational inequality (1.4)0,
under the Assumption I.

Proof. Taking D = U 1 V U 2 = U2 + ( U 1 - W2)
+ m 0-4)^ and D = u, A «2 = u, - (w, - u2)+

in (1.4),,, for A, > A2 > 0, by subtraction we obtain

(Au, - Au2Xut - u2)
+) < l^{u, v u2) - k2V(u2

+ X^U, A U2) - A,*(U,).

Adding and subtracting ^ ( u , ) - ^(u, A «2)], the right-hand side yields, by (1.12)
and (1.13),

W « i v u2) + y(«, A u2) - T(u2) - T(Ul)l

which combined with (1.14) implies (u, - u2)+ = 0, i.e., u2 > u,. By (1.13) it follows that
when A \ 0, w; -»• u0 in K-weak and *?(«;.) is decreasing in A, and therefore increases
as A decreases to 0. Therefore we conclude /+ = ^(UQ) from

< lim inf ¥ ( M J < lim sup ^ ( u j < ^(wo) < +oo. •
*N° " ;.\o

Remark 1.6. As in Theorem 1.4, for a concave decreasing function ¥ satisfying
(1.12) with the reverse inequality, we may take J_ = x¥(u0), since, analogously to the
Proposition 1.5, we can show that A, < A2 < 0 yields U;2 > uXr

2. Applications to nonlinear elliptic problems

In this section we exemplify the general approach of Section 1 in two classes of
nonpotential elliptic partial differential operators of second order,

, u,Vu) (2.1)
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Apu = -V • (|V«r2Vu + B(x, u)) + y(x, u), (2.2)

in a bounded open domain Q c R " , n > 1, where, for simplicity, we consider only
homogeneous Dirichlet boundary conditions. We shall consider classic convex
constraints in the definition of the convex set K and nonclassic nonconvex
constraints through special cases of VP, without searching for the most general
examples.

2.2. - First example. Let V = Wo'p(Q) denote the usual Sobolev space with norm
INI, = (/o I W " , 1 < P < oo, and define ¥ : Hl

0(O) = W0'-
2(n) -* [0, oo[ by

I
JtD

*¥(v) = / |V»| dx, coca, (2.3)
JtD

where co is an arbitrary nonempty open subset of Q. For a given / > 0 consider the
elliptic pseudo-variational inequality for /I, given by (2.1):

u e K, = {v e Hi(fi): /" |V»| dx = I), (2.4)

f VuV(v-u)+ f b(x, u, Vu)(v - u) > 0, Vv e K,. (2.5)
Ja Ja

Here the nonlinear term is given by a measurable function b = b(x, u, £) : Qx
R x R" -*• R, under the assumptions of continuity in the variables u and £, and
satisfying the conditions, for a.e. x € Q, Vu, v e R and Vf, f/ e R":

(b(x, u, 0 - b(x, v, 0)(u - o) > 0, (2.6)

\b(x, u, f) - fc(x, «, >r)l < bt(x, uM - ti\, (2.7)

\b(x,u,0\<fo(x), (2.8)

where/o 6 L2(ft) and b,(x, "W) e L'(n), s = n > 3 or s > n = 1, 2, for each u e //i(Q).
For each A > 0, we consider the auxiliary variational inequality

Jo Jn
(2-9),

+ X f |V»| - A /" |Vu;J > 0, V» € ffJ(O).
»/cu Ja>

Proposition 2.1. Under the assumptions (2.6)-(2.8) there exists a unique solution ux

to (2.9)^, VA > 0, as well as a unique
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«o 6 //J(Q) : -AMO + b(x, «o, Vu0) = 0 in fi, (2.9)0

which is the strong limit in H]
0(il) ofux as A -*• 0.

Proof. The existence is an immediate consequence of the fact that the associated
operator Ax : //i(Q) -»• //~'(fl) is pseudo-monotone and strongly coercive. The
uniqueness follows by an adaptation of an argument of Trudinger (see [13] and [5] for
the case (2.9)0): suppose for contradiction, that for two different solutions u and w to
(2.9)^, we have M = supn(u — w) > 0; set zk = (u - w — k)+ for 0 < k < M < +oo and
take vu = u — zk in (2.9)^ for u and vw = w + zk in (2.9)A for w; since Vvu = Vu and
Vvv = Vw a.e. in {u <w + k} and Vuu = Vw and Vvw — Vu a.e. in {u > w 4- k], by
subtraction we obtain

/ |V(u - w)|2 = / |Vzt|
2 < f b, \Vzk\zk = f bx \Vzk\zk

where Qk — {x e Q : zk > 0, |VzJ > 0}; therefore, using the Sobolev inequality, for some
C, > 0 we deduce from (2.10)

1 < C J M I L W V / C : 0 < fc < M < +oo,

which is impossible, since meas(Qk) -*• 0 as k -*• M. Hence M — 0 and u < w.
Analogously we conclude w < u and the uniqueness follows, as well as, the continuous
dependence with respect to A e [0, +oo[. •

We may now apply Theorem 1.1 to solve (2.4)-(2.5). First we observe that we have

/_ = inf / \Vv\ dx = 0,
i>eH'(n) Jm

/ + = sup f |VuA| dx > f |V«o| dx = /O(MO),
>->0 Joi Ja

and we must guarantee that /0(w0) > 0. where u0 is the solution of (2.9)0. A sufficient
condition is given by the following additional assumption on b:

b(x, c, 0) / 0, Vc e R, a.e. x e co. (2.11)

Theorem 2.1. Under the assumptions (2.6), (2.7), (2.8) and (2.11), for each
I e ]0, /„], where Io — Ja |Vuo| dx, there exists at least one solution to (2.4)-(2.5).
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Proof. In fact, by Theorem 1.1, it remains to show that 70 > 0 to fulfil the
assumption (1.7). Assume to the contrary that 70 = 0; then |Vuo| = 0 a.e. in the open
set a> and «o = constant in each connected open component a>j c (o; hence also AUQ = 0
in each a>j, which is a contradiction with (2.9)0 and (2.11). •

Remark 2.1. We know that the solution u to (2.4)-(2.5) also solves (2.9)A, for a
certain X, > 0. Hence, if co = Q and |Vu| > 0 a.e. in Q, we may also conclude that u
solves in Hl

0(Q) the equation

-V • ( Vu + X, —— J + b{u, Vu) = 0 in Q

with the nonconvex constraint fn |Vu| dx = I. We remark these type of equations arise
in the stationary flow of Bingham fluids (see [4], for instance).

Remark 2.2. We do not know if, in general, the solution to (2.4)-(2.5) is unique,
except in the special case when b does not depend on the gradient, which is then a
special case of Corollary 1.2. However in this case, a direct optimization approach is
possible, since it corresponds to the minimization of the functional

J(u) = f (-1Vu|2 + / b(x, s)ds) dx

in the closed subset K, defined by (2.4) (see [15], for instance).

Remark 2.3. It is also possible to extend our results to the case where the
unnecessary boundedness restriction (2.8) is replaced by an appropriate growth
assumption or by a condition of the type ub(x, u, <̂) > 0. Also in the linear case, we can
consider an elliptical operator of the form

with the restriction c — $2,f̂  > 0 (see [13] and its bibliography, for instance).

2.2 - Second example. Let \\i : fi x [0, +oo[ -» [0, +oo[, be a convex integrand, i.e.,
a measurable function, such that,

s -*• }p{x, s) is convex, a.e. x eQ, and (2.12)

V(v) = f 4/(x, v(x)) dx < oo, for each v e ^' '"(n), v > 0. (2.13)
Jn

For p > 2, we shall define
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K = DonW = {v e Wo
l!l(Q) : u > 0 a.e. in Q} (2.14)

For a given J > 0, we consider now the following constrained problem for the operator
Ap given in (2.2):

ueKj = Le K: f 4>(x, v(x)) dx = A (2.15)

f(\Vu\p-2Vu + B(x, u)) • V(t> - w) + f y(x, u)(v - u) > 0, Vu e Kj. (2.16)
Ja Ja

Here B(x, u ) : f i x R - > R " and y(x, u): Q x R -*• R are given measurable functions,
continuous in the variable u and such that, for each u e ^ ' ' ' (Q), B(u) e [!/(£!)]" and
y(u) e L"*(Q), where p* = 1 if p > n, p* > 1 if p = n or p* = n())f")+)t if 2 < p < n, and the
operator /!,,: WO

I'P(Q) -> ^" ' " (Q) is a bounded, pseudo-monotone operator satisfying
the coercivity condition (1.6). In addition, we suppose there exists a gsLp(Q),
p = p/( p — 1), such that for a.e. x e Q and all u,veR

\B(x, u) - B(x, v)| < g(x)(o(\u - v\), with f - A - = +oo. (2.17)

In particular, since we consider p > 2, the condition (2.17) is satisfied if B is Holder
continuous with exponent a, 1/2 < 1/p' < a < 1.

Finally, following [3], we shall also impose

u i—* y(x, u) is strictly increasing, a.e. x e Q (2-18)

or, in the special case arising in applications,

p = 2, u i-+ y(x, w) is nondecreasing, and
(2.19)

3^ e R"\{0} : u >-> £ • B(x, u) is monotone, for a.e. x e Q.

For every A > 0, we consider the family of auxiliary well-posed variational
inequalities

B(x, M.YI • V(y — u.) dx -f / y(x, u,)(v — u.) dx

1 ! ° <120)'
A / \ji{x, v) dx-Xl \l/(x, u,) dx > 0, Vu e K.

Ja Ja

Proposition 2.2. Under the above assumptions, namely (2.12)-(2.14), (1.5), (2.17)
(2.18) or (2.19), the map
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[0, -foo[ a X »-> u,, e K is continuous in W0
[p(n), (2.21)

where uk is the unique solution o/(2.20);.

Proof. The existence is a consequence of general results for pseudo-monotone
variational inequalities of the type (1.4), (see [9, p. 251, for instance]), while the strong
continuity can be obtained, as in Theorem 1.1, once the uniqueness of the solution is
established. Note that, in fact, Ap is strongly coercive for the continuous dependence.

The uniqueness for (2.20),, in the case 2 = 0 was shown in Theorem 2.1 of [3] for
the case (2.18) and in Theorem 5.2 of [3] for the case (2.19). Also for the case X > 0,
we can easily extend the arguments of [3] by controlling the additional terms given by
*F in the following manner: suppose we have two solutions u, and u2 of (2.20)^, and
consider the nonnegative Lipschitz function Fe defined by

f o r f > £ > 0

0 for t < e

where we have set i(e) = f^°° ds/co" (s) < +oo without loss of generality; for an
arbitrary r\ e C'(Q), rj > 0, choose 8 > 0 sufficiently small, such that

u, = u, + SnFe(u2 - «,) e K and v2 = u2 - 5nF'(u2 - u,) e K; (2.22)

taking these two functions, respectively, in (2.20); for M, and for u2, we have

(Aux - Au2,5r,F\u2 - «,)> > X (Mu}) - *(!>,) + ^(u2) - r̂(»2)} dx = A; (2.23)
Ja

if A > 0, then, exactly as in the proofs of Theorems 2.1 and 5.2 of [3], we may conclude
that u2 < u, a.e. in fi, and changing the role of u, and u2, we conclude that MA is unique.

The new remark is, in fact, the observation that from the definitions (2.22), there
exists a function /? = /?(x), such that:

0 < 0(x) < 1 a.e. xeQ; 0(x) = 0 if u2(x) < M,(X);

u, = u, + 0(u2 - M,); v2 = u2-

and, using the convexity of X\\i, we may conclude

A = X [Wu,) - <K(1 - p)ut + 0u2) + ^(u2) - ^(/?«, + (1 - p)u2)) dx
Jo
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Proposition 2.3. If, in addition to the assumptions of Proposition 2.2, we suppose that

s >-> t/f(x, s) is nondecreasing, a.e. x e f i , (2.24)

then the map (2.21) is nonincteasing, i.e.,

(/" A2 > A, > 0 then uXl > uh a.e. in Q. (2.25)

Proof. Setting u, = uXl and u2 = U;2, we can repeat the argument of the proof in
Proposition 2.2, observing now that the assumptions imply also

A = /
Jo

since we have /?(x) — 0 if u2(x) < u,(x). D

We are now in the situation of Theorem 1.1, provided we add the assumption

I o = f « K x , u o ( x ) ) dx > i n f f \jj(x, v(x)) dx = I _ > 0 , (2.26)

where UQ denotes the unique solution to (2.20)0 with A = 0. Notice that

J+ = sup f ij,(x, ux(x)) dx > Io (2.27)
;.>o Jn

where ux denotes the solution to (2.20)^ and from the Proposition 2.3 we have 70 = I+

if \p is nondecreasing in u, in which case also /_ = fQ \ji{x, 0) dx. Then we have proved
the following existence theorem.

Theorem 2.2. Under the preceding assumptions, namely (2.12)—(2.14), (1.15), (2.17),
(2.18) {or (2.19)) and (2.26), there are numbers / + > / _ > 0 given by (2.26) and (2.27),
such that, for each J e ]/_, 7+], f/iere ex/j/5 at least one solution to the pseudo-variational
inequality (2A5)-(2.\6).

Remark 2.4. If, for instance, ip(x, s) is differentiate in s, the solution Uj obtained
in Theorem 2.2, solving (2.20); for a certain ).j > 0, also solves in WoP(Q) the unilateral
problem
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u > 0, -V • [|VMI""2Vu + B(x, «)] + y(x, u) + kj —• (x, u) > 0 in Q,
as

(-V • [|Vu|"-2Vu + B(x, «)] + y(x, «) + k ^ (x, u), u> = 0

subject to the nonconvex constraint fa ip(x, u) dx = J.

Remark 2.5. Except in the case of B independent of u, we were unable to prove
the uniqueness for problem (2.15)—(2.16), since the test functions of (2.22) are not
admissible in KJt which is not a convex set in general. However the existence result can
be extended to more general situations, for elliptic operators of the form

Au = —V • a(x, u, Vu) + y(x, u),

for appropriate structural conditions on a(x, u, Vu), and also for more general convex
subsets K c Wlp(Cl), with nonzero obstacles or with more general boundary conditions
(see [3], for instance). •

3. The Reynolds' lubrication problem with load constraint

A well known free boundary problem in elastohydrodynamic lubrication theory
(see, for instance, [11], [7], [14]) consists of the determination of the nonnegative
pressure p = p(x,, x2) in a thin film of viscous fluid of constant density and pressure-
dependent viscosity \i = fi(p) in an open bounded domain x = (x,, x2) € Q c R2. In the
presence of a cavitation region, where p = 0, the flow region, which is a priori
unknown, is determined by p > 0 where the Reynolds' equation holds:

Here a> = 6v > 0, if v is the constant velocity, and h = h[p] presents the positive film
thickness, that may depend, in a nonlocal way, also on the pressure, which is assumed
to satisfy the boundary condition

p = 0 on 9fi. (3.2)

In some cases, equation (3.1) must be modified in order to take also into account
an additional load constraint (see [8])

[p(x)dx = I (3.3)
Jn

for a prescribed constant / > 0. We consider the change of variables
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f ds
u — m(p) — I ——, with inverse p = q(u), (3.4)

Jo Ms)
where the viscosity (x is assumed to be a positive continuous function such that
q(m(p)) = p = m(q(p)) and

q is convex with q(u) > 0 for u > 0. (3.5)

We observe that, due to (3.4), we have the convexity of q whenever \i is a non-
decreasing function of the pressure.

We note that Vu = Vp/(*(p) and we assume from elastohydrodynamic lubrication
theory a relation of the form

H[u](x) = h[p]{x) = ho(x) + / K(X, Z)q(u(Z))dt, (3.6)

where /ioW > v > 0 is the given geometrical gap and the integral term takes into
account the elastic deformation due to the fluid pressure with a nonnegative kernel K.

Then, it is possible to reformulate the global problem in terms of a constrained
unilateral problem in the subset

K,= \ve tfJ(Q): v > 0 in Q, f q(v) dx = l\ (3.7)

for the transformed function u = m(p), i.e.,

u € K, n L°°(Q): f {H*[u]Vu + H[u]F} • V(u - u) dx > 0, V e Kh (3.8)
Jo

where F — (co, 0). This nonlocal variational formulation is a natural generalization of
the particular case considered in Section 4 of [14], where the viscosity was supposed to
be a constant and, therefore, q being linear, K, in (3.7) was a convex set.

We start by considering the simpler problem where the geometrical gap is prescribed
by a function

h e L~ = {g G L°°(Q): g(x) > v > 0, a.e. x e Q],

where v > 0 is a given fixed constant, i.e., we replace (3.8) by

ueK,: f
Ja

(/i3V« + hF) • V(u - u) dx > 0, Vu e K,. (3.9)
Ja

Introducing K — {v e Hl
0(Q) : v > 0 in Q} and A > 0, we shall consider first the auxiliary

problem
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f 1 f
M; e K: I (tfVui + hF) • V(v - uk) dx + X / q(v) dx

(3.10)A

-XI q(u>) dx >0,Vve K.
Ja

As in [14], where the case X = 0 has been studied, we can prove the following

Proposition 3.1. For any h e L f and any X > 0, there exists a unique solution ux to
(3.10);, which is Holder continuous in Q and satisfies the estimates

< c . = coV

0<u / i (x )<C # = 3C2C.)Vx€n, (3.12)

where F = (u>, 0), |Q| = meas(Ci) and C2 is the Sobolev constant of the inclusion
c L2(fi).

Proof. It follows from general results for the obstacle problem (see [12], for
instance). In fact (3.11) is an easy consequence of letting v = 0 in (3.10);, and,
remarking that q{u>) > 0, (3.12) follows exactly as in Proposition 2.2 of [14] by taking
vx = ux — (uA — T)+ 6 K in (3.10);, with T > C#, since q being nondecreasing, we have

f
Ja

dx<0.

Remark 3.2. By (3.4) we have pk = q{ux) e K n <?*(&), q'(ux) = ^(p;) and {u; > 0} =
Px > 0} are open subsets. Therefore, from (3.10);, we can regard the associated pressure
/ as the unique solution of the unilateral problem (recalling (3.1))

Px > 0, Qpx + Afiipi) > 0 in Q and
(3.13)

with the boundary condition (3.2), for every X > 0.

Remark 3.3. As observed in [7] and generalized in [14], the important case of the
pressure-viscosity law of Barus

= N<?p, Mo > 0, a > 0, (3.14)

can be included, provided <xfx0C§ < 1, where C# is the constant of (3.12.)
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In order to apply the abstract results of Section 1 we need to assure that the solution
u0 to (3.10)0 with A = 0 is non trivial. In fact, if M0 = 0 we obtain the necessary
condition for the data

LhF Vvdx> 0, Vi> e K,
n

and we shall assume the additional assumption

h e MD
6 = lq 6 L°°(fi): [ qF V<t> dx <-5 f $ dx, V</> e V(D), tf> > 0 j (3.15)

for some constant 5 > 0 and some nonempty open subset D c O. If h is smooth, with
F = (a>, 0), (3.15) is equivalent to the assumption

— > - > 0 in D c Q,
9x, (o

a condition which is naturally satisfied, for instance, in the case of journal bearing
where h(x,) = 1 + e • cos(x,), with 0 < e < 1 and fi = ]0, 2n[ x ] - 1, 1[.

Proposition 3.4. For any h e L f n M° let u{j be the solution to (3.10)0. Then for any

I e ]0, Ih
0], with Ih

0= f q(uh
0) dx > 0, (3.16)

Jo

there exists a unique u = uh solution to the pseudo-variational inequality (3.9). Moreover,
it corresponds to a unique Lagrange multiplier A. > 0 (or A. = 0 if uh = wj), with which
PA. = ^C"*) 's tne unique solution o/(3.13), (3.2).

Proof. It is easy to see that, by Proposition 1.5, we can take / + = /J > 0, because
heMf implies «J # 0. Observing that /_ = 0 the Corollary 1.2 is immediately
applicable to (3.9). By construction, uh = uK is the solution of (3.10)^ for a certain
A = A. > 0, and using the Remark 3.2 it remains to show the uniqueness of A. > 0.
Since u^ is unique, and q is strictly increasing, the uniqueness of A. is an immediately
consequent of the equation (3.13)

= -V • (ft'Vu* + hF) + A.q'(uh) = 0

in {uh > 0} = {pK > 0}. •

Finally, using the a priori estimates (3.11) and (3.12), which are independent of
h e Lf, we can solve (3.8), by looking for a fixed point, for instance, in
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C = {w e Hj(n) : 0 < w < C#, ||Vw||L2(n) < C.}, (3.17)

and imposing additional assumptions on h0 and on K, SO that, for H(C) c L " n Mj,
for H defined by (3.6). Let

/ i o eL~nM£, K > 0 i n Q , ! ^ > 0 i n / ) , (3.18)
ox i

K = K(X, 0 e L^O,, L'(Q{)) or K(X, 0 = K(X - 0 with K e L,'0C(R2). (3.19)

Theorem 3.5. Under the preceding assumptions, namely (3.4), (3.5), (3.6), (3.15),
(3.18) and (3.19), there exists a positive number /., depending only on the data Q, D, 3, v,
a), fi, such that, for each

I e ]0, / . ] ,

there exists at least one solution to the problem (3.8).

Proof. Considering H]
0(Q) endowed with the weak topology, we can apply the

Tychonov fixed point theorem in the compact convex set C given in (3.17) to the
nonlinear continuous function T : C ->• C, defined as follows: T — P o H, where H,
given by (3.6), applies C in a bounded subset of L~ n M°, by the conditions
(3.18), (3.19) and (3.5); P applies to each heLff\MD

5, the unique solution uh of
(3.9), which is in C n K , provided /, < /J. The continuity of T is an easy
consequence of the continuous dependence of uh in H]

0(Q), when h = H[w] varies in
Lf n M^ for the strong topology LP(Q), Vp < oo, which happens when w varies in
C for the weak topology of Hl

0(Q), by the compact embedding
Hl

0(Q) c L"(Cl), Vp < oo, in two dimensions.
It remains to show that /. can be chosen positive and independent of h — H[w], when

w varies in C. Set

/. = inf C = inf / q(uZM) dx, (3.20)

where u%[w] is the unique solution to (3.10)0 for h — H[w]. Since there exists w. e C
solving (3.20) (taking a minimizing sequence wn ->• w. in C, we have û 1""1 ->• u '̂"'1 in
Ho(Q), which implies /"K 1 -»• /"K l) we conclude /. = l"M > 0.

Consequently there exists a solution to u = Tu, which solves the problem (3.8). •

Remark 3.6. In fact, the mapping T: C ->• C is Lipschitz continuous, since if u
and u denote the solutions of (3.9) corresponding to h — H[w] and h — H[w], we
have
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v3||V(u - fi)|£1(m < ([{P - h>)Vu + (h- h)F] • V(u - u) dx
Jo

< (3M2C. + (oJ\Q\y\h - h\\L~m\mu - u)\\LHCi),

where M = supweC ||#[w]||Loo(0). Set q§ = max,,.^^ q(v) > 0, assume for some
1 < s < oo, ks = 11x11̂ (0:̂ (0)) < +°° ° r K = WAi/ip-at < +°° where s = s/(s - 1) and
denote Cs > 0 the constant of the Sobolev inclusion Hj(Q) C LS(Q), VS < -foo. We
have

and it follows that

l|V(u-u)||t2(n)<L||v>-w)llL>(n).

which, in particular, implies that T is a strict contraction provided

L = (3M2C. + coJ)P\)q#C,ksv~z < I- (3-21)

Consequently, by the Banach fixed point theorem, (3.21) is a sufficient condition
for the existence and uniqueness of the solution to (3.8). Under the strong restriction
(3.21) and the above assumptions for h0 and K, the constraint / may be chosen in
]0,/„], where /„ = /„ q{u0) dx > 0 is defined through the solution u,, of (3.10) for
h = H[u0] and X = 0.

4. A stationary problem with prescribed biological population

In this section we consider an equilibrium problem for a spatially aggregating
population model that is described by the convection-diffusion equation

-V(D(pWp-pV)=f, (4.1)

where the population density p = p(x) > 0, for x e il c RN, 1 < N < 3, Q being a given
open bounded set. In (4.1) / =/(x) is a given rate of births or deaths in the population
and, in accordance with the biological model, the population flux J = —D(p)Vp + pV
includes both nonlinear diffusion and convection processes. We shall assume a
diffusivity coefficient D — D(p), such that it includes, in particular, the important case

D(p) — dpm, where d > 0, m > 0 are constants, (4.2)

and a nonlocal convection velocity of convolution type

https://doi.org/10.1017/S0013091500019696 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500019696


352 N. CHEMETOV AND J. F. RODRIGUES

V[p](x) = IQHX- y)o[p(y)]dy. (4.3)
Ja

where the vectorial kernel Q takes into account the aggregative mechanism and a is a
given real function. Our problem is inspired in a continuous version of Hamilton's
model [6] following the approach of Mimura (see [10] for a study of the evolutionary
one space dimension problem). Here we shall assume two additional features. Firstly,
we do not know a priori where the population is located in Q, i.e., d{p > 0} is a free
boundary and therefore we replace (4.1) by the associated zero-obstacle problem, as in
the example of the preceding section. Secondly, we shall introduce an adjustable
parameter, the total population J > 0, that may be of practical importance, for
instance in control problems or in the study of the asymptotic behaviour as in [10]:

Lpdx = J. (4.4)

Finally, for simplicity, we shall assume a Dirichlet boundary condition

p = 0 on an. (4.5)

As in the previous section let us consider the change of variables

f"u — m(p) — I D(s)ds, with the inverse p = q{u) (4.6)
Jo

and assume the diffusivity coefficient D(p) to be a positive continuous function on
p > 0 such that

q(u) is concave with q(u) > 0 and q\u) > 0 for u > 0 (4.7)

q(0) = 0, q(u) ->• +oo for u - • +oo, (4.8)

\q(u) - q(v)\ < C\u - v\\ Vu,v>0 (4.9)

where C > 0 and 1/2 < a < 1 are constants.
We note that if the diffusivity D(p) is of the type (4.2), q(u) = Cau\Ca > 0, a = ^ )

satisfies the conditions (4.7)-(4.9).
Using D(p)Vp = Vu and setting b — a o q, the free boundary problem of biological

population (4.1), (4.3)-(4.5) can be written in the following weak form

f
Ja

{(Vu - q(u)Q * b(u)) • V(y - u) +f(v - u)} dx > 0, Vy e Kj (4.10)

where K} = {v e H0(Q), v > 0 in fi, / n q(v) dx = J] is given as in (3.7), but now as the
intersection of a convex set with the level set of a concave functional.
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Setting also K = {v e Hl
0(Q), v > 0 in £1} and considering now a negative parameter

H < 0, for each

T e L\ = {v G L2(Q), t> > 0 a.e. in fi} (4.11)

we consider the auxiliary variational inequality for w = ut ^

we K: I {[Vw - q(w)7t] • V(t> - w) +f(v -w)}dx + fi f q(v) dx
Jn Jn

(4.12)
- n / q(w) rfx > 0, Vy 6 K

Jn

where K = KT(x) = K[g(r)] = Q * fc(r) is given by (4.3) for T e L^..
In order to apply the results of the second example of Section 2 in the case (2.19)

with y(x, u) =f(x) and B(x, u) = -q(u)Vt(x), we assume

/ e L\Q), Q e [Ll(Rn)]n, (4.13)

3£ e Rn\{0} : £ • Q(x) < 0(or > 0), a.e. x € R", (4.14)

b = aoqe C°([0, +oo[) and 3CT, < oo : 0 < a{t) < a., Vt > 0. (4.15)

Proposition 4.1. Under the assumptions (4.7)-(4.9) with \ < a < 1, (4.13)—(4.15), for
each T e h\ and // < 0, /Aere exists a unique uXfl solution of (4.12). Moreover uTfI is
continuous and monotone in \i, i.e.,

if l*\ < Pi < 0 then uT)J| > uxn a.e. in Q (4.16)

and, for each x 6 L\, satisfies the following estimate

\ I \Vu,f dx<C0-fif q(utlt) dx, (4.17)

where the constant Co > 0 depends only on a, f,a,,(l and \\Q\\o.

Proof. The estimate (4.17) is a simple consequence of (4.12) with v = 0, since by
Poincare and Young inequalities we have
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fw dx - [ q(W)V, Vwdx
J

[
Jo n

< cn/MIVw||L2

1 ..„j + C0(C\\f\\L2, C,<T.\\Q\\LU a),

where we have used the growth condition a < 1. Consequently the elliptic operator
associated with (4.12) is of the form (2.2) and is coercive in the sense of (1.5). It
is also clear that the assumptions (4.7), (4.9) with a > 1/2, (4.14) and (4.15) allow
us to apply the Proposition 2.2. Since \xq = X\j/ is a convex and decreasing function,
the corresponding comparison principle, as in Proposition 2.3, yields now the
conclusion (4.16). •

In order to apply the Theorem 1.4, it is sufficient to observe that the Assumption I
is satisfied, since the operator is coercive and now DomW — K, being *P(i;) = /n q(v) dx
continuous for the weak topology of H]

0(Q), by the continuity of q and the compact
embedding Hl

0(Q) c L2(fi).
The assumption (1.10) holds, since J+ = +oo and

0 < J . = inf f q(u^) dx= f g(ul0) dx = Jx < +oo, (4.19)
"i° Jo Ja

where «t0 denotes the unique solution to (4.12) with fi — 0 and T e L\. We observe that
Jx — 0 if / < 0, since then wl0 = 0 solves (4.12)0 for any x e L\. On the other hand,
the estimate (4.17) with \i = 0, yields the conclusion

(4.20)

where Ja is a constant depending only of a, Cl and the constant Co of (4.17).

Proposition 4.2. Let the assumptions of Proposition 4.1 hold. Then for any x e h\
and for each

J e [Jt, +oo[ (4.21)

where J t is defined by (4.19), there exists a unique pair w = ur/1eK and fi — //t e
[-Mj, 0] solving (4.12) and such that

L ) dx = J. (4.22)

Moreover, for each J > Jx, Jx given by (4.20), the constant Ms, such that, 0 > /ir > — Mj
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is independent of T € L+ and the application L2
+ 9 T I-» {uuil,fij e K} x [—JVf,,O] «

continuous.

Proof. The existence of ur(i and /it, by the assumptions, is a corollary of the
Theorem 1.4. Consequently it yields the existence of a solution ur to the problem

f
Jo

b(z)) • V(u - u) +/(» - «)} dx >0,VveKj. (4.23)

However, we are unable to guarantee the uniqueness for (4.23) but the pair {utJ1,/it}
is the unique solution of (4.12), such that u e K7.

Indeed, if we have two different solutions {u,,p,} and {u2, fi2) satisfying (4.22) and
such that, for instance, fi, < \i2, by comparison, we have u, > u2 a.e. in Q, and by the
strict monotonicity of q it follows that w, = u2 a.e. in Q. But if there exists an open
subset cucQ where ut(x) — u2(x) > 0 for a.e. x € a>, we have

—V • [Vu, — g(wi)Kl + /Ji<?'(ui) —/ a.e. in co,

and from the analogous equation for {u2, fi2], by subtraction, we obtain

/*i#'(ui) — fctf^Mi) a.e. in co.

Then, using the assumption (4.7) we should have also nx — \i2, which is a contradiction.
To see that \i2 varies in a bounded interval when T varies in L\, we write (4.12) for

H < 0 in the form

/ f 1 I f 2 f I
Ja Jo A* \Ja Ja I

> f q(v) - - \ \ f | Vw|2 - C f \Vv\2 - C" ff21 (4.24)

> / q(v) +-\c I \Vv\2 + C" ff2], Vy 6 Hj(Q), v > 0,
Jn H [ Ja Ja J

where, as in the estimate (4.18), C and C" are positive constants independent of /*
and T. Taking û  = \n\xl*v, in (4.24), for some v, e Hl

0(Q) such that u, > 1 a.e. in some
open co c fi, co ^ 0, by the assumption (4.7) we find, for all (i < — 1:

l)-c.w-1/2

where C, > 0 is independent of /i and T. Using the assumption (4.8) we see that when
we take \n\ sufficiently large in order to obtain the root of the equation (p,(pr) = J, this
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can be done uniformly in x e L\ and therefore there exists a constant M3 < +00, such
that nz > -MJ,VT e L\.

The continuous dependence with respect to x is an easy consequence of the
uniqueness of (4.12) and of the continuity of v >-> fQ q(v) dx. •

We can now state the main result of this section.

Theorem 4.1. Under the preceding assumptions, namely, (4.7)-(4.9) with \ < a < 1,
(4.13)-(4.15) and with Jx defined by (4.20), for each

J e [Ja, +oo[

there exists at least a solution Uj to the pseudo-variational inequality (4.10).

Proof. Set CR — {x e L2
+ : \\x\\Li < R) and define the application 7 : I H

ut/J = T(T) , where uTMi is the unique solution of (4.12) with n = nz such that (4.22) is
satisfied. This operator is continuous and, from (4.17), wt/ii 6 Kj satisfies the estimate

l- f i ^ |2 < Co - ii, J < Co + Mj J

which is independent of x, by the Proposition 4.2. Consequently, for large R,
T{CR) c CR and, by the compactness of the injection H]

0(Q) c L2(O), T is also
compact.

Hence, by the Schauder fixed point theorem, there is a u, such that Uj = TuJt which
is a solution to (4.10). •

Remark 4.1. In particular for the case (4.2), we have given conditions for the
existence of a solution of a free boundary problem (see Remark 2.4) consisting of
finding a nonnegative function p and a subset {p > 0} c ft, where the population is
located in equilibrium and satisfies the equation

-V • (djfVp - pV[p]) + up- = / in {p > 0}

under the side constraint (4.4), where ft < 0 is a generalized Lagrange multiplier and
0 <m < 1.

Remark 4.2. We have considered only the case \ < a < 1, i.e., 0 < m < 1. However
it is also possible to consider a = 1 in Theorem 4.1 provided ff,|l2llLi is sufficiently
small, such that (4.18) still holds.
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