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SURJECTIVITY OF LINEAR OPERATORS FROM A
BANACH SPACE INTO ITSELF

DlMOSTHENIS DRIVALIARIS AND NlKOS YANNAKAKIS

We show that linear operators from a Banach space into itself which satisfy some
relaxed strong accretivity conditions are invertible. Moreover, we characterise a par-
ticular class of such operators in the Hilbert space case. By doing so we manage
to answer a problem posed by B. Ricceri, concerning a linear second order partial
differential operator.

l . INTRODUCTION

In [5] Saint Raymond proved the following three theorems, which answer a question
posed by Ricceri in [3].

THEOREM 1 . 1 . Let X be a real Hilbert space and A : X -> X be a iinear
operator. If there exists c > 0 such that

(1) (Ax,x) + ||i4x||||z|| > c\\x\\2, for all i e A",

then A is bounded and invertible.

THEOREM 1 . 2 . Let X be a real Hilbert space and A : X -t X be a linear
operator. If there exist a finite dimensional subspace L of X, a bounded projection P
from X onto L, c > 0 and 7 > 0 such that,

(2) {Ax, x) + \\Ax\\ \\x\\+ y\\PAx\\ \\x\\> c\\x\\2, for allxGX,

then A is bounded and invertible.

and

THEOREM 1 . 3 . Let X be a real Hilbert space and A : X -¥ X be a linear

operator. If there exist a compact operator K : X -»• X and 0 0 such that

(3) (Ax,x) + IMHMI + 11*̂ *1111*11 > CNI2> for all xG X,

then A is bounded and invertible.
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144 D. Drivaliaris and N. Yannakakis [2]

Conditions (1), (2) and (3) are relaxed coercivity conditions. Therefore Theorems
1.1, 1.2 and 1.3 can be thought of as non-coercive generalisations of the Lax-Milgram
Theorem. Note that (1)=>(2)=»(3).

The class of operators satisfying (1) is strictly larger than that of coercive operators.
To see that take any rotation in R2 by an angle 6 larger than ir/2 and strictly less than
7T. Actually all operators A satisfying (1) share a simple geometric property with such
rotations: the angle of x and Ax is uniformly strictly less than n (see [7, Theorem 3.2]).

One can easily see that if an operator A satisfies (1), (2) or (3), then, for some
positive constant a,

||J4X|| > a||x||, for all x <= X.

Thus if one additionally assumes that A is positive (or negative like the rotations in R2 of
the previous paragraph), then Theorems 1.1,1.2 and 1.3 become immediate consequences
of the well-known fact (see for example [1, Theorem 11.2]) that everywhere defined,
positive linear operators which are weakly coercive, that is, which satisfy

lim \\Ax\\ = oo,
IMI-><»

are surjective. Hence the true advantage of Theorems 1.1, 1.2 and 1.3, compared to
already existing results, is that (Ax,x) is allowed to change sign. An example of an
operator A satisfying (1) for which (Ax, x) changes sign can be constructed as follows
(see [7]). Let X = Z2(N), {ei, e?,...} be its standard orthonormal basis, M = span{ei, e2}
and R : M -* M be the rotation by an angle ?r/2 < 9 < n. Then it is easy to see that the
operator A : X -+ X defined by A(xi + x2) = Rx\ + x-i, for all i i 6 M and all i 2 € ML,

satisfies condition (1) and (Ax, x) changes sign.

Our main aim in this paper is to study operators from a Banach space into itself
which satisfy analogues of conditions (1), (2) and (3).

In the first part of Section 2 we shall show that if a bounded linear operator A

satisfies a Banach space version of (1) or (2), then A is invertible. Actually we shall show
that this is true even if in (2) we replace the projection P with a finite rank operator F.

This approach allows us to prove a Banach space analogue of Theorem 1.3 for Banach
spaces which have the approximation property. We must note here that since the crucial
step in the proof in [5, Theorem 1.2] relies on the Hilbert space structure of X it cannot
be generalised to our case (see Remark 2.13). To overcome this difficulty we use an
argument based on Banach's Fixed Point Theorem.

In the second part of Section 2 we shall prove that an unbounded linear operator A

from a Banach space into itself which satisfies an analogue of condition (1) is invertible

if A + tol is surjective, for some positive to-

Finally, in Section 3 we turn our attention to bounded linear operators on a real

Hilbert space which satisfy (1). We show that an operator belongs to this class if and
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[3] Surjectivity of linear operators 145

only if the intersection of its spectrum with the real line is contained in [k, +00), for some

k > 0. That allows us to give an answer to a problem posed by Ricceri in [4, Problem 2].

2. M A I N RESULTS

In what follows X is a real Banach space, || • || is its norm, X* is its dual space and
(•, •) is their duality product. By J : X -> 2X' we shall denote the duality map of X
defined by

J(x) = {*• e X' I (x'.x) = ||x||2 and ||ar'|| = ||x||}.

Recall that a linear operator A : D(A) C X -*• X is called accretive if, for each
x £ D(A), there exists x* € J{x) with (x*,Ax) ^ 0. If additionally the operator A + t0I

is surjective, for some t0 > 0 (equivalently for all t0 > 0), then A is called m-accretive.

As we have already mentioned conditions (1), (2) and (3) are relaxed coercivity
conditions. The counterpart of coercivity for maps from a Banach space into itself is
strong accretivity:

DEFINITION 2.1: Let A : D(A) C. X -+ X be & linear operator. We say that
A is strongly accretive if there exists c > 0 such that, for each x e D(A), there exists
x* e J{x) with

Hence the analogues of conditions (1), (2) and (3) for linear operators from a Banach
space into itself can be formulated as follows:

DEFINITION 2.2: Let A be a linear operator from X into itself. We say that A

satisfies condition (*) if there exists c > 0 such that, for each x € X, there exists x* € J(x)

with

DEFINITION 2.3: Let A be a linear operator from X into itself. We say that A

satisfies condition (•*) if there exist a finite dimensional subspace L of X, a bounded
projection P from X onto L, c > 0 and 7 > 0 such that, for each x G X, there exists
1* € J{x) with

(**) <*'. Ax) + \\Ax\\\\x\\ + j\\PAx\\ \\x\\ 2 c\\x\\2.

and

DEFINITION 2.4: Let A be a linear operator from X into itself. We say that A

satisfies condition (***•) if there exist a compact operator K : X —* X, c> 0 and 7 > 0

such that, for each x € X, there exists x* € J(x) with

(****) (x',Ax) + \\Ax\\\\x\\ +-r\\KAx\\\\x\\ 2 c\\x\\2
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A class of operators, lying between those satisfying (•*) and those satisfying (••*•)
is the following:

DEFINITION 2.5: Let A be a linear operator from X into itself. We say that A
satisfies condition (*•*) if there exist a finite rank operator F : X -> X, c > 0 and 7 > 0
such that, for each x £ X, there exists x* € J(x) with

(*•*) <x',Ax) + ||Ac||||x|| +711^1111*11 ^ c||x||
2

All the conditions defined above are relaxed strong accretivity conditions. It is well-
known that, even nonlinear, continuous strongly accretive operators are surjective (see
for example [1, Theorem 13.1]). We shall prove that bounded linear operators satisfying
one of (*), (**), (***) and (**•*) are also surjective (to be precise, for the last case we
shall additionally assume that X has the approximation property).

We start with operators satisfying (*), (**) and (**•). Since (*) and (**) are special
cases of (***) we shall only deal with the latter.

LEMMA 2 . 6 . Let A be a linear operator satisfying condition (***). Then, for all

P R O O F : If we take x e X, then, for the x* € J(x) corresponding to x by (***), we
have that

c||x |2 ; Ax) + ||Ax|| ||x|| + 7 \\FAx\\ \\x\\ < (2 + 7| |F| |)\\Ax\\ \\x\

and the result follows immediately. D

For the rest of the section we shall denote Ker(F) by M. Since F is a finite rank
operator, M has finite codimension. Thus there exists a finite dimensional subspace N

of X such that X = M ®N.

We continue by showing that if a linear operator A satisfies condition (*•*), then,
for all t > 0, A + tl satisfies condition (***) on M.

LEMMA 2 . 7 . Let A be a linear operator satisfying condition (***). Then, for
each x € M, there exists x* G J(x) such that, for allt>0,

<x', (A + tl)x) + \\{A + tl)x\\ \\x\\ + S\\F(A + tl)x\\ \\x\\ > c||x||2.

P R O O F : Let t > 0. If x e M, then Fx = 0. Thus if x* 6 J(x) is the one

corresponding by (••*) to x, we have that

' , Ax + tx) + \\(A + tl)x\\ \\x\

- t\\x\\

cllxll2,
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[5] Surjectivity of linear operators 147

where the last inequality follows from (**•)• D

Combining Lemma 2.6 and Lemma 2.7 we get:

LEMMA 2 . 8 . Let A be a linear operator satisfying condition (*••). Tien, for all
x e M and allt>0,

Now assume that A is bounded. It is immediate from Lemma 2.6 that A has closed
range. Moreover from Lemma 2.8 we have that, for all t > 0, (A+tI)(M) is closed. Since
N is finite dimensional, (A + tl) (N) is finite dimensional and hence

(A

is closed. So we have:

LEMMA 2 . 9 . Let A be a bounded linear operator satisfying condition (**•).
Then A + tl has closed range, for all t ^ 0.

For the proof of the next proposition, which is the crucial step towards the proof of
the surjectivity of bounded linear operators satisfying (**•), we shall need the following
lemma about the norm of the projections onto a finite codimensional subspace of a Banach
space.

LEMMA 2 . 1 0 . Let X be a Banach space. If M is a closed subspace of X with
codimension n, then there exists a projection Q such that Ker(Q) = M and \\Q\\ ^ 2rc.

P R O O F : We are going to prove the result by induction. For codim(M) = 1 it is easy
to construct a projection Q such that Ker(Q) = M and ||Q|| ^ 2.

Now assume that for any Banach space X and any subspace M of X with
codim(M) = n — 1 there exists a bounded projection Q : X -> X with Ker(<5) = M and

Let X be a Banach space and M be a subspace of X with codim(M) = n. Then
there exist x\,x2, • • •, xn € X linearly independent with

X = M ® spanfi!, x2, • • •, xn}.

Let Mi = M © span-fii}. Then obviously codim(Mi) = n - 1. Therefore, by the
inductive hypothesis, there exists a bounded projection Qi with Ker(Qi) = Mt and
||<3i|| < 2(n - 1). Now let M2 = M © Qi(X). It is obvious that codim(M2) = 1.
Therefore, by the base step of the induction, there exists a bounded projection Q2 with
Ker(Q2) = M2 and ||Q2|| < 2. If Q — Qi+Q2, then it is easy to see that Q is a projection
with Ker(Q) = M and ||Q|| ^ 2n. D

REMARK 2.11. Note that the previous lemma is an immediate consequence of [6, Corol-
lary 11, p. 117]. The reason we give the above proof is that, since our main interest is the
existence of such a projection and not a sharp estimate of its norm, it is much simpler.
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PROPOSITION 2 . 1 2 . Let A be a bounded linear operator satisfying (*••). If,
for some t0 ^ 0, tie subspace (A+t0I)(M) has codimension n, then so does the subspace
{A + tI)(M), for ail t with \t - to| < 6, where 6 = c/((2 + 7||F||)(1 + 2n)\.

PROOF: Since
codim((J4 + t0I){M)) = n,

by Lemma 2.10, we can find a projection Q such that Ker(Q) = (A + t0I)(M) and

IIQH < 2n.
Let y 6 X. Then, for any z 6 X, there exists a unique x € M such that

y + (to - t)z = (A + tol)x + Q{y + {t0 - t)z).

Hence we can define a map T : X -¥ X with Tz = x. We shall show that T is a
contraction. To this end let z\, ^ & X. Prom the above, Lemma 2.8 and the hypothesis
about t we get

\\TZl-Tz2\\ = Urn - s 2 | | <

By Banach's Fixed Point Theorem, T has a unique fixed point, that is, there exists a
unique x € X such that

Tx-x.

Since T takes its values in M, we get that there exists a unique x € M such that

y = {A + tl)x + Q{y + {t0 - t)x).

Since y was arbitrary and the representation is unique we get that

X = (A + tI)(M) 0 Q(X)

and hence

( ) = n. •
REMARK 2.13. We should note here that the above proof is significantly different from
the corresponding one in Saint Raymond's paper [5, Lemma 7]. The reason is that a basic
element in his proof is the existence of the orthogonal complement of (A+tI)(M). In the
Banach space setting one cannot replace this orthogonal complement with an arbitrary
direct summand unless (A + tI)(M) is a complemented subspace, which is not a priori
known.
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[7] Surjectivity of linear operators 149

We are now ready for our main result in the bounded case. Without loss of generality
we may assume that codim(M) = dim(7V) = n.

THEOREM 2 . 1 4 . Let A be a bounded linear operator satisfying (***). Then A

is invertible.

PROOF: The injectivity of A follows from Lemma 2.6. We shall show that A is onto.
For t0 > \\A\\, A + tol is invertible and thus

codim((,4 + tQI)(M)) = n.

Now we can use Proposition 2.12 and get that codim((.<4 + tI)(M)) = n, for any t with

\t — to\ < 6. By repeating this procedure (S is independent of t) we get that

codim(.A(M)) = n.

By the injectivity of A we get that A(M) n A(N) = {0} and dim(A(N)) = n. Since
A{X) - A{M)+A(N) and, by Lemma 2.9, the range of A is closed we get that A{X) = X
and so A is onto. D

As we have already mentioned if a linear operator satisfies condition (*) or condition
(**), then it obviously satisfies (*••) and so we have:

COROLLARY 2 . 1 5 . Let A be a bounded linear operator satisfying (*) or (**).
Tien A is invertible.

We continue by proving that bounded linear operators satisfying condition (****)
are also invertible if X has the approximation property. Recall that a Banach space X
has the approximation property if every compact operator on X is the limit of a sequence
of finite rank operators.

THEOREM 2 . 1 6 . Let X be a Banach space with the approximation property and

A be a bounded linear operator satisfying (****). Then A is invertible.

P R O O F : Since X has the approximation property and K is compact, for any e > 0,
there exists a finite rank operator F such that \\K — F\\ < e. Hence

pfsll-ellzll-cllFarll, for all x € X.

The above inequality and (••**) imply that, for all x e X,

(x\ Ax) + \\Ax\\ \\x\\ + \\FAx\\ \\x\\ > (x\ Ax) + \\Ax\\ \\x\\ + \\KAx\\ \\x\\ - e\\Ax\\ \\x\\

> (x', Ax) + \\Ax\\ \\x\\ + \\KAx\\ \\x\\ - e \\A\\ \\x\\2

>(c-e\\A\\)\\x\\2.

For e < c/||;4|| that immediately implies that A satisfies (*••). So, by Theorem 2.14, A
is invertible. D
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It is straightforward to see that the above results also hold for complex Banach
spaces provided that in the conditions (*), (**), (••*) and (•***) instead of (x*,Ax) we
use Re(x*, Ax).

A natural question that arises is whether conditions (*), (**), (***) and (****) can
imply, as in Saint Raymond's results, that A is automatically bounded. In general the
answer will be no, since not even strongly accretive operators are necessarily bounded.
On the other hand under certain assumptions on X (for example, if X is uniformly
convex) linear accretive operators are bounded (see [2, Theorem 7.50, p. 397]). So we
can reformulate the question as follows: Under which assumptions on X is a linear
operator satisfying one of conditions (*), (**), (*•*) and (****) automatically bounded?

For the rest of this section we shall deal with unbounded operators

A : D{A) CX^X.

We shall show that if such an operator A satisfies condition (•) (the only thing that we
need to change in the definition is that the condition must hold for all x e D(A)) and,
for some t0 > 0, the operator A + tol is surjective, then A is invertible. Note that this
additional hypothesis is exactly the same with the one of m-accretivity.

We start with a lemma analogous to Lemmas 2.6 and 2.8.

LEMMA 2 . 1 7 . Let A : D(A) C X -> X be a linear operator satisfying condition
(*). Tien, for all x € D{A) and ail t ^ 0,

We can now state and prove the main result for the unbounded case.

THEOREM 2 . 1 8 . Let A: D(A) CX -» X be a linear operator satisfying (*). If
A + tol is surjective, for some t0 ^ 0, then A is invertible.

PROOF: By the previous lemma we get that A is injective. Let y € X. Then, for
any z € X, there exists a unique x € D(A) such that

V + (to - t)z =(A + tol)x.

Hence as in the proof of Theorem 2.14 we can define T : X -¥ X by Tz = x and use
Lemma 2.17 to show that T is a contraction. So, by Banach's Fixed Point Theorem, there
exists a unique x G D(A) such that Tx = x. Thus the operator A + tl is also surjective,
for all t with \t - to\ < 6 = c/2. Continuing this procedure (again <5 is independent oft)
we get that A is surjective. Using again the previous lemma we also get that the inverse
of A is bounded. 0

If both X and X* are uniformly convex then, not necessarily linear, weakly coercive
and m-accretive operators are surjective (see [1, Theorem 13.4]). Theorem 2.18 allows us
to get an easy proof of that result (without any restrictions on X) for linear operators.
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[9] Surjectivity of linear operators 151

COROLLARY 2 . 1 9 . Let A : D(A) C X -> X be a linear, weakly coercive, m-
accretive operator. Then A is invertible.

PROOF: Obviously, since A is linear, its weak coercivity implies that there exists
c > 0 such that ||Ar|| ^ c||:r||, for all x G X, Combining that with the accretivity of A
we immediately get that A satisfies (*). Since the m-accretivity of A implies that A + t0I
is surjective, for some to ̂  0, the result follows from Theorem 2.18. D

Note that again the results also hold for complex Banach spaces if we replace (x*, Ax)
with Re{x*,Ax).

Recall that, as we have already mentioned in the Introduction, the main advantage of
Theorems 1.1, 1.2 and 1.3, compared to other existing surjectivity results, is that (Ax, x)
is allowed to change sign. This is the case in the next simple example of a differential
operator A which satisfies the hypotheses of Theorem 2.18.

EXAMPLE 2.20. Let 1 < p < oo and A G R with A2 < 1/2 and let

A : D(A) C 2/(0,1) -> 2/(0,1)

with
D(A) = {x G Wlj>(0,1) | x(0) = 0}

defined by
Ax = x' - X2x, for all x G D(A).

Denote the usual norm of 1/(0,1) by || • ||. Note that ||x'|| ^ ||x||, for any x G D{A).
With this norm the duality map of 2/(0,1) is single valued. In particular, for all x G
1/(0,1),

r 2

Hence we have that

and obviously (j(x),Ax) may change sign.

On the other hand

Thus

) , Ax) + ||Ar|| \\x\\ > - ~ - 2 \x{l)\p + (1 - 2A2)||z||2

with c = 1 - 2A2 > 0.
Finally, it is known that the Cauchy problem

*' = / , x(0) =
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has a unique solution x € D(A), for any / 6 1^(0,1). Hence for t0 = A2 the operator
A + tol is surjective. Thus A satisfies the hypotheses of Theorem 2.18.

3. CHARACTERISATIONS OF OPERATORS SATISFYING CONDITION (1).

In this section we shall discuss bounded linear operators on a real Hilbert space
which satisfy condition (1). By cr(A) we denote the spectrum of an operator A.

PROPOSITION 3 . 1 . Let X be a real Hilbert space and A : X ->• X be a
bounded linear operator. The following are equivalent:

(i) A satisfies condition (1).

(ii) (a) There exists a > 0 such that ||Ar|| ^ a||i||, for all x € X.
(b) There exists 0 > - 1 such that

»f t f o r a a^°
(iii) There exists L > 0 such that \\Ax + tx\\ ^ L\\x\\, for all x € X and all

t > 0 .

(iv) A + tl is invertible, for allt^O.

(v) There exists k>0 such that <r(A) n R C [A:, +oo).

PROOF: (i)<=>(ii): S e e [7i Theorem 3.2].
(i)=>(iii): This is [5, Lemma 5] (with V = {0}).
(iii)=>(iv): This is [5, Lemma 7] (again with V = {0}).
(iv)=>-(iii): Assume that (iii) does not hold. Then there exist a sequence of positive real
numbers {fn}n€N and a sequence {in}n6N of elements of X with | | i n | | = 1 such that

for all n 6 N. It is obvious that {tn}ngN is bounded by ||.A|| + 1 and hence, without loss
of generality, we may assume that there exists io ^ 0 such that lim tn = tQ as n -* oo.
But then, since

we have

which is a contradiction since A + tol is invertible.
(iv)4^(v): Obvious.
(iii)=»(i): Assume that (i) does not hold. Then there exists a sequence {in}neN of
elements of X with | | i n | | = 1 and

(4) 0 ( , n ) \ \ n \ \ ^ ,
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for all n € N. By (iii) and since A is bounded we have that

-\\A\\^(Axn,xn)^--L,
n

for all n € N. Hence by passing to a subsequence, which for simplicity we denote again
by {zn}n€N, we get that there exists t0 > 0 such that

lim (Axn,xn) = —to < 0.
U-+0O

Using again (4) we also get that lim ||Axn|| = t0 as n —• oo. Therefore we have that

By letting n —̂  oo we get that lim||(A+t0I)xn || = 0 which is obviously a contradiction. D

REMARK 3.2. For finite dimensional X the equivalence (i)«*(v) was proved in [7, The-
orem 3.1].

The next proposition shows that if we additionally assume that A is symmetric, then
condition (1) is equivalent to A being coercive.

PROPOSITION 3 . 3 . Let A" be a real Hilbert space and A : X -> X be a
symmetric operator. Then A satisfies (1) if and only if A is coercive.

P R O O F : It is obvious that any coercive operator satisfies (1). Conversely assume
that A satisfies (1). By Proposition 3.1 we get that

a(A)r\RC [ifc,+oo),

for some k > 0. Thus, since A is symmetric,

k < inf (Ax, x)

and hence A is coercive. D

Using the above proposition we can give an answer to a problem posed by Ricceri
in [4, Problem 2]:

PROBLEM 3.4. Let fi be a bounded open set in R" and let a 6 L°°(Q). Consider #0'(f2)
with its usual norm. Find necessary and sufficient conditions in order that the quantity

(5) inf / / (|Vu|2 + a[x)\u\2)dx + sup f f (VuVu + a{x)uv)dx ) 1
INI=1Un IMI=i\./n /)

is strictly positive.

We have the following:
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PROPOSITION 3 . 5 . IfQ and a are as above then (5) is strictly positive if and

only if the quantity

is strictly positive.

PROOF: Let A : HQ(Q,) -»• HQ(Q) be the operator defined by

(Au, v)= I
Jo.

+ a(x)uv)dx, for all u, v € #o(fi).

Obviously A is symmetric. It is immediate that the quantity (5) is strictly positive if and
only if A satisfies (1). But since A is symmetric, by Proposition 3.3, it satisfies (1) if and
only if it is coercive. Hence (5) is strictly positive if and only if the quantity

is strictly positive.
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