S_{p} TRANSFORM AND UNIFORM CONVERGENCE OF LAURENT AND POWER SERIES

BY
S.A. SETTU

Abstract. If the Laurent series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{-n}(|z|>1)
$$

is transformed to

$$
f(z)=\sum_{n=0}^{\infty} \frac{\alpha_{n} p^{n}}{(1-p)^{n}}\left(\frac{1}{p}-z\right)^{n}\left(\left|z-\frac{1}{p}\right|<\frac{1}{p}-1,0<p<1\right),
$$

it is shown that convergence of the former at $z=1$ implies the uniform convergence of the latter on a symmetric arc of $|z-1 / p|=1 / p-1$ not containing $z=1$ and that the uniform convergence of the former over a symmetric arc of $|z|=1$ containing $z=1$ implies uniform convergence of the latter on the entire circle $|z-1 / p|=1 / p-1$.

1. Introduction. Let $f(z)$ be defined by the series

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} z^{-n} \tag{1.1}
\end{equation*}
$$

which is assumed to converge outside the closed disc $|z| \leq 1$. We can write

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} \frac{\alpha_{n} p^{n}}{(1-p)^{n}}\left(\frac{1}{p}-z\right)^{n} \quad \text { for }\left|z-\frac{1}{p}\right|<\frac{1}{p}-1, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{array}{r}
\alpha_{n}=(1-p)^{n} \sum_{k=0}^{\infty}\binom{n+k-1}{n} p^{k} a_{k}, 0<p(\text { fixed })< \\
\left(n=0,\binom{-1}{0}=1\right. \\
(n=\ldots)
\end{array}
$$

We note that if S_{p} is the Meyer-König-Vermes matrix defined by

$$
\left(S_{p}\right)_{n k}=(1-p)^{n}\binom{n+k-1}{n} p^{k}
$$

then

$$
\boldsymbol{\alpha}=s_{p} \boldsymbol{a}
$$

where $\boldsymbol{\alpha}=\left\{\alpha_{0}, \alpha_{1}, \ldots\right\}$ and $\boldsymbol{a}=\left\{a_{0}, a_{1}, \ldots\right\}$.
In this paper we show that an assumption of convergence of (1.1) at the single point $z=1$ implies the uniform convergence of (1.2) on a symmetric arc of $|z-1 / p|=1 / p$ -1 not containing 1 and that the uniform convergence of (1.1) over a symmetric arc of $|z|=1$ containing 1 implies uniform convergence of (1.2) on the entire circle $|z-1 / p|=1 / p-1$.

The present work is motivated by the treatment of the Taylor transform as applied to a power series given by Jakimovski and Meyer-König [2].
2. Results. More explicitly we prove the following two results.

Theorem 1. Assume that $\Sigma_{0}^{\infty} a_{n}$ is convergent and let ψ_{0} be a given real number $\left(0<\psi_{0}<\pi\right)$. Then the power series expansion (1.2) of the function $f(z)$ in (1.1) is uniformly convergent for $z=1 / p-(1 / p-1) e^{i \psi}\left(\psi_{0} \leq \psi \leq 2 \pi-\psi_{0}\right)$.

Theorem 2. Assume that there exists a real number $\varphi_{0}\left(0<\varphi_{0}<\pi\right)$ such that the Laurent series (1.1) is uniformly convergent for $z=e^{i \varphi}\left(-\varphi_{0} \leq \varphi \leq \varphi_{0}\right)$. Then the power series (1.2) is uniformly convergent on the circle $|z-1 / p|=1 / p-1$.

Of these two results, Theorem 1 can be deduced from a generalization of Fatou's theorem (see [5], p. 93) after transforming (1.2) by

$$
\omega=\frac{1-p z}{1-p},
$$

observing that $|\omega|<1$ when $|z-1 / p|<1 / p-1$. We however prove Theorem 1 directly using the same tools to prove Theorem 2 too.
3. Auxiliary results. To describe the procedure we construct a matrix A which transforms the partial sums of (1.1) into the partial sums of (1.2). In this context we assume only that $\boldsymbol{\alpha}=S_{p} \boldsymbol{a}$ exists noting that a necessary and sufficient condition therefor (see [3], p. 272) is

$$
\begin{equation*}
a_{k}=O\left(\frac{1}{k^{n} p^{k}}\right) \quad \text { for fixed } n=0,1, \ldots \text { as } k \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

Let u and v denote points of the circles $|z|=1$ and $|z-1 / p|=1 / p-1$, respectively. We shall use the notation

$$
\begin{align*}
u & =e^{i \varphi}(0 \leq \varphi<2 \pi) \tag{3.2}\\
\beta & =e^{i \psi}(0 \leq \psi<2 \pi) \tag{3.3}\\
v & =\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta ; \quad \text { i.e. } \beta=\frac{1-p v}{1-p} \tag{3.4}
\end{align*}
$$

$$
\begin{align*}
t_{n} & =a_{0}+\frac{a_{1}}{u}+\ldots+\frac{a_{n}}{u^{n}} \tag{3.5}\\
\gamma_{n} & =\alpha_{0}+\alpha_{1} \beta+\ldots+\alpha_{n} \beta^{n}
\end{align*}
$$

and, for $n=0,1, \ldots$ (n fixed $)$,

$$
\begin{equation*}
\eta_{k} \equiv \eta_{k}(n)=(p u)^{k} \sum_{m=0}^{n}\binom{m+k-1}{m}(1-p)^{m} \beta^{m} \quad(k=0,1, \ldots) . \tag{3.6}
\end{equation*}
$$

In the first instance, because of (3.1),
$\left|t_{k} \eta_{k}\right| \leq\left(\left|a_{0}\right|+\ldots+\left|a_{k}\right|\right)\left|\eta_{k}\right| \leq \frac{M}{k^{n+1}} \sum_{m=0}^{n}\binom{m+k-1}{m}(1-p)^{m} \quad(k=1,2, \ldots)$
for a suitable constant M. Consequently

$$
\begin{equation*}
t_{k} \eta_{k} \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.7}
\end{equation*}
$$

Using this fact we can write

$$
\begin{aligned}
\gamma_{n} & =\alpha_{0}+\alpha_{1} \beta+\ldots+\alpha_{n} \beta^{n} \\
& =\sum_{m=0}^{n} \beta^{m}(1-p)^{m} \sum_{k=0}^{\infty}\binom{m+k-1}{m} p^{k} a_{k} \\
& =\sum_{k=0}^{\infty}\left(t_{k}-t_{k-1}\right) \eta_{k} \\
& =\sum_{k=0}^{\infty}\left(\eta_{k}-\eta_{k+1}\right) t_{k} \\
& =\sum_{k=0}^{\infty} a_{n k} t_{k}
\end{aligned}
$$

where

$$
a_{n k}=(p u)^{k} \sum_{m=0}^{n}(1-p)^{m} \beta^{m}\left[\binom{m+k-1}{m}-p u\binom{m+k}{m}\right] .
$$

Rewriting

$$
\begin{align*}
a_{n k}= & (1-p u)(p u)^{k}\binom{n+k}{n}(1-p v)^{n}+(p u)^{k} p(v-u) \tag{3.8}\\
& \times \sum_{m=0}^{n-1}\binom{m+k}{m}(1-p v)^{m} \quad(n, k=0,1, \ldots) .
\end{align*}
$$

This proves that

$$
\begin{equation*}
\boldsymbol{\gamma}=A \boldsymbol{t} \tag{3.9}
\end{equation*}
$$

where $A=A(p, u, v)$ is the matrix with the elements $a_{n k}$. If $u=v=1$, then (3.9) reduces to the well-known relation

$$
\boldsymbol{\sigma}=F \boldsymbol{s}
$$

where

$$
A(p, 1,1)=F=\left(\frac{1-p}{p}\left(S_{p}\right)_{n k+1}\right)
$$

is a regular sequence to sequence matrix (see [4], p. 558).
In the following theorem we establish the convergence preserving nature of the matrix A.

Theorem 3. The matrix $A=A(p, u, v)$ defines a sequence to sequence convergence preserving transformation for each triple (p, u, v) with

$$
0<p<1,|u|=1, v=\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta(|\beta|=1, \beta \neq 1) .
$$

To prove this we need the following lemma.
Lemma 4. Let the real number $p(0<p<1)$ and the complex number

$$
v=\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta \text { with } \beta=e^{i \psi}(0<\psi<2 \pi)
$$

be given. Then
$\omega_{n}=\sum_{k=0}^{\infty} p^{k+1}\left|\sum_{m=0}^{n-1}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right| \leq \frac{1}{|v|-1}+\frac{4}{|v-1|} \quad(n=1,2, \ldots)$.

Proof. We first show that the series which defines ω_{n} is convergent. Since $|(1-p) \beta|$ $=1-p$ we have

$$
\omega_{n} \leq \sum_{m=0}^{n-1}(1-p)^{m} p \sum_{k=0}^{\infty}\binom{m+k}{m} p^{k}=\frac{n p}{1-p} .
$$

Let $\mu=\frac{p}{1-p}$ so that $0<\mu<\infty$. We write

$$
\omega_{n}=\sum_{k=0}^{\infty} p^{k+1}\left|\sum_{m=0}^{n-1}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right|=T_{1}+T_{2} \quad(n=1,2, \ldots)
$$

with

$$
T_{1}=\sum_{k \geq \mu n}, \quad T_{2}=\sum_{k<\mu n} .
$$

Applying Abel's inequality to the innersum of T_{1} we get

$$
T_{1} \leq \frac{2(1-p)^{n-1}}{|1-\beta|} \sum_{k \geq \mu n} p^{k+1}\binom{n+k-1}{k}
$$

$$
\begin{aligned}
& \leq \frac{2 p(1-p)^{n-1}}{|1-\beta|} \sum_{k=0}^{\infty}\binom{n+k-1}{k} p^{k} \\
& =\frac{2 p}{(1-p)|1-\beta|}=\frac{2}{|v-1|} .
\end{aligned}
$$

For T_{2} we have
$T_{2}=\sum_{k<\mu n} p^{k+1}\left|\sum_{m=0}^{\infty}\binom{m+k}{m}(1-p)^{m} \beta^{m}-\sum_{m=n}^{\infty}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right| \leq T_{2}^{\prime}+T_{2}^{\prime \prime}$, where

$$
T_{2}^{\prime}=\sum_{k<\mu n} p^{k+1}\left|\sum_{m=0}^{\infty}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right| \leq \sum_{k=0}^{\infty} \frac{1}{|v|^{k+1}}=\frac{1}{|v|-1},
$$

and

$$
T_{2}^{\prime \prime}=\sum_{k<\mu n} p^{k+1}\left|\sum_{m=n}^{\infty}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right| .
$$

Again applying Abel's inequality to the inner sum of $T_{2}^{\prime \prime}$ we get

$$
\begin{aligned}
T_{2}^{\prime \prime} & \leq \frac{2(1-p)^{n}}{|1-\beta|} \sum_{k<\mu n}\binom{n+k}{k} p^{k+1} \leq \frac{2(1-p)^{n}}{|1-\beta|} p \sum_{k=0}^{\infty}\binom{n+k}{k} p^{k} \\
& =\frac{2 p}{(1-p)|1-\beta|}=\frac{2}{|v-1|} .
\end{aligned}
$$

Hence

$$
\omega_{n} \leq T_{1}+T_{2}^{\prime}+T_{2}^{\prime \prime} \leq \frac{1}{|v|-1}+\frac{4}{|v-1|},
$$

and the lemma is proved.
Proof of Theorem 3. It is enough to show that the matrix A satisfies the well known necessary and sufficient conditions for a matrix to be conservative (see e.g. [1]).

$$
\lim _{n \rightarrow \infty} a_{n k}=\left(1-\frac{u}{v}\right)\left(\frac{u}{v}\right)^{k} \quad(k=0,1, \ldots) .
$$

If $\boldsymbol{a}=\{1,0,0, \ldots\}$, then $\boldsymbol{\alpha}=\{1,0,0, \ldots\}$ and $\boldsymbol{t}=\boldsymbol{\gamma}=\{1,1, \ldots\}$ so that (3.9) gives

$$
\sum_{k=0}^{\infty} a_{n k}=1 \quad(n=0,1,2, \ldots)
$$

Now,

$$
\sum_{k=0}^{\infty}\left|a_{n k}\right| \leq S_{1}+S_{2},
$$

where

$$
S_{1} \leq|1-p u|(1-p)^{n} \sum_{k=0}^{\infty}\binom{n+k}{k} p^{k}=\frac{|1-p u|}{1-p}
$$

and

$$
S_{2} \leq|v-u| \sum_{k=0}^{\infty} p^{k+1}\left|\sum_{m=0}^{n-1}\binom{m+k}{m}(1-p)^{m} \beta^{m}\right| .
$$

By Lemma 4 we get

$$
S_{2} \leq \frac{|v-u|}{|v|-1}+4 \frac{|v-u|}{|v-1|}
$$

and hence we have

$$
\sum_{k=0}^{\infty}\left|a_{n k}\right| \leq \frac{|1-p u|}{1-p}+\frac{|v-u|}{|v|-1}+4 \frac{|v-u|}{|v-1|} \quad(n=0,1 . .) .
$$

Hence Theorem 3.
Since $A(p, u, v)$ is convergence preserving $\boldsymbol{\gamma}=A \boldsymbol{t}$ is convergent. Also

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \gamma_{n} & =\left(1-\frac{u}{v}\right) \sum_{k=0}^{\infty} t_{k}\left(\frac{u}{v}\right)^{k}+\left(\sum_{m=0}^{\infty} a_{m} u^{-m}\right)\left[1-\left(1-\frac{u}{v}\right) \sum_{k=0}^{\infty}\left(\frac{u}{v}\right)^{k}\right] \\
& =\sum_{m=0}^{\infty} a_{m} u^{-m}\left(\frac{u}{v}\right)^{m} \\
& =\sum_{m=0}^{\infty} a_{m} v^{-m} .
\end{aligned}
$$

4. Proof of Theorems 1 and 2. Let us assume that $\Sigma_{0}^{\infty} a_{n}=s$. By Theorem 3 the matrix $A(p, 1, v)$ is convergence preserving for $0<p<1$,

$$
v=\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta \quad(|\beta|=1, \beta \neq 1) .
$$

Therefore $\Sigma_{0}^{\infty} \alpha_{n} \beta^{n}$ converges pointwise on the whole circle $|\beta|=1$. But this convergence is not uniform on the whole circle $|\beta|=1$. To prove this we put

$$
z_{n}=\frac{1}{p}-\left(\frac{1}{p}-1\right) e^{i \pi / n+1}
$$

Now

$$
\left\lvert\, 1-\frac{1}{z_{n}} \sum_{k=0}^{\infty} \frac{1}{\left|z_{n}\right|^{k}}=\frac{\left|z_{n}-1\right|}{\left|z_{n}\right|-1} \rightarrow \infty\right. \text { as } n \rightarrow \infty .
$$

So there exists a sequence $\boldsymbol{s}=\left\{s_{0}, s_{1}, \ldots, s_{n}, \ldots\right\}$ with the properties $s_{n} \rightarrow 0$ and ($1-1 / z_{n}$) $\sum_{k=0}^{\infty} s_{k} z_{n}^{-k}$ not bounded. Define

$$
f(z)=\left(1-\frac{1}{z}\right) \sum_{k=0}^{\infty} s_{k} z^{-k} \quad \text { for }|z|>1
$$

Then

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{-k}, a_{k}=s_{k}-s_{k-1} \quad(k=0,1, \ldots), s_{-1}=0 .
$$

Now $f(1)=\sum_{k=0}^{\infty} a_{k}=0$. If $\boldsymbol{\alpha}=S_{p} a$, then we have

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \frac{\alpha_{k} p^{k}}{(1-p)^{k}}\left(\frac{1}{p}-z\right)^{k} \quad \text { for }\left|z-\frac{1}{p}\right| \leq \frac{1}{p}-1 . \tag{1.2}
\end{equation*}
$$

If this series converges uniformly for $|z-1 / p|=1 / p-1$, then it would be uniformly convergent for $|z-1 / p| \leq 1 / p-1$ and $f(z)$ would be continuous on the disc $|z-1 / p|$ $\leq 1 / p-1$ which contradicts the fact that $\left\{f\left(z_{n}\right)\right\}$ is not bounded.

In other words (1.2) does not converge uniformly on the entirety of its circle of convergence when (1.1) converges for $z=1$. However Theorem 1 holds.

Direct proof of Theorem 1. Let $\sum_{0}^{\infty} a_{n}=s$,

$$
\begin{aligned}
v & =\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta \text { with } \beta=e^{i \psi}(0<\psi<2 \pi), \\
s_{n} & =a_{0}+a_{1}+\ldots+a_{n}
\end{aligned}
$$

and

$$
\gamma_{n}=\alpha_{0}+\alpha_{1} \beta+\ldots+\alpha_{n} \beta^{n} \text { with } \boldsymbol{\alpha}=S_{p} a \quad(n=0,1, \ldots)
$$

Then

$$
\boldsymbol{\gamma}=B \mathbf{s},
$$

where $B=A(p, 1, v)$. The matrix B has the column limits

$$
b_{k}=\left(1-\frac{1}{v}\right)\left(\frac{1}{v}\right)^{k} \quad(k=0,1, \ldots)
$$

and row sum

$$
\sum_{k=0}^{\infty} b_{n k}=1 \quad(n=0,1, \ldots)
$$

Since $\Sigma_{0}^{\infty} b_{k}=1$, we have

$$
\sum_{k=0}^{\infty}\left(b_{n k}-b_{k}\right)=0 \quad(n=0,1, \ldots)
$$

and

$$
\gamma_{n}-\sum_{k=0}^{\infty} b_{k} s_{k}=\sum_{k=0}^{\infty}\left(b_{n k}-b_{k}\right)\left(s_{k}-s\right) \quad(n=0,1, \ldots)
$$

Given $\epsilon>0$, there exist a $K>0$ and a natural number $m=m(\boldsymbol{\epsilon})$ such that

$$
\left|s_{k}-s\right|<K \text { for all } k, \quad\left|s_{k}-s\right|<\epsilon \text { for } k>m .
$$

This yields the estimate

$$
\left|\gamma_{n}-\sum_{k=0}^{\infty} b_{k} s_{k}\right| \leq K \sum_{k=0}^{m}\left|b_{n k}-b_{k}\right|+\epsilon \sum_{k=m+1}^{\infty}\left|b_{n k}-b_{k}\right| .
$$

Now $\lim _{n \rightarrow \infty} b_{n k}=b_{k}$ implies that there exists a natural number $N=N(\epsilon)$ such that

$$
\left|b_{n k}-b_{k}\right|<\epsilon \text { for } n>N \quad \text { and } k=0,1, \ldots, m .
$$

Thus

$$
\left|\gamma_{n}-\sum_{k=0}^{\infty} b_{k} s_{k}\right| \leq K m \epsilon+\epsilon\left(\sum_{k=0}^{\infty}\left|b_{n k}\right|+\sum_{k=0}^{\infty}\left|b_{k}\right|\right) \leq \epsilon\left(K m+5+2 \frac{|v-1|}{|v|-1}\right) .
$$

The factor multiplying ϵ is less than a constant independent of v but depending on ψ_{0} under the restriction $\psi_{0} \leq \psi \leq 2 \pi-\psi_{0}$. Theorem 1 is proved.

Proof of Theorem 2. It is enough to prove this theorem for small values of p and φ_{0}; so we assume in addition that

$$
0<p<\frac{1}{2}, \quad 0<\varphi_{0}<\frac{\pi}{4}
$$

There are uniquely defined numbers v_{0} and $\psi_{0}\left(3 \pi / 2<\psi_{0}<2 \pi\right)$ such that

$$
v_{0}=\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta_{0} \text { with } \beta_{0}=e^{i \psi_{0}}, \quad v_{0}=\left|v_{0}\right| u_{0} \text { with } u_{0}=e^{i \varphi_{0}} .
$$

We put

$$
\begin{gather*}
f(u)=\sum_{n=0}^{\infty} a_{n} u^{-n} \text { with } u=e^{i \varphi} \quad\left(0<|\varphi| \leq \varphi_{0}\right) \tag{4.1}\\
v=\frac{1}{p}-\left(\frac{1}{p}-1\right) \beta \text { with } \beta=e^{i \psi}\left(2 \pi-\psi_{0}>\psi>\psi_{0}\right), \quad \beta \neq 1 \tag{4.2}\\
t_{n}(u)=\sum_{k=0}^{n} a_{k} u^{-k}, \quad \gamma_{n}(v)=\sum_{k=0}^{n} \alpha_{k} \beta^{k} .
\end{gather*}
$$

By hypothesis the series in (4.1) converges uniformly with respect to u in the closed interval $-\varphi_{0} \leq \varphi \leq \varphi_{0}$. We show that

$$
\sum_{n=0}^{\infty} \alpha_{n} \beta^{n}=\lim _{n \rightarrow \infty} \gamma_{n}
$$

exists uniformly for the values of β and v specified in (4.2). For the values u specified in (4.1) we have

$$
\begin{equation*}
\boldsymbol{\gamma}(v)=A(p, u, v) \boldsymbol{t}(u) . \tag{4.4}
\end{equation*}
$$

Connecting now u and v by the relation $u=v /|v|$ and putting

$$
C=A(p, v /|v|, v)
$$

(4.4) reduces to

$$
\boldsymbol{\gamma}(v)=C t\left(\frac{v}{|v|}\right) .
$$

The column limits of the matrix C are

$$
c_{k}=\left(1-\frac{1}{|v|}\right)\left(\frac{1}{|v|}\right)^{k} \quad(k=0,1, \ldots) .
$$

The row sum of C equals 1 and $\sum_{k=0}^{\infty} c_{k}=1$. So we have

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left(c_{n k}-c_{k}\right)=0 \tag{4.5}
\end{equation*}
$$

Now,

$$
\begin{aligned}
f(v) & =\sum_{k=0}^{\infty} a_{k} v^{-k} \\
& =\sum_{k=0}^{\infty}\left[t_{k}\left(\frac{v}{|v|}\right)-t_{k-1}\left(\frac{v}{|v|}\right)\right] \frac{1}{|v|^{k}} \\
& =\left(1-\frac{1}{|v|}\right) \sum_{k=0}^{\infty}\left(\frac{1}{|v|}\right)^{k} t_{k}\left(\frac{v}{|v|}\right) \\
& =\sum_{k=0}^{\infty} c_{k} t_{k}\left(\frac{v}{|v|}\right) .
\end{aligned}
$$

From this and (4.5) it follows that

$$
\gamma_{n}(v)-f(v)=\sum_{k=0}^{\infty}\left(c_{n k}-c_{k}\right)\left[t_{k}\left(\frac{v}{|v|}\right)-f\left(\frac{v}{|v|}\right)\right] .
$$

Given $\epsilon>0$, there exist a constant $K>0$ and a natural number $m=m(\epsilon)$ such that

$$
\begin{array}{ll}
\left|t_{k}\left(\frac{v}{|v|}\right)-f\left(\frac{v}{|v|}\right)\right| \leq K & \text { for all } k \\
\left|t_{k}\left(\frac{v}{|v|}\right)-f\left(\frac{v}{|v|}\right)\right|<\epsilon & \text { for } k>m
\end{array}
$$

where these inequalities are true uniformly for all v under consideration. This yields

$$
\left|\gamma_{n}(v)-f(v)\right| \leq K \sum_{k=0}^{m}\left|c_{n k}-c_{k}\right|+\epsilon \sum_{k=m+1}^{\infty}\left|c_{n k}-c_{k}\right| .
$$

Since $c_{n k} \rightarrow c_{k}$ as $n \rightarrow \infty$, we have a natural number $N=N(\epsilon)$ such that

$$
\left|c_{n k}-c_{k}\right|<\epsilon \text { for } n>N \quad(k=0,1, \ldots, m) .
$$

Thus, for $n>N$,

$$
\begin{aligned}
\left|\gamma_{n}(v)-f(v)\right| & \leq \epsilon K m+\epsilon\left(\sum_{k=0}^{\infty}\left|c_{n k}\right|+\sum_{k=0}^{\infty}\left|c_{k}\right|\right) \\
& =\epsilon\left(K m+1+\sum_{k=0}^{\infty}\left|c_{n k}\right|\right) .
\end{aligned}
$$

Since $|1-p u| \leq 1+p,|v-u|=|v|-1$ and $|v-1| \geq|v|-1$ we have, as in proof of Theorem 3,

$$
\sum_{k=0}^{\infty}\left|c_{n k}\right| \leq 5+\frac{1+p}{1-p} \quad(n=0,1, \ldots)
$$

Hence

$$
\left|\gamma_{n}(v)-f(v)\right| \leq \epsilon\left(6+K m+\frac{1+p}{l-p}\right) \quad \text { for } n>N
$$

Combining with Theorem 1 and the convergence of $\Sigma_{0}^{\infty} \alpha_{n}$ the proof of Theorem 2 is now complete.

Acknowledgement. The author is greatly indebted to Professor M.S. Rangachari for his help in the preparation of the paper.

References

1. G.H. Hardy, Divergent Series, Oxford, 1949.
2. A. Jakimovski and W. Meyer-König, Uniform convergence of power series expansions on the boundary, J. reine angew. Math., 318 (1980), pp. 126-136.
3. W. Meyer-König, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Zeit., 52 (1949), pp. 257-304.
4. P. Vermes, Series to series transformations and analytic continuation by matrix methods, Amer. J. Math. 71 (1949), pp. 541-562.
5. K. Zeller and W. Beekmann, Theorie der Limitierungsverfahren, 2, Aufl., Berlin-Heidelberg-New York, 1970.

Ramanujan Institute
University of Madras
Madras-600 005
India

