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Anti-de Sitter-like spacetimes

This chapter discusses the construction of anti-de Sitter-like spacetimes, that

is, solutions to the vacuum Einstein field equations with an anti-de Sitter-like

value of the cosmological constant λ. Following the general discussion in Chapter

10, an anti-de Sitter-like value of the cosmological constant implies a timelike

conformal boundary. This feature of anti-de Sitter-like spacetimes marks the

essential difference between the analysis contained in this chapter and the ones

given in Chapters 15 and 16 for de Sitter-like and Minkowski-like spacetimes,

respectively.

While the de Sitter and Minkowski spacetimes are both globally hyperbolic,

and, accordingly, perturbations thereof can be constructed by means of suitable

initial value problems, the anti-de Sitter spacetime is not-globally hyperbolic; see

the discussion in Section 14.5. Consequently, anti-de Sitter-like spacetimes cannot

be solely reconstructed from initial data. One needs to prescribe some boundary

data on the conformal boundary. Thus, the proper setting for the construction of

anti-de Sitter-like spacetimes is that of an initial boundary value problem. In this

spirit, one of the key objectives of this chapter is to identify suitable boundary

data for the conformal Einstein field equations.

For both the de Sitter and Minkowski spacetimes it is possible to obtain

conformal representations which are compact in time so that global existence

of perturbations can be analysed in terms of problems which are local in time.

However, the conformal representations of the anti-de Sitter spacetime discussed

in Chapter 6 involve an infinite range of time. As a consequence, the main result

of this chapter is local in time and makes no assertions about the stability of the

anti-de Sitter spacetime. The main result of this chapter can be formulated as

follows:

Theorem (local existence of anti-de Sitter-like spacetimes). Given

smooth anti-de Sitter-like initial data for the Einstein field equations on a

three-dimensional manifold S with boundary and a smooth three-dimensional

Lorentzian metric 
 on a cylinder [0, τ•)×∂S for some τ• > 0, and assuming that
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17.1 General properties of anti-de Sitter-like spacetimes 455

these data satisfy certain corner conditions, there exists a local-in-time solution

to the Einstein field equations with an anti-de Sitter-like cosmological constant

such that on {0}×S it implies the given anti-de Sitter-like initial data. Moreover,

this solution to the Einstein field equations admits a conformal completion such

that the intrinsic metric of the resulting (timelike) conformal boundary belongs

to the conformal class [
].

Thus, the conformal class of the intrinsic metric of the conformal bound-

ary constitutes suitable boundary data for the construction of anti-de Sitter

spacetimes. This insight was first obtained in Friedrich (1995).

17.1 General properties of anti-de Sitter-like spacetimes

In what follows, by an anti-de Sitter-like spacetime it will be understood

an asymptotically simple spacetime (M̃, g̃) with positive (i.e. anti-de Sitter-like)

cosmological constant. The basic intuition on this type of spacetimes is obtained

from the paradigmatic example discussed in Section 6.4. In particular, it has

been shown that making use of the conformal factor

ΞadS = a cosψ, a a constant,

the anti-de Sitter spacetime (R4, g̃adS) is conformal to the region

M̃adS ≡
{
p ∈ R× S3

∣∣∣∣ 0 ≤ ψ(p) <
π

2

}
of the Einstein cylinder R × S3 described in standard coordinates (T, ψ, θ, ϕ).

Moreover, the conformal boundary of the spacetime is given by

I ≡
{
p ∈ R× S3

∣∣∣∣ ψ(p) = π

2

}
,

which can be verified to be timelike.

17.1.1 General setting for the construction of anti-de

Sitter-like spacetimes

Let (M, g,Ξ) denote a conformal extension of an anti-de Sitter-like spacetime

(M̃, g̃) with g = Ξ2g̃. It will be assumed that the spacetime is causal (i.e.

it contains no closed timelike curves) and that it contains a smooth, oriented

and compact spacelike hypersurface S� with boundary ∂S� which intersects the

conformal boundary I in such a way that S� ∩ I = ∂S�. It is convenient to

define S̃� ≡ S�\∂S�. The portion of I in the future of S� will be denoted by I +.

Furthermore, it will be assumed that the causal future J+(S�) coincides with the

future domain of dependence1 D+(S� ∪ I +) and that S� ∪ I + ≈ [0, 1) × S�

1 In Chapter 14 the domain of dependence has been defined for achronal sets. However, that
S� ∪ I + is not achronal. This feature will not play a role in the subsequent discussion.
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456 Anti-de Sitter-like spacetimes

Figure 17.1 Penrose diagram of the set up for the construction of anti-de
Sitter-like spacetimes as described in the main text. Initial data prescribed on
S� \ ∂S� allow one to recover the dark shaded region D+(S� \ ∂S�). In order
to recover D+(S� ∪ I +) it is necessary to prescribe boundary data on I +.
Notice that D+(S� ∪ I +) = J+(S�).

so that, in particular, I + ≈ [0, 1) × ∂S�. A schematic depiction of the above

setting is given in Figure 17.1. One of the key objectives of the present chapter

is to address the question: what data on S� ∪ I + are needed to reconstruct the

anti-de Sitter-like spacetime (M̃, g̃) in a neighbourhood U ⊂ J+(S�) of S�?

As a consequence of the properties of the standard Cauchy problem and

the localisation property of hyperbolic equations, the solutions to the conformal

Einstein field equations on D+(S̃�) are determined, up to diffeomorphisms,

in a unique manner by solutions to the constraint equations on S�. To

recover J+(S�) \D+(S̃�) one needs to prescribe suitable data on the conformal

boundary I . The analysis of the suitable boundary data requires the prescription

of some appropriate gauge near I . As will be seen, conformal geodesics are

ideally suited to provide such a gauge.

The conformal constraints at the conformal boundary

Because for anti-de Sitter-like spacetimes the conformal boundary is a g-timelike

hypersurface, it follows that the metric g induces on I a three-dimensional

Lorentzian metric 
. As discussed in Section 11.4.4, the conformal Einstein

field equations satisfied by the (unphysical) spacetime (M, g) imply on I a

simplified set of interior (constraint) equations. It is recalled that a solution

to these conformal constraints at the conformal boundary can be computed

from the metric 
, a smooth scalar function κ and a symmetric 
-tracefree

three-dimensional tensor on I ; see Proposition 11.1. The scalar function is,

in particular, a conformal gauge-dependent quantity which can be set to zero by

considering a different metric in [
].
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17.1.2 Conformal geodesics at the conformal boundary

In Section 6.4.2 it has been shown that the anti-de Sitter spacetime can be

covered by a congruence of (non-intersecting) conformal geodesics. In this

congruence, curves which for some value of their affine parameter τ̄ are tangent

to I remain on I for all values of τ̄ . It will be shown that this observation is,

in fact, a generic property of anti-de Sitter-like spacetimes.

On the conformal boundary of an anti-de Sitter-like spacetime consider

an adapted g-orthonormal frame {ea} such that e3 is inward pointing and

orthogonal to I . This frame can then be extended to a neighbourhood U of

I by requiring the frame to be parallely propagated in the direction of e3. It

follows that the connection coefficients of ∇ associated to this frame satisfy

Γ3
a
b = 0 on U .

If one uses Gaussian coordinates x = (xμ) based on I such that

I =
{
p ∈ U

∣∣x3(p) = 0
}
,

it follows from writing ea = ea
μ∂μ that

e3
μ = δ3

μ, ea
3 = 0.

To analyse the behaviour of conformal geodesics at the conformal boundary

it is convenient to consider the equations for these curves expressed in terms of

the connection ∇. These equations can be decomposed in components using the

adapted frame discussed in the previous paragraph. One writes

ẋ = zaea, β = βaω
a.

The conformal curve equations split into two groups. Firstly, one has the normal

equations:

ẋ3 = zaea
3 = z3,

ż3 = −Γa
3
bz

azb − 2(βcz
c)z3 + (zcz

c)β3,

β̇3 = Γa
c
3z

aβc + (βcz
c)β3 − 1

2
(βcβ

c)z3 + L33z
3 + Li3z

i.

Secondly, for i, α = 0, 1, 2 one has the intrinsic equations:

ẋα = ea
αza,

żi = −Γc
i
bz

czb − 2(βcz
c)zi + (zcz

c)βi,

β̇i = Γb
c
iβcz

b + (βcz
c)βi −

1

2
(βcβ

c)zi + L3iz
3 + Lciz

c.

To simplify the analysis of the above equations one can exploit the conformal

freedom and choose an element of the conformal class of the intrinsic 3-metric 


of I for which

s =
1

4
∇c∇cΞ +

1

24
RΞ = 0.
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458 Anti-de Sitter-like spacetimes

Following the discussion of Section 11.4.4, this can always be done locally. Under

this choice of conformal gauge, the solution of the conformal constraint equations

on I implies that

Γa
3
b = 0, Γa

c
3 = 0, L3a = 0.

Moreover, one has

L3a = 0, Lij = lij .

That is, the spacetime (unphysical) Schouten tensor on I is determined by the

Schouten tensor of the intrinsic metric 
.

From the previous discussion it follows that the normal subset of the conformal

geodesic equations reduces to:

ẋ3 = z3,

ż3 = −2(βcβ
c)z3 + (zcz

c)β3,

β̇3 = (βcz
c)β3 − 1

2
(βcβ

c)z3 + l33z
3.

These equations are homogeneous in the unknowns (x3, z3, β3). Thus, by

choosing initial data such that

x3
� = 0, ẋ3

� = 0, β3� = 0, (17.1)

one obtains that

x3(τ) = 0, z3(τ) = 0, β3(τ) = 0

for later times. Accordingly, conformal curves with initial data given by (17.1)

will remain on I . Looking now at the intrinsic part of the conformal geodesic

equations one observes that the equations reduce to

ẋα = ziei
α,

żi = −Γk
i
jz

kzj − 2(βkz
k)zi + (zkz

k)βi,

β̇i = Γj
k
iz

jβk + (βkz
k)βi −

1

2
(βkβ

k)zi + lkiz
k.

These are the conformal geodesic equations for the 3-metric 
 on I .

To verify the consistency between the construction described in the previous

paragraphs and the adapted g-orthonormal frame {ea}, consider a vector v

satisfying the Weyl propagation equation

∇ẋv = −〈β,v〉ẋ− 〈β, ẋ〉v + g(v, ẋ)β�,

along I . Making the ansatz v = αe3, where α denotes a scalar function on I ,

one finds the equation α̇ = −〈β, ẋ〉α. Thus, if initially one has α� �= 0, then

α �= 0 at later times. Accordingly, if one prescribes at some point of the conformal

geodesic in I an orthonormal frame {ea} containing a vector which is normal to

I , one finds that the solution to the Weyl propagation equations will be a frame
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Figure 17.2 Representation of conformal geodesics on the conformal boundary
of an anti-de Sitter-like spacetime: those curves that at some point are tangent
to I remain in the conformal boundary and are conformal geodesics for the
conformal structure implied by the intrinsic metric 
; see Lemma 17.1. The
conformal geodesics are depicted by black lines.

along the conformal geodesic which contains a vector normal to I . Moreover, as

the Weyl propagation preserves the orthogonality of vectors, it follows that the

elements of the frame which are at some point intrinsic to I will remain so at

later times; see Figure 17.2.

A more general result

The results obtained in the previous paragraphs make use of a particular metric

in the conformal class [
]. Thus, it is of interest to reformulate them in an

arbitrary conformal gauge. As in Chapter 10, the symbol � denotes equality

on I . Now, consider on M a conformal factor ϑ > 0 such that ϑ � 1 to perform

a rescaling of the form g′ ≡ ϑ2g. This rescaling leaves the metric 
 unchanged

in the sense that 
′ � ϑ2
 � 
. Furthermore, one finds that

s′ � (∇aΞ∇aϑ) � e3(ϑ),

with e3 = (dΞ)� as Ξ = x3 in local coordinates. The comparison of the above

expression with the solution to the conformal constraints at the conformal

boundary as given in Section 11.4.4 suggests defining

κ ≡
√

3/λ e3(ϑ)
∣∣
I
.

Defining the covector k ≡ ϑ−1dϑ, and taking into account the transformation

properties of conformal geodesics as given in Section 5.5.2, it follows that

(x(τ),β′(τ)), with β′ ≡ β − k,

is a solution to the conformal geodesic equations associated to the connection

∇′ ≡ ∇ + S(k). From the definition of k it follows that ∇′ is the Levi-Civita

connection of the metric g′ = ϑ2g. Observe, in particular, that

β′
3(τ) � −k3(τ) � −e3(ϑ) � −s′.

The discussion of this section can be summarised as follows:
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460 Anti-de Sitter-like spacetimes

Lemma 17.1 A conformal geodesic in an anti-de Sitter-like spacetime which

passes through a point p ∈ I , is tangent to I at p and which satisfies

〈β,ν〉|p = −s,

with ν the unit normal to I , remains in I and defines a conformal geodesic

for the conformal structure of I . Furthermore, the Weyl propagation equations

admit a solution containing a vector field normal to I .

17.2 The formulation of an initial boundary value problem

The properties of conformal geodesics in anti-de Sitter-like spacetimes will now be

exploited to construct a conformal Gaussian system for the extended conformal

Einstein field equations. As will be seen, the hyperbolic reduction associated to

this gauge leads to an initial boundary value problem for the conformal evolution

equations.

17.2.1 Construction of a boundary adapted gauge

Following the discussion of Chapter 14, the solution to the Einstein field

equations on the domain of dependence D+(S̃�) = D+(S�\∂S�) is determined in

a unique manner, up to diffeomorphisms, by a pair of tensors (h̃, K̃) satisfying

the Einstein constraint equations on S̃�. On S�, let

Ω ≡ Θ
∣∣
S̃�
, Σ̃� ≡ ν̃(Θ)|S̃�

,

with ν̃ the future-directed unit normal field of S̃� with respect to g̃. In addition

to the usual smoothness and positivity assumptions, the fields Ω and Σ̃� are

restricted by their behaviour near ∂S� where one requires that Σ� ≡ ν(Θ)
∣∣
S�

=

Ω−1Σ̃�, with ν the future-directed g-unit normal, to be smooth. Using the above

fields one can use Equations (11.1a) and (11.1b) to compute the unphysical

fields (h,K).

To simplify the subsequent discussion, it is assumed that the initial hypersur-

face S� is such that the unit normal ν is tangent to I on ∂S�. Accordingly, one

has

Σ� ≡ ν(Θ)
∣∣
S�

= 0 on ∂S�.

Moreover, recalling that at the conformal boundary s can be made to vanish by

a convenient choice of conformal gauge, it is assumed that

s = 0, on ∂S�.

In what follows, each p ∈ S� will be considered as the starting point of a future-

directed conformal geodesic (x(τ),β(τ)) and an associated Weyl propagated

frame {ea}. The parametrisation of the curves is naturally chosen so that τ = 0

on S�. For points p ∈ S̃�, the data for these curves are set in terms of g̃ and its

Levi-Civita connection ∇̃ by the conditions:
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17.2 The formulation of an initial boundary value problem 461

(i) ẋ is future directed, orthogonal to S̃� and satisfies the normalisation

condition

g̃(ẋ, ẋ)� = Θ−2
� .

(ii) β� = Ω−1dΩ so that 〈β�, ẋ�〉 = 0 —as Σ� = 0 by assumption.

(iii) e0� = ẋ� and g̃(ea, eb)� = Θ−2
� ηab.

On suitable neighbourhoods W ⊂ J+(S�) of S�, the conformal geodesics x(τ)

define a smooth timelike congruence in W, {ea} a smooth frame field and β,

a smooth covector. The conformal geodesics can be used to fix a conformal

Gaussian coordinate system on W by setting x0 = τ and then extending

local coordinates x = (xα) on S� by requiring them to remain constant along

conformal geodesics. The coefficients ea
μ = 〈dxμ, ea〉 of the frame {ea} with

respect to the Gaussian coordinates satisfy on W the condition e0
μ = δ0

μ.

Observe, however, that in general ea
0 = 0 only on S�. The conformal factor

Θ is then fixed on W by requiring

g(ea, eb) = ηab.

The discussion of the conformal geodesics in the conformal boundary needs to

be done in terms of the metric g and its Levi-Civita connection ∇. In terms

of these, the conformal geodesics are represented by a pair (x(τ),f(τ)) with

f ≡ β −Θ−1dΘ. Accordingly, one has

f = 0, on S�.

As a result of Lemma 17.1, conformal geodesics which start on ∂S� remain on I .

As s = 0 on ∂S� one can write

s� = Ως�, (17.2)

with ς� a smooth function on ∂S�. It follows from Proposition 5.1 that

Θ = Ω

(
1− 1

2
ς�τ

2

)
, (17.3)

while for da ≡ 〈d, ea〉 one obtains the explicit expression

da =
(
Θ̇, ei(Ω)�

)
, ei(Ω)� ≡ (ei

α∂αΩ)�, (17.4)

where the functions Ω, ς� and ei(Ω)� defined initially on S� are extended to W
so that they are constant along conformal geodesics.

Remark. Insight into the behaviour of the conformal factor (17.3) can

be obtained from the constraint Equation (11.35c). Using Equation (17.2),

exploiting that in an adapted gauge (dΩ)� = −e3 and evaluating at ∂S� one

concludes

ς� � −L03Σ− L33.
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Finally, from Equations (11.40) and (11.41) it follows that in a conformal gauge

for which s � 0 one also necessarily has L03 � 0. Thus, one obtains the simple

expression

ς� � −L33.

In particular, if L33 > 0, then from Equation (17.3) the conformal factor Θ

vanishes only if Ω vanishes. This observation is consistent with the discussion of

Section 17.1.2 – conformal geodesics which start normal to S� and away from

∂S� cannot enter the conformal boundary. Ideally, one would like to deduce the

property L33 > 0 from an analysis of the conformal constraint equations. For

data for the exact de Sitter spacetime, Equation (6.8b) implies L33 = 1
2 on ∂S�.

Suitable perturbations of data for the anti-de Sitter spacetime should preserve

this property.

17.2.2 The conformal evolution system

Combining the gauge construction with the hyperbolic reduction for the extended

conformal field equations discussed in Section 13.4 one obtains an evolution

system of the form

∂τ υ̂ = Kυ̂ +Q(Γ̂)υ̂ + L(x)φ, (17.5a)(
I+A0(e)

)
∂τφ+Aα(e)∂αφ = B(Γ̂)φ, (17.5b)

where the notation of Proposition 13.3 is retained and the matrix-valued function

L(x) is given explicitly in terms of the conformal gauge fields Θ and da as

given by Equations (17.3) and (17.4). In the above system, Equation (17.5b)

is understood to correspond to the boundary-adapted Bianchi evolution system

(13.60a) and (13.60b) in Chapter 13. The evolution system (17.5a) and (17.5b) is

ideally suited to the formulation of a boundary value problem, as the equations

described by the subsystem (17.5a) are mere transport equations along

the conformal boundary which do not need to be supplemented by boundary

conditions. Hence, all the boundary conditions arise from the subsystem (17.5b)

associated to the evolution of the Weyl tensor.

Following the discussion of initial boundary value problems for symmetric

hyperbolic equations as described in Section 12.4, the identification of suitable

boundary conditions for Equation (17.5b) stems from an analysis of the

normal matrix A3 at the conformal boundary. Making use of the explicit

expression for the principal part of the boundary-adapted Bianchi system given

in Equation (13.61) and taking into account that, in the boundary adapted

conformal Gaussian gauge, one has

e00
3 � 0, e11

3 � 0,
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17.2 The formulation of an initial boundary value problem 463

it follows that

A3 � 2e01
3
∣∣
I

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

This normal matrix is almost in the form required by the theory of

Chapter 12. It needs only to be verified that the evolution of the frame

coefficient e01
3 on I can be decoupled from that of the components of the Weyl

tensor. An inspection of the conformal evolution Equations (13.59a)–(13.59g)

– of which Equation (17.5a) above is a schematic representation – shows that

whenever Θ = 0, the evolution equations for certain components of the fields

eAB
α, χ(AB)CD, ΘCD(AB) decouple from the evolution of φABCD. Thus, it is

possible to determine the frame coefficient e01
3 directly from the initial data at

∂S� – hence, it is independent of any boundary value prescriptions on I . This

observation will be discussed in some detail in the following subsection.

Remark. The normal matrix for the standard Bianchi system is given by

A3 � 2e01
3
∣∣
I

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 −2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

so that this normal matrix leads to a much more complicated analysis of

boundary conditions.

17.2.3 Behaviour of the frame at the conformal boundary

In this section, the discussion is restricted to a suitable open neighbourhood W of

a point on ∂S� such that the intersection with conformal geodesics is connected.

Consistent with the discussion in Section 17.2.1, one introduces on S� ∩ W an

adapted three-dimensional spatial frame {ei} such that e3 is orthogonal and

inward directed at ∂S� and such that ∇3ea = 0 on S� ∩ W. One introduces

coordinates x = (xα) on S� ∩W so that x3 vanishes on ∂S� and 〈dxα, e3〉 = δ3
α

on S�∩W. A conformal Gaussian gauge system satisfying the above assumptions

near ∂S� will be called a boundary adapted gauge.

For future reference it is observed that the conformal evolution Equations

(13.59b), (13.59e) and (13.59f) reduce, on the conformal boundary, to

∂τeAB
α � −χ(AB)

PQePQ
α, (17.6a)

∂τχ(AB)CD � −χ(AB)
PQχPQCD −ΘAB(CD), (17.6b)

∂τΘCD(AB) � −χ(CD)
PQΘPQ(AB) + i

√
2dP (AμB)CDP . (17.6c)
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464 Anti-de Sitter-like spacetimes

The above evolution equations at the conformal boundary are conveniently

analysed in terms of a 1+1+2 spinorial formalism. Given a spinorial basis

{εAA} such that

τAA′
= δ0

Aδ0′A
′
+ δ1

Aδ1′A
′
,

it is convenient to introduce a spatial spinor ρAA′
with components with respect

to the basis {εAA} given by

ρAA′ ≡ δ0
Aδ0′A

′ − δ1
Aδ1′A

′
.

The space spinor counterpart of ρAA′
is given by

ρAB ≡ τB
A′

ρAA′ = −2δ(A
0δB)

1.

It can be verified that, in addition to the condition
√
2e0 = τAA′

eAA′ , one has

√
2e3 = ρAA′

eAA′ = ρABeAB = 2e01, on S� ∩W. (17.7)

In particular, one has

eAB(Θ) = dAB = −
√
λ/6ρAB on ∂S�.

The spinor ρAB will be used to split space spinor fields into parts orthogonal

and tangent to I . Accordingly, one defines

e3⊥ ≡ ρABeAB
3, eAB

3‖ ≡ ρ(A
CeB)C

3

χ⊥⊥ ≡ ρABρCDχ̂ABCD, χ‖⊥
AB ≡ ρ(A

Eχ̂B)ECDρCD,

χ⊥‖
CD ≡ ρABχ̂ABE(CρED), χ‖‖

ABCD ≡ ρ(A
Eχ̂B)EF (CρFD),

Θ⊥⊥ ≡ ρABρCDΘ̂ABCD, Θ‖⊥
AB ≡ ρ(A

EΘ̂B)ECDρCD,

where

χ̂ABCD ≡ χ(AB)CD, Θ̂ABCD ≡ ΘAB(CD).

Observing that ∂τρAB = 0, it follows from Equations (17.6a)–(17.6c) that

∂τeAB
3 � −χ̂AB

PQePQ
3,

∂τ
(
χ̂ABCDρCD

)
� −χ̂AB

PQχ̂PQCDρCD − Θ̂ABCDρCD,

∂τ
(
Θ̂CDABρAB

)
� −χ̂AB

PQΘ̂PQCDρAB,
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where it has been used that dP (AμB)CDP ρAB = 0 as dAB and ρAB are

proportional to each other. By further contractions with ρAB one finds that

the above equations split into the subsystems

∂τeAB
3‖ � 1

2
χ‖⊥

ABe3⊥ + χ‖‖eAB
3‖, (17.8a)

∂τχ
‖⊥

AB � 1

2
χ‖⊥

ABχ⊥⊥ + χ‖‖
ABPQχ‖⊥PQ −Θ‖⊥

AB, (17.8b)

∂τΘ
‖⊥

AB � 1

2
χ‖⊥

ABΘ⊥⊥ + χ‖‖
ABPQΘ‖⊥PQ, (17.8c)

and

∂τe
3⊥ � 1

2
χ⊥⊥e3⊥ + χ⊥‖

PQe3‖PQ, (17.9a)

∂τχ
⊥⊥ � 1

2

(
χ⊥⊥)2 + χ⊥‖

PQχ‖⊥PQ −Θ⊥⊥, (17.9b)

∂τΘ
⊥⊥ � 1

2
Θ⊥⊥χ⊥⊥ + χ⊥‖

PQΘ‖⊥PQ. (17.9c)

Initial data for e3⊥ and eAB
3‖ at ∂S� follow directly from (17.7). Namely, one

has

e3⊥
∣∣
∂S�

=
√
2, eAB

3‖∣∣
∂S�

= 0. (17.10)

For χ‖⊥
AB and χ⊥⊥, initial data can be extracted from the conformal constraint

Equation (11.35b) which, taking into account that by assumption Σ = 0 and

La = 0 on S�, takes the form χa
cDcΩ = 0 on ∂S�. It follows then that

χ⊥⊥ = 0, χ‖⊥
AB = 0, on ∂S�. (17.11)

Finally, to compute the data for Θ‖⊥
AB and Θ⊥⊥ one considers the conformal

constraint (11.35c) which, in the present context, takes the form

D3s = −DbΩLb3.

Recalling that s = Ως� and that, in local Gaussian coordinates, Ω = x3 one

concludes that

Θ⊥⊥ = 2ς�, Θ‖⊥
AB = 0, on ∂S�. (17.12)

Using the initial conditions (17.10), (17.11) and (17.12) together with the

homogeneity of the subsystem (17.8a)–(17.8c), it follows directly that

eAB
3‖ � 0, χ‖⊥

AB � 0, Θ‖⊥
AB � 0.

The solution to the subsystem (17.9a)–(17.9c) is given by

e3⊥ = − 2
√
2

2 + τ2ς�
, χ⊥⊥ = − 4τς�

2 + τ2ς�
, Θ⊥⊥ =

4ς�
2 + τ2ς�

.

https://doi.org/10.1017/9781009291347.022 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291347.022
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The discussion in this section is summarised in the following:

Lemma 17.2 For any solution to the conformal evolution Equations (17.5a)

and (17.5b) satisfying on ∂S� the conditions (17.10), (17.11) and (17.12), one

has that the normal matrix A3
∣∣
I

of the boundary adapted Bianchi system is

given by

A3 � 2
√
2

2 + τ2ς�

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ,

irrespectively of the value of φABCD on W ∩ I .

17.2.4 Identification of boundary conditions

The results of the previous paragraphs allow the identification of maximally

dissipative boundary conditions for the conformal evolution equations. Following

the discussion in Section 12.4, the basic condition to be satisfied by the normal

matrix is the inequality

〈φ,A3
∣∣
I
φ〉 ≤ 0,

which, assuming that 2 + τ2ς� > 0, implies that

|φ4|2 − |φ0|2 ≤ 0. (17.13)

To characterise the subspaces of C5 satisfying the above condition consider two

smooth complex-valued functions c1 and c2 on I and let

φ4 = c1φ0 + c2φ̄0.

Exploiting that (c1φ0 − c2φ̄0)(c̄1φ̄0 − c̄2φ0) ≥ 0 one finds that

|φ4|2 − |φ0|2 ≤ (|c1|2 + |c2|2 − 1)|φ0|2.

Thus, condition (17.13) is satisfied if one requires

|c1|2 + |c2|2 ≤ 1.

The above discussion shows that suitable inhomogeneous maximally

dissipative boundary conditions for the conformal evolution equations are

given by

φ4 − c1φ0 − c2φ̄0 = q, |c1|2 + |c2|2 ≤ 1, (17.14)

with c1, c2, q smooth complex-valued functions on I .
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Corner conditions

As seen in Section 12.4, the smoothness of a solution to an initial boundary

value problem requires certain compatibility conditions between the initial data

and the boundary conditions at the edge ∂S� – so-called corner conditions.

Following the general discussion given in Section 12.4, one can use the boundary-

adapted Bianchi system (17.5b) to determine a formal expansion in terms of τ

of the vector φ on I near ∂S�. This expansion implies, in turn, an expansion

for φ4 − c1φ0 − c2φ̄0 and must be consistent with the prescription of the freely

specifiable function q. The explicit form of these corner conditions is rather

cumbersome. In what follows, it will be assumed that these corner conditions

are satisfied to any order.

17.2.5 The local existence result

The analysis of the boundary conditions leads to a local existence result for an

initial boundary value problem for the conformal evolution system (17.5a) and

(17.5b) with boundary conditions of the form (17.14). This result is a direct

application of Theorem 12.6. More precisely, one has the following:

Proposition 17.1 (local existence for the initial boundary value prob-

lem) Given an initial boundary value problem for Equations (17.5a) and (17.5b)

with smooth initial data (
υ̂�(x),φ�(x)

)
, on S�,

and inhomogeneous maximally dissipative boundary data

φ4 − c1φ0 − c2φ̄0 = q, |c1|2 + |c2|2 ≤ 1, on I ,

with c1, c2, q smooth complex-valued functions on I and assuming that the

required corner conditions at ∂S� between initial and boundary data are satisfied

to any order, there exists τ• > 0 such that the initial boundary value problem has

a unique smooth solution (υ̂(τ, x),φ(τ, x)) defined on

Mτ• ≡ [0, τ•)× S.

Remark. Although the above result is local in time, it is nevertheless global in

space. As already mentioned, existence onD+(S�\∂S�) follows from the standard

Cauchy problem. The solutions away from the boundary and those close to the

boundary are then patched together to render the full solution.

17.2.6 Propagation of the constraints

In order to transform the existence result given by Proposition 17.1 into an

assertion about the Einstein field equations it is necessary to provide an analysis

of the propagation of the constraints.
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468 Anti-de Sitter-like spacetimes

The subsidiary evolution system associated to the conformal evolution

Equations (17.5a) and (17.5b) has been discussed in Proposition 13.4. The key

structural feature of these subsidiary equations is that they are homogeneous in

the zero quantities. A further crucial feature is that the equations for the zero

quantities

Σ̂a
c
b, Ξ̂c

dab, Δ̂abc, δa, γab, ςab

are all transport equations, and, accordingly, they do not give rise to boundary

conditions on I . For the zero quantity Λabc associated to the Bianchi identity,

the subsidiary system implied by the boundary-adapted system contains no

derivatives with respect to the coordinate x3 and, thus, has a vanishing normal

matrix; compare Equations (13.66a)–(13.66c). It follows that the subsidiary

evolution equations require no boundary condition on I . From the uniqueness

result for initial boundary value problems, Theorem 12.5, if the conformal

Einstein equations are satisfied on S – that is, the zero quantities vanish – then

they are also satisfied on Mτ• . Combining this discussion with Proposition 8.3

one obtains the following existence result for the Einstein field equations:

Theorem 17.1 (propagation of the constraints for the initial boundary

value problem) Consider smooth anti-de Sitter-like initial data for the extended

conformal Einstein field equations on a three-dimensional manifold S and

boundary initial data of the form (17.14) on I . Assume that the above data

satisfy the required corner conditions to all orders on ∂S� = S� ∩ I . Then the

solution of the initial boundary value problem given by Proposition 17.1 implies

a solution to the extended conformal Einstein field equations on Mτ• . This

solution, in turn, implies an anti-de Sitter-like solution to the vacuum Einstein

field equations on

M̃τ• ≡ Mτ• \ I ,

for which I represents the conformal boundary.

Remark. For an anti-de Sitter-like initial data set it is understood a

collection of conformal fields satisfying the conformal constraint equations with

the required anti-de Sitter asymptotic behaviour; see Section 11.7.

17.3 Covariant formulation of the boundary conditions

From a geometric point of view, the formulation of the boundary conditions

in Proposition 17.1 is not satisfactory. The fields appearing in the maximally

dissipative boundary conditions (17.14) are expressed with respect to a certain

boundary adapted gauge. This gauge specification is an integral part of the

boundary conditions: changes on the adapted boundary imply changes in the

data. It is therefore important to recast the conditions (17.14), or at least
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a subclass thereof, in a covariant manner. In what follows, attention will be

restricted to the subclass

φ4 − cφ̄0 = q, c constant, |c| ≤ 1. (17.15)

17.3.1 Space spinor split of the boundary data

To recast the boundary condition (17.15) in a covariant manner, it is first

necessary to express the fields in terms of objects intrinsic to the conformal

boundary I . It is convenient to make use of a timelike spinor formalism

based on the spacelike spinor

ρAA′
= δ0

Aδ0′A
′ − δ1

Aδ1′A
′
,

as defined in Section 17.2.3, to project spinorial fields into I in analogy to

the space spinor splits with respect to τAA′
. The spinor ρAA′

is the spinorial

counterpart of the inward-pointing normal ν = e3 to I . Notice, however, the

normalisation ρAA′ρAA′
= −2. Define the space spinor version τAB of τAA′ as

τAB = ρB
B′

τAB′ = 2δ(A
0δB)

1.

Now, taking into account the decomposition of the spinorial counterpart of the

Weyl spinor one can compute its electric and magnetic parts with respect to

ρAA′
as

EABCD ≡ 1

2
ρB

A′
ρEE′

ρD
C′

ρFF ′
dAA′EE′CC′FF ′ =

1

2

(
φABCD + φ‡

ABCD

)
,

BABCD ≡ 1

2
ρB

A′
ρEE′

ρD
C′

ρFF ′
d∗AA′EE′CC′FF ′ = − i

2

(
φABCD − φ‡

ABCD

)
,

with

φ‡
ABCD ≡ ρA

A′
ρB

B′
ρC

C′
ρD

D′
φ̄A′B′C′D′ .

By construction EABCD = E(ABCD) and BABCD = B(ABCD).

The spinors EABCD and BABCD can be decomposed in a 1 + 2 manner

with respect to the spinor τAB. The subsequent discussion will be restricted

to BABCD, but an identical analysis can be carried out for EABCD. This

decomposition is best carried out using tensor frame components and then

translating the result into spinors. One obtains

BABCD = μABCD + μABτCD + τABμCD +
1

4
μ
(
3τABτCD − 2εA(CεD)B

)
,

(17.16)

with the fields

μABCD = μ(ABCD), μAB = μ(AB), μ = μ̄,
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satisfying

τABμABCD = 0, τABμAB = 0.

The geometric interpretation of the various spinors follows from the above prop-

erties. By inspection, it can be shown that the only non-vanishing components of

the spinor μABCD are given by μ1111 = μ0000. Similarly, for the rank-2 spinor

μAB one has the non-vanishing components and μ00 = μ11. From the definitions

of the magnetic parts of φABCD it follows that

μ1111 = − i

2

(
φ1111 − φ̄0′0′0′0′

)
μ11 = − i

2

(
φ0111 − φ̄1′0′0′0′

)
,

μ = −i
(
φ0011 − φ̄1′1′0′0′

)
.

It follows from the above expressions and their analogues for EABCD that the

boundary condition (17.15) can be rewritten in terms of the components of the

spinors EABCD and BABCD. Of particular interest are the cases

c = 1 : B1111 = q, (17.17a)

c = −1 : E1111 = q. (17.17b)

The Bianchi constraints at the conformal boundary

Now, assume that one is provided with boundary data in the form (17.17a)

or (17.17b). A natural question is whether it is possible to recover the full

spinor EABCD and, respectively, BABCD. It is recalled that the conformal field

equation

∇A
A′φABCD = 0

implies on I the constraint equations

DPQηPQAB = 0, DPQμPQAB = 0, (17.18)

with DAB ≡ ρ(A
A′∇B)A′ ; see Section 11.4. The above equations are the

spinorial versions of the conformal constraints (11.39f) and (11.39g). They can

be decomposed by introducing the directional derivatives

P ≡ τAA′∇AA′ , δAB ≡ τ(A
QDB)Q,

along, respectively, the direction dictated by the conformal geodesics threading

the conformal boundary and the direction orthogonal to them. A direct

computation gives

DAB =
1

2
τABP + δAB.
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Combining this split with the decomposition (17.16) of the spinor BABCD one

finds that the constraint Equations (17.18) imply the system

2Pμ+ 4δABμAB = 2μABPτAB − 3μDABτAB

+ 2τEFDABμABEF , (17.19a)

4PμCD + 2δCDμ = 4(μCDDEF τEF + μEFDEF τCD)− 3μPτCD

+ 4(δC
EδD

F + τCDτEF )DABμABEF . (17.19b)

A similar system is satisfied by the components of EABCD. Direct inspection

reveals that the above equations constitute a linear symmetric hyperbolic system

(intrinsic to I ) for the fields μ and μAB if the field μABCD is provided; that

is, μABCD plays the role of source terms. The terms involving derivatives with

respect to the spinor field τAB appearing in the right-hand sides of the above

equations can be simplified if one assumes a boundary-adapted gauge on I .

The discussion of the previous paragraphs can be summarised in the following

manner: suppose one is given boundary data on I of the form (17.17a) and

suppose one knows the values of the fields μ and μAB on ∂S�; then, at least

in a neighbourhood of the edge ∂S�, it is possible to determine the components

μ and μAB by solving the hyperbolic system (17.19a) and (17.19b). A similar

discussion holds for the electric part.

17.3.2 Prescribing the Cotton tensor of the conformal boundary

Despite the formal symmetry between the boundary conditions (17.17a) and

(17.17b), the former condition possesses a much stronger geometric content.

As a consequence of Equation (11.42), the magnetic part of the rescaled Weyl

tensor corresponds, essentially, to the components of the Cotton tensor yijk of

the intrinsic Lorentzian metric 
 of I . Thus, one can ask whether, given the

components yijk of a tensor on I with the symmetries of the Cotton tensor, it

is possible to find a Lorentzian metric 
 on I such that yijk are the components,

with respect to a boundary-adapted frame, of the Cotton tensor of 
. If this is

possible, then, as a consequence of its conformal transformation properties, one

has obtained a way of reexpressing a subset of the general maximally dissipative

boundary conditions for the conformal field equations in terms of the conformal

structure on I . One has the following result, adapted from lemma 7.1 in

Friedrich (1995):

Proposition 17.2 (geometric formulation of boundary conditions)

Suppose one has a solution to the extended conformal field equations with anti-

de Sitter-like cosmological constant on Mτ• = [0, τ•) × S for τ• > 0 for which

I = [0, τ•)× ∂S represents the conformal boundary. Let g denote the metric on

Mτ• obtained from the solution to the conformal field equations and let 
 denote

the 3-metric induced on I by g. Assume that the boundary-adapted conformal

Gaussian gauge system can be extended to all of Mτ• . One then has:
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(i) Given the restriction to ∂S� of the data for the conformal Einstein field

equations in the boundary-adapted gauge and given the conformal class [
],

it is possible to compute the function q appearing in the boundary condition

(17.17a).

(ii) Conversely, given on ∂S� the restriction of the data for the conformal

Einstein field equations in the boundary-adapted gauge and the boundary

condition (17.17a), it is possible to determine, in a unique manner, the

conformal class [
].

Proof To prove (i) it is observed that as a consequence of Lemma 17.1, the

boundary-adapted conformal Gaussian gauge at the conformal boundary can be

constructed by solving the conformal geodesic equations for the metric 
. Once

the associated Weyl-propagated frame {ei} has been obtained, one can directly

compute the components yijk of the Cotton tensor. Using the discussion of the

previous subsection one can, in turn, compute the function q appearing in the

boundary condition (17.17a).

The proof of (ii) is much more involved and only a sketch of the main ideas will

be provided. Here, one has to verify whether a given three-dimensional tensor

is the Cotton tensor of a three-dimensional Lorentzian metric. In view of the

Lorentzian nature of this problem, one can address this question by formulating

a suitable initial value problem on I with data on ∂S� for the evolution equations

implied by the structural equations on I . Formulated in this manner one has a

situation which is very similar to the Cauchy problem for the extended conformal

Einstein field equations.

In what follows, let D denote the Levi-Civita covariant derivative of the

metric 
, and let D̂ denote a Weyl connection in the conformal class of 
. As

in the four-dimensional case, the connections are related to each other via a

relation of the form D̂ − D = S(f), with f representing a three-dimensional

covector and S the three-dimensional version of the transition tensor discussed

in Section 5.2.1. Let {ei} denote an 
-orthogonal frame on I , and let γ̂i
j
k

be the associated connection coefficients of the connection D̂. Moreover, let l̂ij
denote the components of the Schouten tensor of the connection D̂. In analogy

to the discussion of the conformal field equations, it is convenient to introduce

a number of zero quantities encoding the structure equations to be satisfied

by the various geometric fields:

Σ̂i
k
jek ≡ [ei, ej ]− (γ̂i

k
j − γ̂j

k
i)ek,

Ξ̂k
lij ≡ ei(γ̂j

k
l)− ej(γ̂i

k
l) + γ̂m

k
l(γ̂j

m
i − γ̂i

m
j)

+ γ̂j
m

lγ̂i
k
m − γ̂i

m
lγ̂j

k
m − 2Sl[i

km l̂j]m,

Δ̂ijk ≡ D̂i l̂jk − D̂j l̂ik − yijk,

Λj ≡ Diyij ,
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where

yij ≡ −1

2
εj

klyikl, yi
i = 0, yij = yji,

is the so-called Bach tensor. The zero quantity Σ̂i
k
j encodes the vanishing

of the torsion of the connection D̂, Ξ̂k
lij contains the relation between the

geometric and algebraic curvatures (the Ricci identities), Δ̂ijk describes the

second Bianchi identity for D̂ while Λj corresponds to the so-called third

Bianchi identity – the differential identity satisfied by the Bach tensor.

To obtain a hyperbolic reduction of the above equations one considers the

conformal Gaussian system implied by the conformal geodesics on I . Using

arguments similar to the ones in the four-dimensional case one has

ei
α = δαi , γ̂0

k
j = 0, l̂0j = 0, (17.20)

and one considers the evolution equations

Σ̂0
k
jek = 0, Ξ̂k

l0j = 0, Δ̂0jk = 0, Λ̂j = 0. (17.21)

Taking into consideration the gauge conditions (17.20), it can be verified that

the first three equations in (17.21) are transport equations on I . The fourth

equation requires a more careful discussion: using the solution to the conformal

constraint equations as given by Equation (11.42) some components of yij can be

expressed in terms of the boundary conditions; for the remaining components one

has that Equations (17.19a) and (17.19b) imply a symmetric hyperbolic system.

Thus, one has obtained a symmetric hyperbolic system for the fields ei
α, γ̂i

k
j ,

l̂ij and for the components of yij not determined by the boundary conditions.

Initial data on ∂S� for these fields can be computed from the restriction to ∂S�

of the initial data for the conformal evolution equations. Hence, using the general

theory of symmetric hyperbolic systems as discussed in Chapter 12, one obtains

a solution to Equations (17.21) in a neighbourhood U in I of ∂S�. To show that

this solution implies, in turn, a solution to the equations

Σ̂i
k
jek = 0, Ξ̂k

lij = 0, Δ̂ijk = 0, Λj = 0, on U

provided that they are satisfied at ∂S, one needs to discuss the propagation of

the constraints along the lines of Section 13.4.5. The resulting frame {ei} can

be used to construct on U ⊂ I a Lorentzian metric 
. This metric characterises

the conformal class of the intrinsic metric of the conformal boundary.

Reflective boundary conditions

An important class of boundary conditions covered by the prescription (17.17a)

is that of the so-called reflective boundary conditions. These correspond to

the particular choice of q = 0 so that one has

φ11111 = φ̄0′0′0′0′ , on I .
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In what follows, this boundary condition will be supplemented by the conditions

φ0111 = φ̄0′0′0′1′ , φ0011 = φ̄0′0′1′1′ , on ∂S�.

Accordingly, from the discussion in Section 17.3.1 it follows that BABCD = 0

on ∂S�. Furthermore, using the interior evolution system (17.19a) and (17.19b)

one has

BABCD = 0, on I .

As BABCD corresponds to the Cotton tensor of I , it follows that reflective

boundary conditions together with some supplementary conditions at the edge

imply that the intrinsic metric on I is conformally flat.

As pointed out in Friedrich (2014a), despite the above neat geometric

characterisation of reflective boundary conditions, if one wants to construct

a smooth solution to the initial boundary value problem, one still needs to

satisfy an infinite hierarchy of corner conditions. Whether this requirement is

compatible with the known procedures for constructing anti-de Sitter-like initial

data remains an open question.

Comparison with other initial boundary value problems for the

Einstein field equations

Initial boundary value problems in general relativity arise in a natural manner

in numerical applications. There exists a number of treatments of the well-

posedness of this type of partial differential equation problem for the Einstein

field equations; see, for example, Friedrich and Nagy (1999) and Kreiss et al.

(2009). The approach and formulation of the Einstein equations considered in

the former reference are similar to the ones discussed in this book.

The analysis in Friedrich and Nagy (1999) makes use of a frame formulation

of the Einstein field equations. The equations employed in this reference can

be obtained from the standard conformal Einstein field equations discussed in

Section 8.3.1 by setting Ξ = 1. Given these equations, the question is what type

of boundary data need to be prescribed on a, in principle, arbitrary, timelike

hypersurface to obtain a well-posed initial boundary value problem and to ensure

the propagation of the constraints. It turns out that the allowed boundary data

are essentially expressed as a combination of components of the Weyl tensor (with

respect to a boundary adapted frame) of the form given in Equation (17.14).

Despite these parallels, the situation of the initial boundary value problem

analysed in Friedrich and Nagy (1999) and the one discussed in this chapter

differ in a key aspect: the boundary hypersurface in anti-de Sitter spacetimes

has a canonic character. As a consequence, it is possible to formulate covari-

ant boundary conditions, and one ends up with a setting where geometric

uniqueness of the solutions can be ensured. In Friedrich and Nagy (1999) it

was not possible to obtain a geometric formulation of the boundary conditions
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on the timelike hypersurface. Thus, they remain tied to the prescription of the

boundary-adapted gauge. As geometric uniqueness cannot be asserted, it is, in

principle, not possible to determine whether two seemingly different boundary

conditions will lead to the same spacetime, modulo diffeomorphisms. A further

discussion can be found in Friedrich (2009).

17.4 Other approaches to the construction of anti-de

Sitter-like spacetimes

The analysis of this section has been concerned with the construction of four-

dimensional anti-de Sitter-like spacetimes by means of an initial boundary value

problem for the conformal Einstein field equations. There are, however, other

approaches to this problem if, for example, one assumes the existence of a static

Killing vector on the spacetime. The assumption of staticity is a strong one and

renders results of a global nature. As an example of this type of statement one

has the following theorem from Anderson et al. (2002):

Theorem 17.2 (existence of static anti-de Sitter-like spacetimes) Let 


denote a smooth strictly globally static Lorentzian metric of non-negative scalar

curvature on R× S2. Then (R× S2, 
) is the conformal boundary of a complete

strictly globally static vacuum Lorentzian metric on R4 with anti-de Sitter-like

cosmological constant.

A strictly globally static spacetime is a spacetime containing an every-

where timelike vector which is orthogonal to the level sets of a globally defined

time function. The proof of this result relies on the use of the Fefferman-

Graham obstruction tensor; see Fefferman and Graham (1985, 2012). Related

to the above theorem is the rigidity result given in Anderson (2006), in which

it is shown that complete non-singular anti-de Sitter-like spacetimes with a

globally stationary conformal infinity and an asymptotically stationary bulk must

be globally stationary. This result seems to suggest the instability of anti-de

Sitter-like spacetimes, at least for certain types of boundary conditions. This

expectation has been reinforced by the evidence of turbulent instability observed

in numerical simulations of spherically symmetric solutions of the Einstein-scalar

field system with anti-de Sitter-like boundary conditions reported by Bizon and

Rostworowski (2011).

17.5 Further reading

The approach to the construction of anti-de Sitter-like spacetimes discussed in

this chapter has been adapted from the seminal analysis in Friedrich (1995).

Boundary conditions for a range of test fields in the anti-de Sitter spacetime

have been studied in Ishibashi and Wald (2004). General properties of the exact

anti-de Sitter spacetime are examined in detail in Griffiths and Podolský (2009),
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while properties of anti-de Sitter-like spacetimes are discussed in Henneaux and

Teitelboim (1985) and Frances (2005). An issue which has not been touched on in

this chapter is that of the definition of the mass for anti-de Sitter-like spacetimes.

Conformal approaches to this question have been discussed, for example, in

Ashtekar and Magnon (1984) and Ashtekar and Das (2000). Readers interested in

a discussion of the issue of the stability/instability of the anti-de Sitter spacetime

are referred to the reviews by Bizon (2013) and Maliborski and Rostworowski

(2013) and references within.

A considerable part of the interest on anti-de Sitter-like spacetime stems from

the so-called AdS/CFT correspondence; see, for example, Maldacena (1998),

Witten (1998) and Witten and Yau (1999). A good discussion of the issues

involved from a mathematician’s point of view are presented in Anderson

(2005b).
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