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Galois module structure of square power
classes for biquadratic extensions
Frank Chemotti, Ján Mináč, Andrew Schultz and John Swallow
Abstract. For a Galois extension K/F with char(K) ≠ 2 and Gal(K/F) ≃ Z/2Z⊕ Z/2Z, we
determine the F2[Gal(K/F)]-module structure of K×/K×2 . Although there are an infinite num-
ber of (pairwise nonisomorphic) indecomposable F2[Z/2Z⊕ Z/2Z]-modules, our decomposition
includes at most nine indecomposable types. This paper marks the first time that the Galois module
structure of power classes of a field has been fully determined when the modular representation
theory allows for an infinite number of indecomposable types.

1 Introduction

1.1 Background and motivation

Let K be a field, and write ξp for a primitive pth root of unity. We write Ksep for
a separable closure of K, and K(p) for the maximal p-extension within Ksep. Each
of these extensions is Galois. The absolute Galois group of K is the group GK ∶=
Gal(Ksep/K). The group GK(p) ∶= Gal(K(p)/K) is the maximal pro-p quotient of GK .
For convenience, we will call GK(p) the absolute p-Galois group of K. One of the major
open problems in Galois theory is to determine those profinite groups G for which
there exists some field K with GK ≃ G, i.e., to distinguish absolute Galois groups within
the class of profinite groups. This problem is very difficult. The analogous question
for pro-p groups—to distinguish absolute p-Galois groups within the class of pro-p
groups—is also unsolved and extremely difficult.

How does one look for those properties that distinguish absolute p-Galois groups
from the broader class of pro-p groups? To motivate the perspective pursued in this
paper, note that since GK(p) is a pro-p group, it is natural to study it recursively
through its Frattini subgroup and its quotient. This quotient is the maximal elementary
p-abelian quotient of GK(p), which by Kummer theory (assuming ξp ∈ K) corre-
sponds to J(K) ∶= K×/K×p . In the case that K is itself a Galois extension of a field
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F, one then has a natural action of Gal(K/F) on J(K). (Throughout the remainder
of this discussion, we will assume that Gal(K/F) is a p-group, just to stay firmly
planted in the context of p-groups.) One field-theoretic lens for studying GK(p),
therefore, is to determine the structure of J(K) as a module over Fp[Gal(K/F)]. It
is worth noting that the submodules of J(K) are in bijection with the elementary
p-abelian extensions of K that are additionally Galois over F (see [31]), again assuming
ξp ∈ K.

Given that the modular representation theory of Fp[Gal(K/F)] is most tractable
when Gal(K/F) is cyclic, this is a natural place to begin. Some early work by Borevič
and Fadeev (see [7, 12]) examined the module structure of J(K) when K is a local
field and Gal(K/F) ≃ Z/pZ using local class field theory. Subsequently, Mináč and
Swallow [26] showed that the module J(K) can be computed when Gal(K/F) ≃ Z/pZ
assuming only ξp ∈ K and without such heavy machinery.

The surprise from this result is twofold. First, despite the fact that the field K
is completely general, the Fp[Gal(K/F)]-module J(K) is far more stratified than a
“random” Fp[Z/pZ]-module: whereas a general Fp[Z/pZ]-module can have sum-
mands drawn from any one of p possible isomorphism types, the decomposition of
J(K) as an Fp[Gal(K/F)]-module involves at most three isomorphism classes of
indecomposable summands (free cyclic modules, trivial cyclic modules, and at most
one cyclic module of dimension 2). The second surprise comes from the proof of the
result itself. Although this decomposition requires a lot of careful work, the machinery
needed for the proof is actually quite elementary. Indeed, the key theoretical tool in
the proof is Hilbert’s Satz 90.

The benefit of an elementary approach to the decomposition of J(K) when
Gal(K/F) ≃ Z/pZ and ξp ∈ K is not just that it lets one compute this module for
arbitrary K, but also that it provides a road map for how one might generalize this
decomposition to a broader class of Galois modules. Indeed, generalizations of this
type have been carried out in a variety of contexts. In [23], three of the authors gave the
decomposition of J(K) whenever Gal(K/F) ≃ Z/pnZ. Looking past power classes,
observe that when i = 1 and ξp ∈ K, we have H i(GK(p),Fp) ≃ K×/K×p as Galois
modules, so higher cohomology groups provide a new family of Galois modules to
investigate. Using the connection between Milnor K-theory and Galois cohomology—
together with the generalization of Hilbert 90 to this context—two of the authors and
Lemire gave a decomposition of the Galois cohomology groups H i(GK(p),Fp) in
[20] under the assumption that Gal(K/F) ≃ Z/pZ and ξp ∈ K. Some partial results
for the structure of H i(GK(p),Fp) when Gal(K/F) ≃ Z/pnZ are given in [19].
Generalizations to the case where K is characteristic p (but Gal(K/F) is still assumed
to be a cyclic p-group) have also been explored in [5, 6, 25, 29].

As with the original decomposition of J(K) in [26], these subsequent module
decompositions contain far fewer isomorphism classes of indecomposables than one
might expect a priori. These stratified decompositions have, in turn, been translated
into properties that distinguish absolute p-Galois groups within the larger class of pro-
p groups. For example, using the structure of J(K), a variety of automatic realization
and realization multiplicity results have been proved (see [5, 8, 24, 27, 29]). The module
structure for cohomology groups computed in [20] was used in [4] to find a number
of pro-p groups that are not absolute p-Galois groups.
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It would be natural to assume that the previous module computations are possible
because the modular representation theory for the group ringFp[Gal(K/F)] is simple
when Gal(K/F) is cyclic—namely, in this case, there are ∣Gal(K/F)∣ isomorphism
classes of indecomposables, and each of them is cyclic. In contrast, if G is a noncyclic
elementary p-abelian group, then there are infinitely many isomorphism classes of
indecomposable Fp[G]-modules (and often it is impossible to give a full classification
of indecomposables). There has been some work which provides partial information
about Galois modules in these more complicated settings, recovering information
about the Socle series or arguing that the modules are constant Jordan type in special
cases [1, 11, 28]. However, these modules were not determined completely.

In this paper, we provide a decomposition for J(K) as an F2[Gal(K/F)]-module
when Gal(K/F) ≃ Z/2Z⊕Z/2Z, without any restriction on K other than char(K) ≠
2. The decomposition follows the two themes that have arisen in the context of cyclic
Galois groups: the module structure is far more stratified than one would expect for
a general module (across all fields K, the summands are drawn from at most nine
indecomposable types), and the decomposition can be determined using relatively
concrete techniques and the assistance of Hilbert 90 (see [10] for a discussion on
how one interprets Hilbert 90 for biquadratic extensions). Undoubtedly, this stratified
decomposition—both the appearance of some summand types and the exclusion of
others—can be translated into new and exciting group-theoretic properties of absolute
2-Galois groups. The authors are currently looking into such results.

A decomposition of J(K) when Gal(K/F) ≃ Z/2Z⊕Z/2Z was completed by the
first, second, and fourth authors in 2005 using more technical machinery. (This
previous work is not publicly available, but we believe that the results and exposition
in the current article supersede and enhance the 2005 work.) A deeper dive into the
module from this perspective was explored in [13] under the joint supervision of
Minač and Swallow. The impetus for revisiting this problem using more ubiquitous
tools was to give greater insight into how decompositions for J(K) (and its ilk)
could be carried out when Gal(K/F) is some other elementary p-abelian group. This
approach has already met with success: it has allowed us to exclude one summand
type that appeared in the original decomposition from 2005, and it inspired the recent
decomposition of the parameterizing space of elementary p-abelian extensions of K as
a module overFp[Gal(K/F)]whenever GF(p) is a free, finitely generated pro-p group
and Gal(K/F) is any finite p-group (see the remark after Theorem 1.1). We are hopeful
that the techniques we develop here can inspire the next steps toward investigations
of a broader class of elementary p-abelian Galois modules.

1.2 Statement of the main result

We first set terminology that will hold for the rest of the paper. Suppose that F is a field
with char(F) ≠ 2 and that K/F is an extension with G ∶= Gal(K/F) ≃ Z/2Z⊕Z/2Z.
Let a1 , a2 ∈ F be given so that K = F(√a1 ,√a2), and let σ1 , σ2 ∈ Gal(K/F) be their
duals; that is, we have σi(

√a j) = (−1)δ i j√a j . For i ∈ {1, 2}, we define K i = F(√a i).
Write H i for the subgroup of Gal(K/F) which fixes elements in K i , and G i for the
corresponding quotient group: G i ∶= Gal(K i/F) = {id, σi}. In the same spirit, write
K3 = F(√a1a2), denote the subgroup of Gal(K/F) which fixes K3 as H3, and use
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Figure 1: The lattice of fields for K/F, with corresponding Galois groups.

G3 for the corresponding quotient G/H3 = Gal(K3/F). To round out the notation,
let H0 = {id} (the elements which fix the extension K/F) and H4 = Gal(K/F) (the
elements which fix the extension F/F), and use G0 and G4 for their quotients. (See
Figure 1.)

In our result below, we use Ω−n and Ωn to denote certain indecomposable modules
of dimension 2n + 1; more information on these modules can be found in Section 2.

Theorem 1.1 Suppose that char(K) ≠ 2 and that Gal(K/F) ≃ Z/2Z⊕Z/2Z. Let
J(K) = K×/K×2. Then, as an F2[Gal(K/F)]-module, we have

J(K) ≃ X ⊕ Y0 ⊕ Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕ Z1 ⊕ Z2 ,

where
• X is isomorphic to one of the following: {0},F2 ,F2 ⊕ F2 , Ω−1 , Ω−2 , or Ω−1 ⊕ Ω−1;
• for each i ∈ {0, 1, 2, 3, 4}, the summand Yi is a direct sum of modules isomorphic to
F2[G i]; and

• for each i ∈ {1, 2}, the summand Z i is a direct sum of modules isomorphic to Ω i .
Remark 1.2 When char(K) = 2, elementary 2-abelian extensions of K are parame-
terized by F2-subspaces of K/℘K, where ℘K = {k2 − k ∶ k ∈ K}. It is therefore natural
to ask whether K/℘(K) can be decomposed as an F2[Gal(K/F)]-module as well. The
answer is a resounding “yes.” Indeed, when p is any prime number and char(K) = p,
the thesis [14] gives the structure of K/{kp − k ∶ k ∈ K} as an Fp[Gal(K/F)]-module
whenever Gal(K/F) ≃ Z/pZ⊕Z/pZ. This decomposition reveals that the only non-
free summand is isomorphic to Ω−2

Gal(K/F). This result is extended considerably in
the forthcoming paper [15]: for any prime p and any Galois extension K/F so that
Gal(K/F) is a finite p-group, if GF(p) is a free pro-p group that is finitely generated,
then the parameterizing space of elementary p-abelian extensions of K decomposes
into a free summand and a single summand isomorphic to Ω−2

Gal(K/F).

Theorem 1.1 helps give new insight into the question of what distinguishes absolute
2-Galois groups from the broader class of pro-2 groups. By equivariant Kummer
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theory, we know that J(K) is dual to the maximal elementary 2-abelian quotient of
GK(2). Theorem 1.1 (together with the main result of [14] to address the characteristic
2 case) tells us that whenever G is the absolute 2-Galois group of a field F, then for
every continuous surjection G ↠ Z/2Z⊕Z/2Z, the maximal elementary p-abelian
quotient of the kernel of this surjection has a particular module structure attached
to it.

Alternatively, one could attempt to use this result to uncover specific information
about embedding problems over Z/2Z⊕Z/2Z extensions. To do this, one needs
a dictionary that translates module- and field-theoretic information associated to
submodules of J(K) into structural properties of the Galois groups to which they
correspond. Such a dictionary already exists in the case where Gal(K/F) ≃ Z/pZ (see
[29, 31]) and has been used to great effect to show how the Galois module structure of
J(K) in this case reveals distinguishing properties of absolute p-Galois groups (e.g.,
automatic realization results that one would not expect from group theory alone; see
[24, 27, 29]).

Indeed, such a dictionary in the biquadratic case can be used to calculate all
information about J(K) simultaneously: for a given biquadratic extension K/F,
one creates a pro-2 extension L/F by defining L = K(√γ ∶ γ ∈ J(K)), and the
aforementioned dictionary would allow us to compute Gal(L/F). This would give
an important invariant attached to any biquadratic extension of F, and exhibit
some critical distinctions between absolute 2-Galois groups and the larger class of
pro-2 groups. The authors of this manuscript are already working to provide this
dictionary, an effort that should produce yet more explicit manifestations for the
“specialness” of absolute 2-Galois groups.

1.3 Outline of the paper

In Section 2, we review some basic facts concerning modules over F2[Z/2Z⊕Z/2Z].
Section 3 is devoted to producing a “large” module whose fixed part is the “obvious”
component [F×] within J(K)G ; the key is to give a filtration of [F×] that is sensitive
to image subspaces coming from particular elements of F2[G]. Section 4 aims to find
a module whose fixed part spans a complement to [F×] in J(K)G . This requires a
deeper understanding of how J(K)G behaves under the norm maps associated to the
intermediate extensions K/K i (for i ∈ {1, 2, 3}). The proof of Lemma 4.6 gives our
first appearance of a Hilbert 90 result for biquadratic extensions. Section 5 has another
result related to Hilbert 90 for biquadratic extensions (Lemma 5.1), as well as the proof
of Theorem 1.1. In Section 6, we discuss the realizability of some of the possibilities for
the X summand in terms of the solvability (or nonsolvability) of particular embedding
problems.

2 A primer in diagrammatic thinking in module theory

We will use G to denote the Klein 4-group with generators σ1 and σ2. When M is
an F2[G]-module, we assume that M’s structure is multiplicative, so that the module
action is written exponentially. Despite this, if U , V are submodules of a larger
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σ 2
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β1
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σ 2

1
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σ1
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γ1 γ2
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σ1

Figure 2: A sampling of linear equations. On the left, we have the relation α1+σ2 = α1 ; in the
middle, we have the simultaneous equations in β and β1 given by β1+σ1 = β1+σ2 = β1 ; and on
the right, we have the simultaneous equations in γ, γ1 , γ2 given by γ1+σ2 = γ1 and γ1+σ1 = γ2 .

F2[G]-module W, we will still write U + V for the set {uv ∶ u ∈ U , v ∈ V}, and we
will use U ⊕ V to indicate this set when U ∩ V is trivial.

Throughout this paper, we will be considering the solvability of certain systems of
equations within various F2[G]-modules. Although one could of course write these
systems out, it will often be convenient to have graphical representations for the
equations. We adopt the convention that an arrow between elements denotes that one
is the image of another through some given element of F2[G], with the direction of the
arrow indicating the acting element from F2[G]. If the arrow points down and to the
left, this indicates that the bottom element is the image of the upper element under
1 + σ2, and likewise if the arrow points down and to the right, this means the lower
element is the image of the upper element under 1 + σ1. In the event that the action of
1 + σ1 and 1 + σ2 is the same on a given element, then we write the image immediately
below, and use two bent arrows to signify the equality of the two actions. Figure 2 gives
some basic examples.

Since these diagrams represent simultaneous linear equations in the module, we
will say that a solution to a system of equations is a solution to the corresponding
diagram; if we have some fixed values for particular parameters in a system of
equations, and there exist values for the remaining parameters so that the underlying
system is solved, then we will say that the diagram is solvable for those (original) fixed
values. For example, to say that the diagram on the left side of Figure 2 is solvable for
some particular α1 is equivalent to saying that α1 is in the image of 1 + σ1.

Our decomposition will not require us to have a classification of indecomposable
F2[G]-modules, but for the reader’s benefit, we review some basic information about
these modules. For a full treatment, the reader can consult [3, Theorem 4.3.3].
There are seven ideals in the ring F2[Z/2Z⊕Z/2Z], and hence six cyclic, nontrivial
indecomposable submodule classes. Aside from the even-dimensional cyclic modules,
there are also families of indecomposable even-dimensional F2[G]-modules that
correspond to certain rational canonical form matrices. These will not appear in
our decomposition. There are also odd-dimensional indecomposableF2[G]-modules:
for each odd number 2n + 1 with n ≥ 1, there are two irreducible F2[G]-modules of
dimension n, denoted Ωn and Ω−n . As it happens, our decomposition of J(K) will
only require the cyclic modules we have already introduced together with Ω1 , Ω2 , Ω−1,
and Ω−2. We will need formal definitions for these latter modules, but there is no
additional cost to define Ωn and Ω−n in general. Using our depiction scheme, these
modules are shown in Figure 3.
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Figure 3: The two indecomposable F2[G]-modules of odd dimension 2n + 1: Ω−n (depicted
above) and Ωn (depicted below). Although it is not explicit in the diagram, each of the β i and
δ i is fixed by the action of G.

One key fact we will use aboutF2[G]-module is that we can detect independence of
twoF2[G]-modules by examining the independence of their fixed parts. We follow the
standard convention of writing MG for the fixed submodule of an F2[G]-module M.

Lemma 2.1 Suppose that M and N are submodules of a larger F2[G]-module W. Then
M ∩ N = {1} if and only if MG ∩ NG = {1}.

Proof Of course, if M ∩ N = {1}, then MG ∩ NG = {1} as well. Suppose, then, that
MG ∩ NG = {1}, and let w ∈ M ∩ N be given. If w is nontrivial, then ⟨w⟩ is isomorphic
to precisely one of the following: F2, F2[G1], F2[G2], F2[G3], Ω−1, or F2[G]. In the
first case, we have w ∈ WG , and so w ∈ MG ∩ NG = {1}; this is a contraction. If either
⟨w⟩ ≃ F2[G1], ⟨w⟩ ≃ F2[G3], or ⟨w⟩ ≃ Ω−1, then w1+σ1 is a nontrivial element in WG ;
but this again leads to a contradiction, since then we again have w1+σ1 ∈ MG ∩ NG =
{1}. If ⟨w⟩ ≃ F2[G2], then w1+σ2 is the nontrivial element in WG , which leads to a
contradiction, and if ⟨w⟩ ≃ F2[G], then the contradictory nontrivial element of WG

is w(1+σ1)(1+σ2). ∎

3 A maximal submodule with fixed part [F×]

In Section 2, we saw that fixed submodules play an important role in determining
independence among F2[G]-modules. Of course, the most natural fixed submodule
of J(K) is [F×]. Our objective in this section will be to find a “sufficiently large”
submodule Ĵ of J(K) for which ĴG = [F×]. For the purposes of the decomposition
that we are building, being “sufficiently large” will mean that Ĵ contains solutions to
certain systems of equations, assuming such equations have solutions within the full
module J(K).

In a certain sense, we are most interested in finding free summands—by which
we mean free over F2[G i] for some i ∈ {0, 1, 2, 3, 4}—with the general philosophy
that larger submodules are preferable. Hence, primary preference goes to free (cyclic)
F2[G]-modules, and secondary preference goes to free (cyclic) F2[G i]-modules for
i ∈ {1, 2, 3}; for concreteness, we give preference to i = 1 over i = 2, and i = 2 over i = 3.
We finish with free F2[G4]-modules (i.e., trivial modules).
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[k]

[k]1+σ2 [k]1+σ1

[ f ]

Diagram for A

[γ1] [γ2]

[ f ][1] [1]

Diagram for V

[γ]

[1] [ f ]

Diagram for B

[γ]

[ f ] [1]

Diagram for C

[γ]

[ f ]

Diagram for D

Figure 4: Diagrams that represent the various systems of equations that are solvable in order
for [ f ] to be an element of the subspaces A , V , B, C , or D .

The issue in pursuing this agenda is that there are potential interrelations between
these free modules. For example, suppose a free cyclic F2[G1]-module ⟨[γ1]⟩ and a
free cyclic F2[G2]-module ⟨[γ2]⟩ share the same fixed submodule ⟨[ f ]⟩. This means
that [ f ], [γ1], and [γ2] satisfy the system of equations

[γ1] [γ2]

[ f ][1] [1].

Hence, in our pursuit of free submodules, we are obliged to look for solutions to this
type of system and ensure our decomposition of [F×] captures these elements.

With all this in mind, let us move toward statements that are more precise. In
Figure 4, we introduce five subspaces of [F×] that capture the ideas we alluded to
in the previous paragraphs. We denote these spaces A , V , B, C , and D . For M ∈
{A , V , B, C , D}, the space M is the set of all [ f ] ∈ [F×] for which the correspond-
ing diagram from Figure 4 is solvable for [ f ]. For example, an element [ f ] ∈ [F×] is
an element of A if and only if [ f ] ∈ [NK/F(K×)] (since NK/F is given by applying
(1 + σ1)(1 + σ2)).

It is readily apparent that A ⊆ V , and furthermore that V is a subspace of both B
and C . We just observed that B ∩C = V . Continuing in the theme of being careful
about interrelations that exist between these subspaces, the following lemma considers
how elements of D are related to elements from B +C .
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Lemma 3.1 Let B, C , and D be defined as in Figure 4. Then [b][c] ∈ (B +C ) ∩D
if and only if

[γ1] [γ2] [γ3]

[b] [c][1] [1](3.1)

is solvable for some [γ1], [γ2], [γ3] ∈ J(K).

Proof Suppose first that equation (3.1) holds. From this, we see that

([γ1][γ2][γ3])1+σ2 = [1][b][c],

([γ1][γ2][γ3])1+σ1 = [b][c][1].

Hence, [b][c] ∈ (B +C ) ∩D .
For the other direction, suppose there exists [γ] ∈ J(K) so that the diagram for D

holds with [γ] and [ f ] = [b][c]. Since [b] ∈ B and [c] ∈ C , we also have elements
[γL], [γR] ∈ J(K) so that [γL] and [b] satisfy the diagram for B, and [γR] and [c]
satisfy the diagram for C . From these relations, we find that equation (3.1) is satisfied
with [γ1] = [γL], [γ2] = [γL][γ][γR], and [γ3] = [γR]. ∎

Notice that if [ f ] and [ f̂ ] are elements of V (with corresponding elements
[γL], [γR] solving the diagram with [ f ], and [γ̂L], [γ̂R] solving the diagram for [ f̂ ]),
then equation (3.1) is solvable for [b] = [ f ] and [c] = [ f̂ ]:

[γL] [γR][γ̂L] [γ̂R]

[ f ] [ f̂ ][1] [1].

Hence, we will be particularly interested in understanding solutions to equation (3.1)
that come from outside V . The following lemma characterizes such solutions.

Lemma 3.2 Suppose that B is a complement to V within B, and that C is a comple-
ment to V within C . Define subspaces BW of B and CW of C by

BW = {[b] ∈ B ∶ ∃[c] ∈ C so that equation (3.1) is solvable},
CW = {[c] ∈ C ∶ ∃[b] ∈ B so that equation (3.1) is solvable}.

Then there exists an F2-linear bijection ϕW ∶ BW → CW which takes each [b] ∈ BW to
the unique [c] ∈ CW for which equation (3.1) is solvable for [b] and [c].

Proof That BW and CW are subspaces follows since equation (3.1) is linear. Now, we
claim that, for each [b] ∈ BW , there exists a unique [c] ∈ CW for which the equations
represented by equation (3.1) are solvable. Suppose instead we had some [b] ∈ BW
so that there exist [c], [ĉ] ∈ CW which make equation (3.1) solvable; we will write
[γ1], [γ2], [γ3] for the additional terms that solve the system with [b] and [c], and
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we will write [γ1], [γ̂2], [γ̂3] for the additional terms that solve the system with [b]
and [ĉ]. By multiplying the two systems, we are left with

[γ1]2 [γ2][γ̂2] [γ3][γ̂3]

[b]2 [c][ĉ][1] [1]

and so we see that [c][ĉ] ∈ V . However, since [c] and [ĉ] are contained in a comple-
ment C of V within C , this implies [c][ĉ] = [1]. Hence, [c] = [ĉ].

The same argument, of course, shows that, for a given [c] ∈ CW , there exists a
unique [b] ∈ BW for which equation (3.1) is solvable. We define ϕW as the function
which associates to each [b] ∈ BW its corresponding [c] ∈ CW . The fact that the
equations represented by equation (3.1) are linear implies that ϕW is linear as well,
and hence an isomorphism of F2-spaces. ∎

We are now prepared to state and prove the main result in this section.

Theorem 3.3 There exists a submodule Ĵ of J(K) so that ĴG = [F×], and for which

Ĵ ≃ YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC ⊕ YD ⊕ YF ,

where
• YA is a direct sum of submodules isomorphic to F2[G];
• YV is a direct sum of submodules isomorphic to Ω1;
• YW is a direct sum of submodules isomorphic to Ω2;
• YB is a direct sum of submodules isomorphic to F2[G1];
• YC is a direct sum of submodules isomorphic to F2[G2];
• YD is a direct sum of submodules isomorphic to F2[G3]; and
• YF is a direct sum of submodules isomorphic to F2.

Proof Choose A to be an F2-basis for A . By the definition of A , for each [ f ] ∈ A,
there exists some [γ f ] ∈ [K×] so that [NK/F(γ f )] = [ f ]. We define M[ f ] ∶= ⟨[γ f ]⟩,
and observe that M[ f ] ≃ F2[G] and MG

[ f ] = ⟨[ f ]⟩. Let YA = ∑[ f ]∈A M[ f ] . Observe
that YA = ⊕[ f ]∈A M[ f ] by Lemma 2.1, and that Y G

A = ⊕[ f ]∈A⟨[ f ]⟩ = ⟨A⟩ = A by
construction.

LetV be anF2-basis for a complement of A in V . By definition of V , for each [ f ] ∈
V, we can choose [γ1, f ], [γ2, f ] ∈ [K×] so that, for {i , j} = {1, 2}, we have [γ i , f ]1+σ i =
[ f ] and [γ i , f ]1+σ j = [1]. For each [ f ] ∈ V, we define M[ f ] ∶= ⟨[γ1, f ], [γ2, f ]⟩. We
claim that M[ f ] ≃ Ω1 and that MG

[ f ] = ⟨[ f ]⟩. By construction, the appropriate Ω1-
relations are satisfied for M[ f ], so we need only check that there are not additional
relations. For this, observe that any nontrivial relation among {[ f ], [γ1, f ], [γ2, f ]}
must involve at least one of [γ1, f ] or [γ2, f ] since we know that [ f ] is nontrivial. On
the one hand, if we had a nontrivial relation involving [γ1, f ], then an application
of 1 + σ1 to this relation would tell us that [ f ] = [1]; on the other hand, a nontrivial
relation involving [γ2, f ] would tell us that [ f ] = [1] after an application of 1 + σ2.
Hence, our set is independent, and so M[ f ] ≃ Ω1. This gives MG

[ f ] = ⟨[ f ]⟩ as well. Let
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YV = ∑[ f ]∈V M[ f ] . Indeed, we have YV = ⊕[ f ]∈V M[ f ] by Lemma 2.1. We also have
Y G

V = ⊕[ f ]∈V MG
[ f ] = ⊕[ f ]∈V⟨[ f ]⟩ = ⟨V⟩ by construction.

Now, let B be a complement to V within B, and let C a complement to V within
C . Let BW and CW be the subspaces defined in Lemma 3.2. Let BW be an F2-
basis for BW . For each [b] ∈ BW , we know that there exist [γ1], [γ2], [γ3] ∈ J(K) and
ϕW([b]) = [c] ∈ CW which solve equation (3.1). Let M[b] = ⟨[b], [c], [γ1], [γ2], [γ3]⟩.
We claim that M[b] ≃ Ω2. Certainly, the appropriate Ω2 relations hold by con-
struction, so we simply need to ensure that there are no additional relations. The
elements [b] and [c] are independent since [b] and [c] are each drawn from a
complement to V = B ∩C in their respective spaces. Now, if we had a nontriv-
ial F2-dependence that involved any of [γ1] or [γ2], then an application of 1 +
σ1 would force a nontrivial F2-dependence on [b] and [c], which we have just
seen is not possible. Likewise, a nontrivial F2-dependence that involves [γ3] would
force a nontrivial F2-dependence between [b] and [c]. Hence, the set is indepen-
dent, and so M[b] ≃ Ω2. Note this also forces MG

[b] = ⟨[b], [c]⟩ = ⟨[b], ϕW([b])⟩.
Let YW = ∑[b]∈BW

M[b] . As before, we in fact have YW = ⊕[b]∈BW M[b], and
furthermore

Y G
W = ⊕

[b]∈BW

MG
[b] = ⊕

[b]∈BW

⟨[b], ϕW([b])⟩ = BW ⊕ ϕW(BW) = BW ⊕ CW ,

by Lemma 3.2.
Let B0 be a basis for a complement to BW within B. Since B ⊆ B, each [ f ] ∈

B0 has some [γ f ] ∈ [K×] so that [γ f ]1+σ1 = [ f ] and [γ f ]1+σ2 = [1]. Since [ f ] ≠
[1], we get M[ f ] ∶= ⟨[γ f ]⟩ is isomorphic to F2[G1], and MG

[ f ] = ⟨[ f ]⟩. Let YB =
∑[ f ]∈B0 M[ f ] . Lemma 2.1 again gives YB = ⊕[ f ]∈B0 M[ f ], and furthermore we have
Y G

B = ⊕[ f ]∈B0 MG
[ f ] = ⊕[ f ]∈B0⟨[ f ]⟩ = ⟨B0⟩.

Let C0 be a basis for a complement to CW within C. Since C ⊆ C , for each
[ f ] ∈ C0, there exists some [γ f ] ∈ [K×] so that [γ f ]1+σ2 = [ f ] and [γ f ]1+σ1 = [1].
Since [ f ] ≠ [1], we get M[ f ] ∶= ⟨[γ f ]⟩ is isomorphic to F2[G2], and MG

[ f ] = ⟨[ f ]⟩.
Let YC = ∑[ f ]∈C0 M[ f ] . Once again, we have YC = ⊕[ f ]∈C0 M[ f ] by Lemma 2.1, and
Y G

C = ⊕[ f ]∈C0 MG
[ f ] = ⊕[ f ]∈C0⟨[ f ]⟩ = ⟨C0⟩.

Let D0 be a basis for a complement to (B +C ) ∩D within D . By the definition
of D , for each [ f ] ∈D0, there exists some [γ f ] ∈ [K×] so that [γ f ]1+σ2 = [γ f ]1+σ1 =
[ f ]. Since [ f ] ≠ [1], we get M[ f ] ∶= ⟨[γ f ]⟩ is isomorphic to F2[G3], and MG

[ f ] = ⟨[ f ]⟩.
Let YD = ∑[ f ]∈D0 M[ f ] . Again, we get YD = ⊕[ f ]∈D0 M[ f ], and Y G

D = ⊕[ f ]∈D0 MG
[ f ] =

⊕[ f ]∈D0⟨[ f ]⟩ = ⟨D0⟩.
Finally, define F0 to be a basis for a complement to B +C +D within [F×]. For

each [ f ] ∈ F0, we define M[ f ] = ⟨[ f ]⟩, which is clearly isomorphic to F2. We let YF =
⊕[ f ]∈F0 M[ f ] .

We have already detailed the fixed parts of each submodule, and we will use this
to show that the sum is direct. First, recall that Y G

A = A and Y G
V = ⟨V⟩, where V is

chosen to be a complement to A in V . Then Lemma 2.1 gives YA + YV = YA ⊕ YV ,
and additionally we have (YA ⊕ YV)G = V .
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Next, since Y G
W = BW ⊕ CW —where BW and CW are complements to V in their

respective spaces—Lemma 2.1 gives (YA ⊕ YV) + YW = YA ⊕ YV ⊕ YW , and indeed
(YA ⊕ YV ⊕ YW)G = V ⊕ BW ⊕ CW .

Next, we know that B = V ⊕ BW ⊕ ⟨B0⟩, and since Y G
B = ⟨B0⟩, this means that

YA ⊕ YV ⊕ YW + YB = YA ⊕ YV ⊕ YW ⊕ YB , and (YA ⊕ YV ⊕ YW ⊕ YB)G = B ⊕ CW .
Using the facts that B ∩C = V , that Y G

C = ⟨C0⟩, and that C = V ⊕ CW ⊕ ⟨C0⟩,
Lemma 2.1 gives YA ⊕ YV ⊕ YW ⊕ YB + YC = YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC , and (YA ⊕
YV ⊕ YW ⊕ YB ⊕ YC)G = B +C .

For the next term, since Y G
D = ⟨D0⟩, where D0 is a complement to (B +C ) ∩

D , Lemma 2.1 gives us YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC + YD = YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC ⊕
YD , and indeed (YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC ⊕ YD)G = B +C +D .

Finally, since Y G
F = ⟨F0⟩, where F0 is a complement to B +C +D in [F×], one

final application of Lemma 2.1 gives ĴG = [F×] and

Ĵ = YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC ⊕ YD ⊕ YF . ∎

Corollary 3.4 Suppose that [ f ] ∈ M for M ∈ {A , B, C , D}. Then the diagram
corresponding to M has a solution for [ f ] in which each term of the solution comes
from Ĵ.

Proof Suppose first that [ f ] ∈ A . Since A is a basis for A , we have [ f ] = ∏n
i=1[ f i]

for appropriately chosen [ f i] ∈ A. By construction, there exist [k i] ∈ J(K) so that
[NK/F(k i)] = [ f i], and so we get k = ∏n

i=1[k i] has [NK/F(k)] = [ f ]. Hence, the
diagram corresponding to A is solvable for [ f ] with terms drawn from Ĵ.

Now, suppose that [ f ] ∈ B. Since we know B = V ⊕ BW ⊕ ⟨B0⟩, we can write
[ f ] = ∏n

i=1[ f i]∏m
j=1[ f̂ j]∏�

k=1[ f̃k], where f i ∈ A ∪V, f̂ j ∈ BW , and f̃k ∈ B0 are appro-
priately chosen. Based on the construction of the terms from YA, YV , YW , and YB , we
have elements [γ i], [γ̂ j], [γ̃k] ∈ Ĵ that solve the diagram corresponding to B. Hence,
if we let [γ] = ∏n

i=1[γ i]∏m
j=1[γ̂ j]∏�

k=1[γ̃k], then the diagram corresponding to B is
solved with [γ] and [ f ]. An analogous argument settles the case where [ f ] ∈ C .

We have left to settle the statement for M = D . This will take a bit more work.
Since D0 is a basis for a complement to (B +C ) ∩D within D , we can write [ f ] =
[ f̂ ]∏n

i=1[ f i], where [ f̂ ] ∈ (B +C ) ∩D , and with [ f i] ∈D0 appropriately chosen. By
construction of YD , for each i, we have an element [γ i] so that the diagram for D is
solved with [γ i] and [ f i]. Furthermore, since [ f̂ ] ∈ (B +C ) ∩D , Lemma 3.1 tells us
that [ f̂ ] = [b][c] has the property that equation (3.1) is solvable for [b] and [c]:

[γ̂1] [γ̂2] [γ̂3]

[b] [c][1] [1].

Since B is a complement to V in B and C is a complement to V in C , we can write
[b] = [v1][bW] and [c] = [v2][cW] for [v1], [v2] ∈ V and [bW] ∈ B and [cW] ∈ C.
For i ∈ {1, 2}, the construction of YA and YV give [γ̃L , i], [γ̃R , i] ∈ Ĵ that accompany
[v i] in solving the diagram for V . Note in particular this means that the diagram
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corresponding to D is solved for [γ̃L , i][γ̃R , i] and [v i]. We have left to deal with the
[bW] and [cW] terms.

From our previous equations, we get

[γ̂1][γ̃L ,1] [γ̃R ,1][γ̂2][γ̃L ,2] [γ̃R ,2][γ̂3]

[bW] [cW][1] [1].

This means that [bW] ∈ BW , and, by Lemma 3.2, we have ϕW([bW]) = cW ∈ CW .
Hence, [bW] = ∏m

j=1[b j] for [b j] appropriately chosen from BW . By the construction
of YW , we have elements [γ1, j], [γ2, j], [γ3, j] ∈ Ĵ which solve equation (3.1) for [b j]
and ϕW([b j]). Hence, ∏m

j=1[γ1, j], ∏m
j=1[γ2, j], and ∏m

j=1[γ3, j] solve equation (3.1)
for [bW] and ∏m

j=1 ϕW([b j]) = ϕW(∏m
j=1[b j]) = [cW]. In particular, the equation

corresponding to D is solved by ∏m
j=1[γ1, j][γ2, j][γ3, j] and [bW][cW].

In all, our original element [ f ] ∈ D has now been expressed as [ f ] = [ f̂ ]∏n
i=1[ f i] =

[b][c]∏n
i=1[ f i] = [v1][bW][v2][cW]∏n

i=1[ f i], where each of [v1], [v2], [bW][cW],
and ∏n

i=1[ f i] have some corresponding element [γ] ∈ Ĵ which solves the diagram
corresponding to D . ∎

4 A module whose fixed part complements [F×] in J(K)G

Lemma 2.1 tells us that independent summands of J(K) have independent fixed parts.
Since we have already constructed a module whose fixed part is [F×], we now are
interested in finding a complementary module whose fixed part spans a complement
to [F×] in J(K)G —at least to the degree that such a goal is achievable at all. Ultimately,
this search will culminate in Theorem 4.8 at the end of this section, but to work toward
this result, we must first determine precisely which elements from J(K)G come from
[F×].

Kummer theory tells us that we can determine whether an element [γ] ∈ J(K)G

comes from [F×] by examining the Galois group of the extension it generates over F:

[γ] ∈ [F×]/{[1]} ⇔ Gal(K(√γ)/F) ≃ Z/2Z⊕Z/2Z⊕Z/2Z.

The following result gives a slightly more nuanced view of this phenomenon. Note
that in this result—and hence for much of the duration of this section—we use the
notation [γ]i to indicate the class of an element γ ∈ K×i ∩ K×2 considered in the set
(K×i ∩ K×2)/K×2

i for i ∈ {1, 2, 3}.

Lemma 4.1 Suppose that [γ] ∈ J(K)G/{[1]}. Then K(√γ)/F is Galois, and if σ̂1 and
σ̂2 represent lifts of σ1 , σ2 ∈ Gal(K/F) to the group Gal(K(√γ)/F), then we have

[NK/K1(γ)]1 = [1]1 ⇔ σ̂ 2
2 = id,

[NK/K2(γ)]2 = [1]2 ⇔ σ̂ 2
1 = id,

[NK/K3(γ)]3 = [1]3 ⇔ (σ̂1 σ̂2)2 = id.
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Proof We consider the first statement first. Observe that we already know that σ̂ 2
2

acts trivially on √a1 and √a2, so we only need to determine the action of σ̂ 2
2 on √γ.

For this, note that
√γ σ̂ 2

2−1 = (√γ σ̂2+1)
σ̂2−1

= (±
√

γσ2+1)
σ̂2−1

.

Since [γ] ∈ J(K)G , we have that [γ]σ2+1 = [NK/K1(γ)] = [1]. Hence, we have
NK/K1(γ) ∈ K×1 ∩ K×2, and, by Kummer theory, this means that NK/K1(γ) = aε

2k2
1 for

some ε ∈ {0, 1} and k1 ∈ K×1 . Note that ε = 0 if and only if NK/K1(γ) ∈ K×2
1 , which is

equivalent to [NK/K1(γ)]1 = [1]1. Hence, our previous calculation continues
√γ σ̂ 2

2−1 = (±√a2
ε k1)

σ̂2−1 = (±√a2
ε k1)

σ2−1 = (−1)ε .

This gives the desired result.
Similar calculations give the other two results. ∎

Corollary 4.2 Define T ∶ J(K)G →⊕3
i=1(K×i ∩ K×2)/K×2

i by

T([γ]) = ([NK/K1(γ)]1 , [NK/K2(γ)]2 , [NK/K3(γ)]3).

Then ker(T) = [F×].

Remark 4.3 Note that Kummer theory tells us that each (K×i ∩ K×2)/K×2
i consists

of only two distinct classes, with representatives drawn from {1, a1 , a2 , a1a2}. For
example, (K×3 ∩ K×2)/K×2

3 has [1]3 = [a1a2]3 and [a1]3 = [a2]3 as its elements. For the
sake of lightening what would otherwise be fairly weighty notation, when considering
elements in the image of T, we will suppress the bracket notation in its coordinates; that
is to say, if T([γ]) = ([u]1 , [v]2 , [w]3), then we will instead write T([γ]) = (u, v , w).

Our goal, then, is to build a module whose fixed part spans the image of T, ideally
while avoiding [F×] as much as possible. The first question we consider when looking
for such a module is to determine when elements with a nontrivial image under T are
themselves in the image of either 1 + σ1 or 1 + σ2. We start with the following result.

Lemma 4.4 If γ ∈ K× has [NK/F(γ)] = [1], then [NK/K1(γ)], [NK/K2(γ)] ∈ J(K)G ,
and
• [NK/F(γ)]F = [1]F ⇔ T([NK/K1(γ)]) = (1, 1, 1) ⇔ T([NK/K2(γ)]) = (1, 1, 1);
• [NK/F(γ)]F = [a1]F ⇔ T([NK/K1(γ)]) = (1, a1 , a1) ⇔ T([NK/K2(γ)]) =
(1, 1, a1);

• [NK/F(γ)]F = [a2]F ⇔ T([NK/K1(γ)]) = (1, 1, a1) ⇔ T([NK/K2(γ)]) =
(a2 , 1, a1); and

• [NK/F(γ)]F = [a1a2]F ⇔ T([NK/K1(γ)]) = (1, a1 , 1) ⇔ T([NK/K2(γ)]) =
(a2 , 1, 1).

Proof Observe first that since [NK/F(γ)] = [1], Kummer theory tells us that
[NK/F(γ)]F ∈ {[1]F , [a1]F , [a2]F , [a1a2]F}. So let us write NK/F(γ) = f 2aε1

1 aε2
2 . The

result then follows from the following calculations:

[NK/K1(NK/K1(γ))]1 = [NK/K1(γ)2]1 = [1]1 ,
[NK/K2(NK/K1(γ))]2 = [NK/F(γ)]2 = [ f 2aε1

1 aε2
2 ]2 = [a1]ε1

2 ,
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[NK/K3(NK/K1(γ))]3 = [NK/F(γ)]3 = [ f 2aε1
1 aε2

2 ]3 = [a1]ε1+ε2
3 ,

[NK/K1(NK/K2(γ))]1 = [NK/F(γ)]1 = [ f 2aε1
1 aε2

2 ]1 = [a2]ε2
1 ,

[NK/K2(NK/K2(γ))]2 = [NK/K2(γ)2]2 = [1]2 ,
[NK/K3(NK/K2(γ))]3 = [NK/F(γ)]3 = [ f 2aε1

1 aε2
2 ]3 = [a1]ε1+ε2

3 . ∎

Corollary 4.5 Suppose that [γ] ∈ J(K) generates a module isomorphic to F2[G i] for
some i ∈ {1, 2, 3}. Then T(⟨[γ]⟩G) = {(1, 1, 1)}.

Proof We proceed by cases. If ⟨[γ]⟩ ≃ F2[G1], then we have [γ]1+σ2 = [1], so that
[NK/F(γ)] = [1]. Since ⟨[γ]⟩G = ⟨[γ]1+σ1⟩, in this case, our objective is to show
that T([γ]1+σ1) = (1, 1, 1). But since [γ]1+σ1 = [NK/K2(γ)], the previous lemma tells
us that if we have T([γ]1+σ1) ≠ (1, 1, 1), then we have (1, 1, 1) ≠ T([NK/K1(γ)]) =
T([γ]1+σ2) = T([1]) as well, a contradiction. The same argument gives the result for
i = 2.

For i = 3, a variation on this argument works: we know we have [NK/K1(γ)] =
[NK/K2(γ)], and yet the lemma above provides no nontrivial case in which
T([NK/K1(γ)]) = T([NK/K2(γ)]). ∎

Lemma 4.4 tells us a relationship between the possible values under T for elements
from J(K)G which are in the image of a common element; if two elements [x] and [y]
have “compatible” images under T (i.e., allowable in light of Lemma 4.4), is it the case
that there exists some [γ] so that [x] = [NK/K1(γ)] and [y] = [NK/K2(γ)]? The answer
to this is generally “no,” but there is a weaker version which we will take advantage of.

Lemma 4.6 Suppose that [x], [y] ∈ J(K)G are given, and that (T([x]), T([y]))
is either ((1, a1 , a1), (1, 1, a1)) or ((1, 1, a1), (a2 , 1, a1)) or ((1, a1 , 1), (a1 , 1, 1)). Then
there exists some [γ] with [NK/F(γ)] = [1] so that T([NK/K1(γ)]) = T([x]) and
T([NK/K2(γ)]) = T([y]).

Proof Our approach will be to argue that the appearance of these elements in the
image of T guarantees the solvability of certain embedding problems, from which we
deduce the solvability of certain equations involving norms.

We first handle the case where im(T) contains {(1, a1 , a1), (1, 1, a1)}. Since
T([x]) = (1, a1 , a1), we know from Lemma 4.1 that in K(

√
x)/F the generators

σ1 , σ2 ∈ Gal(K/F) extend to elements σ̂1 , σ̂2 ∈ Gal(K(
√

x)/F) which satisfy the rela-
tions

σ̂ 2
2 = σ̂ 4

1 = (σ̂1 σ̂2)4 = id.

Hence, Gal(K(
√

x)/F) ↠ Gal(K/F) solves the embedding problem
Z/4Z⊕Z/2Z↠ Z/2Z⊕Z/2Z, and in particular K1/F embeds in a cyclic
extension of degree 4. By [2, Theorem 3], we have −1 ∈ NK1/F(K×1 ); since we
have −a1 = (√a1)1+σ1 = NK1/F(

√a1), it therefore follows that a1 ∈ NK1/F(K×1 ), say
a1 = NK1/F(k1) for k1 ∈ K×1 .

On the other hand, since T([y]) = (1, 1, a1), we know from Lemma 4.1 that the
generators σ1 , σ2 ∈ Gal(K/F) extend to elements σ̃1 , σ̃2 ∈ Gal(K(√y)/F) that satisfy

σ̃ 2
2 = σ̃ 2

1 = (σ̃1 σ̃2)4 = id.
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From this, we see that Gal(K(√y)/F) ↠ Gal(K/F) solves the embedding problem
D4 ↠ Z/2Z⊕Z/2Z, where the kernel of the latter surjection is ⟨(σ̃1 σ̃2)2⟩. By a well-
known result for the solvability of such embedding problems (see, e.g., [16, Proposition
III.3.3]), we therefore have a1 ∈ NK2/F(K×2 ), say a1 = NK2/F(k2) for k2 ∈ K×2 .

By [30, Lemma 2.14], there exists some γ ∈ K× and f ∈ F× so that NK/K1(γ) =
f k1 and NK/K2(γ) = f k2. In particular, we have [NK/F(γ)]F = [ f 2a1]F = [a1]F . An
application of Lemma 4.4 finishes this case.

The second case is effectively identical to the first. For the last case, note that the
images we are given provide two D4-extensions over K/F, one in which σ1 extends to
an element of order 4, and another where σ2 extends to an element of order 4. In the
former case, we then get a1a2 ∈ NK2/F(K×2 ), and in the latter, we get a1a2 ∈ NK1/F(K×1 ).
From here, the proof proceeds as before. ∎

Remark 4.7 The use of [30, Lemma 2.14] amounts to an appeal to Hilbert 90 for
biquadratic extensions. See [10].

We are now prepared for the main result of this section.

Theorem 4.8 There exists X ⊆ J(K) with T(XG) = im(T), so that

X ≃
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[1]}, if dim(im(T)) = 0,
F2 , if dim(im(T)) = 1,
Ω−1 , if dim(im(T)) = 2 and im(T) is one of the “coordinate planes,”
F2 ⊕ F2 , if dim(im(T)) = 2 and im(T) is not one of the “coordinate planes,”
Ω−2 , if dim(im(T)) = 3 and T ([NK/K1(K×)] ∩ [NK/K2(K×)]) ≠ {(1, 1, 1)},
Ω−1 ⊕ Ω−1 , if dim(im(T)) = 3 and T ([NK/K1(K×)] ∩ [NK/K2(K×)]) = {(1, 1, 1)}.

In all cases except the last, we have [F×] ∩ XG = {[1]}; in the last case, we have
dim(XG ∩ [F×]) = 1 and XG ∩ (B +C +D) = {[1]}.

Proof We proceed by cases based on dim(im(T)). First, if dim(im(T)) = 1, then
let [x] ∈ J(K)G be given so that T([x]) ≠ (1, 1, 1). Then X ∶= ⟨[x]⟩ has the desired
properties.

Now, suppose that dim(im(T)) = 2. By Lemma 4.6, we know that if im(T) is
any of

⟨(1, a1 , a1), (1, 1, a1)⟩ = {(1, w , z) ∶ w ∈ (K×2 ∩ K×2)/K×2
2 , z ∈ (K×3 ∩ K×2)/K×2

3 },
⟨(1, 1, a1), (a2 , 1, a1)⟩ = {(w , 1, z) ∶ w ∈ (K×1 ∩ K×2)/K×2

1 , z ∈ (K×3 ∩ K×2)/K×2
3 }, or

⟨(1, a1 , 1), (a1 , 1, 1)⟩ = {(w , z, 1) ∶ w ∈ (K×1 ∩ K×2)/K×2
1 , z ∈ (K×2 ∩ K×2)/K×2

2 },

then we can find some [γ] ∈ J(K) with [NK/F(γ)] = [1] so that
⟨T ([NK/K1(γ)]) , T ([NK/K2(γ)])⟩ = im(T). It is easy to see that X ∶= ⟨[γ]⟩ ≃ Ω−1,
and since the nontrivial fixed elements in this module have nontrivial images under
T, we get XG ∩ [F×] = {[1]}.

On the other hand, if dim(im(T)) = 2 but im(T) is none of the three subspaces
above, then let [x1], [x2] ∈ J(K)G be given so that {T([x1]), T([x2])} forms a basis
for im(T); we then set X ∶= ⟨[x1], [x2]⟩ ≃ F2 ⊕ F2, with X ∩ [F×] = {[1]}.
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Now, suppose that dim(im(T)) = 3. First, consider the case where
T([NK/K1(K×)] ∩ [NK/K2(K×)]) ≠ {(1, 1, 1)}, and let [x] be given so that
[NK/K1(γ2)] = [x] = [NK/K2(γ1)] for some [γ1], [γ2] ∈ J(K) and with
T([x]) ≠ (1, 1, 1). (Note that since [x] is in the image of NK/K1 and NK/K2 , it is
automatically in J(K)G ; hence, it makes sense to evaluate its image under T.) Lemma
4.4 tells us that T([x]) = (1, 1, a1), and furthermore that T([NK/K1(γ1)]) = (1, a1 , a1)
and T([NK/K2(γ2)]) = (a2 , 1, a1). We claim that X ∶= ⟨[γ1], [γ2]⟩ ≃ Ω−2; certainly,
the appropriate relations hold, so we only need to check that the module is five-
dimensional. Note that {[NK/K1(γ1)], [x], [NK/K2(γ2)]} must be independent since
their images under T are independent, and hence any nontrivial dependence must
involve [γ1] or [γ2]. However, an application of 1 + σ1 (or 1 + σ2) to such a relation
creates a nontrivial relation among {[NK/K1(γ1)], [x], [NK/K2(γ2)]}, contrary to their
independence. Since we have X ≃ Ω−2, we get XG = ⟨[NK/K1(γ1)], [x], [NK/K2(γ2)]⟩,
whence XG ∩ [F×] = {[1]}.

Alternatively, suppose that dim(im(T)) = 3, but T([NK/K1(K×) ∩
[NK/K2(K×)]) = {(1, 1, 1)}. Lemma 4.6 gives us elements [γ1], [γ2] ∈ J(K) so
that

T([NK/K1(γ1)]) = (1, a1 , a1),
T([NK/K2(γ1)]) = (1, 1, a1) = T([NK/K1(γ2)]),
T([NK/K2(γ2)]) = (a2 , 1, a1).

We define X = ⟨[γ1], [γ2]⟩. One sees that ⟨[γ1]⟩ ≃ ⟨[γ2]⟩ ≃ Ω−1 in the same manner as
above (these modules satisfy the appropriate relations by definition, and one can argue
they generate a module of the appropriate dimension by leveraging the independence
of the image of their fixed components under T). We claim that X ≃ Ω−1 ⊕ Ω−1;
for the sake of contradiction, then, assume instead that ⟨[γ1]⟩ ∩ ⟨[γ2]⟩ ≠ {[1]}. By
Lemma 2.1, this implies that there is some [x] ≠ [1] with [x] ∈ ⟨[γ1]⟩G ∩ ⟨[γ2]⟩G .
Considering images under T and using Lemma 4.4, we must have [NK/K2(γ1)] =
[x] = [NK/K1(γ2)], contrary to the assumption in this case that T([NK/K1(K×)] ∩
[NK/K2(K×)]) = {(1, 1, 1)}. Hence, we get X ≃ Ω−1 ⊕ Ω−1.

Finally, we check that dim(XG ∩ [F×]) = 1 with XG ∩ (B +C +D) = {[1]}. The
former follows from the rank-nullity theorem applied to the function T; in fact, we
see that XG ∩ [F×] = {[1], [NK/K2(γ1)][NK/K1(γ2)]}. For the latter, suppose instead
that [NK/K2(γ1)][NK/K1(γ2)] ∈ B +C +D . Then we get [NK/K2(γ1)][NK/K1(γ2)] =
[ fB][ fC ][ fD] for some [ fB] ∈ B, [ fC ] ∈ C and [ fD] ∈ D ; in particular, this means
we have elements [γB], [γC ], [γD] ∈ J(K) which solve the relevant diagrams from
Figure 4. One can then check that

NK/K1([γ2][γC ]) = [NK/K1(γ2)][ fC ] = [NK/K2(γ1)][ fB][ fD]
= NK/K2([γ1][γB][γD]).

This element is conspicuously an element in [NK/K1(K×)] ∩ [NK/K2(K×)], and since
ker(T) = [F×], we get that T([NK/K2(γ1)][ fB][ fD]) = T([NK/K2(γ1)]) ≠ {(1, 1, 1)}.
This runs contrary to the overriding assumption in this case, that T([NK/K1(K×)] ∩
[NK/K2(K×)]) = {(1, 1, 1)}. ∎
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5 Proof of Theorem 1.1

We need one final preparatory result, which is again a manifestation of Hilbert 90 in
the biquadratic case.

Lemma 5.1 Let {�, m, n} = {1, 2, 3}. If f ∈ F× has [ f ] ∈ [NK/K�
(K×)], then [ f ] ∈

[NKm/F(K×m)][NKn/F(K×n )].

Proof We prove the result when � = 3, m = 1, and n = 2; the other results follow by
the symmetry of the fields K1 , K2, and K3.

First, we argue that if f ∈ F× has [ f ] ∈ [NK/K3(K×)], then

f
aε

1
= NK/K3(k̃)(5.1)

for some k̃ ∈ K× and ε ∈ {0, 1}. To see this, note that f = k1+σ1 σ1 k̂2 for some k, k̂ ∈
K. Solving for k̂2 and using the fact that F ⊆ K3, we then have k̂2 ∈ K3. However,
this means k̂2 ∈ K×2 ∩ K×3 , so by Kummer theory, we get k̂2 = k2

3 aε
1 , where k3 ∈ K×3

and ε ∈ {0, 1}. Naturally, we have k2
3 = NK/K3(k3), so that our original expression

becomes

f = k1+σ1 σ2 k̂2 = k1+σ1 σ2 k2
3 aε

1 = NK/K3(kk3)aε
1 .

Setting k̃ = kk3 and dividing through by aε
1 gives equation (5.1).

Now, we argue that

F× ∩ NK/K3(K×) ⊆ NK1/F(K×1 ) ⋅ NK2/F(K×2 ).(5.2)

For this, suppose that we have elements g ∈ F× and k ∈ K× so that g = NK/K3(k). Now,
k = f1 + f2

√a1 + f3
√a2 + f4

√a1a2 for some f1 , f2 , f3 , f4 ∈ F×, and so by assumption
we get

g = NK/K3(k) = ( f 2
1 − a1 f 2

2 − a2 f 2
3 + a1a2 f 2

4 ) +
√

a1a2(2 f1 f4 − 2 f2 f3).

However, since g ∈ F×, we must have f1 f4 = f2 f3. Our goal is to write g as an element
of NK1/F(K×1 ) ⋅ NK2/F(K×2 ), which means we would like to find h1 , h2 , h3 , h4 ∈ F so
that h1 + h2

√a1 ∈ K1 and h3 + h4
√a2 ∈ K2 yield

g = NK1/F(h1 + h2
√

a1) ⋅ NK2/F(h3 + h4
√

a2) = (h2
1 − h2

2 a1)(h2
3 − h2

4a2).

In other words, we need to solve

f 2
1 − a1 f 2

2 − a2 f 2
3 + a1a2 f 2

4 = (h2
1 − h2

2 a1)(h2
3 − h2

4a2).

We proceed by cases. First, suppose that f1 = 0. Hence, we must have either f2 = 0
or f3 = 0. Note if f2 = 0, then our expression for g becomes

g = −a2 f 2
3 + a1a2 f 2

4 = ( f 2
3 − f 2

4 a1)(02 − 12a2).
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A similar computation settles the case where f3 = 0. So now suppose that f1 ≠ 0, and
observe that since f4 = f2 f3

f1
, we have

f 2
1 − f 2

2 a1 − f 2
3 a2 + f 2

4 a1a2 = ( f 2
1 − f 2

2 a1)(12 − f 2
3

f 2
1

a2) .

With both (5.1) and (5.2) in hand, we can prove the lemma. If we apply (5.2) to f
aε

1
from (5.1), then we see that

f
aε

1
∈ NK1/F(K×1 ) ⋅ NK2/F(K×2 ).

However, since [a1] = [1], we get the desired result. ∎

We are now ready for the proof of the main result of this paper. Our basic strategy
is to show that the modules Ĵ and X from Theorems 3.3 and 4.8 provide the desired
decomposition, although in the case where dim(im(T)) = 3 and T([NK/K1(K×)] ∩
[NK/K2(K×)]) = {(1, 1, 1)} we will need to make a small adjustment to Ĵ—removing
a single trivial summand—to achieve our result.

Proof Let Ĵ be the module from Theorem 3.3, and let X be the module from
Theorem 4.8.

If we are not in the case where dim(im(T)) = 3 and T([NK/K1(K×)] ∩
[NK/K2(K×)]) = {(1, 1, 1)}, then define J̃ = Ĵ. Otherwise, note that, in the final case of
Theorem 4.8, we have a unique [x0] ∈ XG ∩ [F×], and that [x0] /∈ B +C +D . Now,
in the construction of Ĵ, the summand YF is chosen as the span of F0, where F0 is an
arbitrary basis for a complement of B +C +D within [F×] (see the definition of F0
in Theorem 3.3). Since [x0] ∈ [F×]/(B +C +D), we can assume that [x0] ∈ F0. In
this case, we define ỸF = ∑[ f ]∈F0/{[x0]}⟨[ f ]⟩ = ⊕[ f ]∈F0/{[x0]}⟨[ f ]⟩, and set

J̃ = YA + YV + YW + YB + YC + YD + ỸF = YA ⊕ YV ⊕ YW ⊕ YB ⊕ YC ⊕ YD ⊕ ỸF .

(That is, the module J̃ is just the result of removing the summand ⟨[x0]⟩ from Ĵ.)
In either case, we will show that J(K) = J̃ ⊕ X. Of course, we have J̃ + X ⊆ J(K);

furthermore, our construction of J̃ gives XG ∩ J̃ = {[1]}, so that J̃ + X = J̃ ⊕ X. Hence,
we only need to verify that J(K) ⊆ J̃ + X. We do this by examining the possible
isomorphism classes for ⟨[γ]⟩, where [γ] ∈ J(K).

First, suppose that ⟨[γ]⟩ ≃ F2, so that [γ] ∈ J(K)G . If [γ] ∈ [F×], then since [F×] =
ĴG ⊆ J̃G ⊕ XG , we have [γ] ∈ J̃ + X. Otherwise, we have T([γ]) ≠ (1, 1, 1), in which
case by Theorem 4.8 there exists some [x] ∈ XG with T([γ]) = T([x]). We then have
[γ][x] ∈ [F×], and from the previous case, this gives [γ][x] ∈ J̃ + X. Since [x] ∈ J̃ + X,
we get [γ] ∈ J̃ + X.

Now, suppose that ⟨[γ]⟩ ≃ F2[G1]. Corollary 4.5 tells us that [γ]1+σ1 ∈ [F×], and so
[γ]1+σ1 ∈ B. Corollary 3.4 tells us that there exists some [γ̃] ∈ Ĵ so that [γ̃]1+σ2 = [1]
and [γ̃]1+σ1 = [γ]1+σ1 ; in fact, since Ĵ and J̃ differ by only a trivial summand, we can
assume [γ̃] ∈ J̃ as well. However, then, we get [γ][γ̃] ∈ J(K)G , so by the previous case
we have [γ][γ̃] ∈ J̃ + X. Since [γ̃] ∈ J̃ + X already, this gives [γ] ∈ J̃ + X.
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[γ]

[NK/K1(γ)]=

[γ1,2][γ1,3]

[ f1,2][ f1,3] [NK/K2(γ)]

Figure 5: Decomposing [NK/K1(γ)] in terms of solutions to the diagrams for C and D .

The cases where ⟨[γ]⟩ is isomorphic to either F2[G2] or F2[G3] follow the same
argument as the case F2[G1] above.

Now, suppose that ⟨[γ]⟩ ≃ Ω−1, and first consider the case where T(⟨[γ]⟩G) =
{(1, 1, 1)}. By Corollary 4.2 and Lemma 5.1, we have [NK/K1(γ)] ∈ [NK/K1(K×)] ∩
[F×] = [NK2/F(K×2 )][NK3/F(K×3 )], say [NK/K1(γ)] = [ f1,2][ f1,3], where for i ∈ {2, 3}
we have [ f1, i] = [NK i/F(k i)] for some k i ∈ K×i . This means that [ f1,2] ∈ C and [ f1,3] ∈
D , so by Corollary 3.4 there exists [γ1, i] ∈ Ĵ with [γ1, i] and [ f1, i] providing a solution
to the appropriate diagram; since Ĵ and J̃ differ only by a trivial summand, we can
assume that [γ1, i] ∈ J̃ for i ∈ {2, 3}. (See Figure 5 for a graphical description of these
relationships.)

Consider the element [γ̃] = [γ][γ1,2][γ1,3]. One sees that [γ̃]1+σ2 = [1], and that
[γ̃]1+σ1 = [NK/K2(γ)][ f1,3]. Hence, ⟨[γ̃]⟩ is isomorphic to either {[1]} orF2 orF2[G1].
Our previous cases, therefore, allow us to conclude [γ̃] ∈ J̃ + X. Since [γ1,2], [γ1,3] ∈ J̃,
we have [γ] ∈ J̃ + X.

If T(⟨[γ]⟩G) ≠ {(1, 1, 1)}, then Lemma 4.4 gives us that precisely one of the
following holds:
• T([NK/K1(γ)]) = (1, a1 , a1) and T([NK/K2(γ)]) = (1, 1, a1); or
• T([NK/K1(γ)]) = (1, 1, a1) and T([NK/K2(γ)]) = (a2 , 1, a1); or
• T([NK/K1(γ)]) = (1, a1 , 1) and T([NK/K2(γ)]) = (a2 , 1, 1).
In any of these cases, our construction for X (see the second case in Theorem 4.8) gives
an element [x] ∈ X so that T([NK/K1(γ)]) = T([NK/K1(x)]) and T([NK/K2(γ)]) =
T([NK/K2(x)]). Hence, the images of [γ][x] under 1 + σ1 and 1 + σ2 both lie in [F×],
and so ⟨[γ][x]⟩ falls into one of the previous cases. (For example, if ([γ][x])1+σ1 and
([γ][x])1+σ2 are independent, then ⟨[γ][x]⟩ ≃ Ω−1 and T(⟨[γ][x]⟩G) = {(1, 1, 1)}.
This is precisely the previous case.) We therefore get [γ][x] ∈ J̃ + X, whence [γ] ∈
J̃ + X.

The final case to consider is when ⟨[γ]⟩ ≃ F2[G]. In this case, note that [NK/F(γ)] ∈
A , and Corollary 3.4 gives us some element [γ̃] ∈ Ĵ (which we may assume is in J̃ since
J̃ and Ĵ differ only by a trivial summand) so that [NK/F(γ̃)] = [NK/F(γ)]. From this,
we get that ⟨[γ][γ̃]⟩ is not free, and so is one of the previous isomorphism types. As
usual, this gives us [γ] ∈ J̃ + X. ∎

6 Some realizability results

Theorem 1.1 tells us that there are a limited number of summands that could possibly
appear in a decomposition of J(K), but is it the case that each of these summand
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types occurs for at least one biquadratic extension K/F? In this section, we offer some
partial results concerning this kind of realizability question, focusing particularly on
the possible structures for the X summand from Theorem 1.1. For a more complete
treatment of this problem of realizing the various summands, the reader is encouraged
to consult [9], which enhances the current work by exploring its connection to the
Brauer group Br(F).

The X summand takes on one of six possible structures, with the various possibili-
ties determined by the image of the function T from Section 4 (as detailed in Theorem
4.8). To determine whether these structures are realizable, we will view the conditions
found in Theorem 4.8 through the lens of Galois embedding problems via Lemma 4.1.

First, we introduce some terminology. Note that since K/F is a biquadratic exten-
sion with intermediate fields K1 , K2, and K3, if there exists some extension L/K
which is Galois over F with Gal(L/F) ≃ D4, then there is a unique i ∈ {1, 2, 3} so
that Gal(L/K i) ≃ Z/4Z. We will refer to such an extension as a D4-extension of
type i. Likewise, if there is an extension L/K with Gal(L/F) ≃ Z/4Z⊕Z/2Z, then
there is a unique i ∈ {1, 2, 3} so that there exists some field L̃ with K i ⊊ L̃ ⊊ L and
Gal(L̃/F) ≃ Z/4Z. We will refer to such an extension as a Z/4Z⊕Z/2Z-extension of
type i.

Lemma 4.1 tells us that if [γ] ∈ J(K)G , then the Galois group of K(√γ)/F can be
computed entirely in terms of T([γ]). For example, suppose that T([γ]) = (a2 , 1, 1).
By Lemma 4.1, we see that K(√γ)/F is a D4-extension of type 1. Similarly, if
T([γ]) = (1, a1 , 1) or T([γ]) = (1, 1, a1), then K(√γ)/F is a D4-extension of type
2 or 3 (respectively). We also have that T([γ]) ∈ {(a2 , a1 , 1), (a2 , 1, a1), (1, a1 , a1)}
implies that K(√γ)/F is a Z/4Z⊕Z/2Z-extension (of types 3, 2, and 1, respectively).
If T([γ]) = (a2 , a1 , a1), then K(√γ)/F is a Q8-extension. Finally, if T([γ]) = (1, 1, 1),
then Gal(K(√γ)/F) is elementary 2-abelian of rank 3. Since each of the possible
values of T([γ]) yields a distinct Galois group, this dictionary works both ways: the
structure of the Galois group of a given K(√γ)/F determines the value of T([γ]).

Happily, these types of embedding problems have already been studied exten-
sively. For example, in [17], one finds that a quadratic extension E(

√
a)/E embeds

in a Z4-extension if and only if a = x2 + y2 for x , y ∈ E. Likewise, a biquadratic
extension E(

√
a,
√

b)/E embeds in a D4-extension L/E for which Gal(L/E(
√

b)) ≃
Z/4Z if and only if b = ay2 − x2 for some x , y ∈ E. Finally, a biquadratic extension
E(

√
a,
√

b)/E embeds in a Q8-extension if and only if there are e1 , e2 , e3 , f1 , f2 , f3 ∈ E
with a = ∑3

i=1 e2
i and b = ∑3

i=1 f 2
i and∑3

i=1 e i f i = 0. Hence, we can determine if a given
biquadratic extension K/F has elements [γ] ∈ J(K)G with prescribed values under T
by determining whether certain equations hold over F.

Example 6.1 Let F = Q and K = Q(
√

7,
√
−5). (Following our previous conventions,

this means a1 = 7 and a2 = −5.) None of the elements from {7,−5,−35} be written
as a sum of two rational squares, and hence K/F does not embed in any type of
Z/4Z⊕Z/2Z-extension. Hence, no element from {(a2 , a1 , 1), (a2 , 1, a1), (1, a1 , a1)}
is in im(T). We can also clearly see that 7 = −5y2 − x2 has no rational solutions, so
K/F does not embed in a D4-extension of type 1; therefore, (a2 , 1, 1) /∈ im(T). Likewise
−5 = −35y2 − x2 and−35 = −5y2 − x2 have no rational solutions. For example, a ratio-
nal solution to−5 = −35y2 − x2 would imply an integral solution to u2 = 7v2 + 5w2 for
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which 5 ∤ u and 5 ∤ v. One sees this is impossible by examining this equation modulo
5. Because these equations have no rational solutions, it follows that K/F does not
embed in a D4-extension of type 2 or 3 either. Hence, {(1, a1 , 1), (1, 1, a1)} /∈ im(T).
Finally, since −5 is conspicuously not a sum of three rational squares, we have that
K/F does not embed in a Q8-extension, and so (a2 , a1 , a1) /∈ im(T). Hence, im(T) =
{(1, 1, 1)}, and by Theorem 4.8, we have X = {[1]}.

Example 6.2 Let F = Q and K = Q(
√

7,
√
−1). We see that K/F does not embed

in any Z/4Z⊕Z/2Z-extension since none of 7,−1, nor −7 is a sum of two rational
squares; it does not embed in a D4-extension of type 1 or 3 since 7 = −y2 − x2 and
−7 = −y2 − x2 have no rational solutions; and it does not embed in a Q8-extension
since −1 is not a sum of three rational squares. It does, however, embed in a D4-
extension of type 2 since −1 = −7y2 − x2 has a rational solution. Hence, im(T) =
{(1, 1, 1), (1, a1 , 1)}, and so X ≃ F2.

Example 6.3 Let F = Q and K = Q(
√

2,
√
−1). Since 2 is a sum of two rational

squares but −1 and −2 are not, we see that K/F embeds in a Z/4Z⊕Z/2Z-extension
of type 1, but not of type 2 or 3. It is also the case that 2 = −y2 − x2 has no rational
solutions, but −1 = 2y2 − x2 and −2 = 2y2 − x2 do have rational solutions, and hence
K/F embeds in D4-extensions of types 2 and 3, but not type 1. We also have that −1 is
not a sum of three rational squares, so K/F does not embed in a Q8-extension. Taken
together, this means that im(T) = {(1, 1, 1), (1, a1 , a1), (1, a1 , 1), (1, 1, a1)}, which is
one of the coordinate planes (the “yz-plane”). Hence, from Theorem 4.8, we have
X ≃ Ω−1.

Example 6.4 Let F = Q and K = Q(
√

5,
√

13). We know that each of 5, 13,
and 65 can be written as a sum of two rational (indeed, integral) squares,
and hence K/F embeds in Z/4Z⊕Z/2Z-extensions of types 1–3. Therefore,
{(1, 1, 1), (a2 , a1 , 1), (a2 , 1, a1), (1, a1 , a1)} ⊆ im(T). On the other hand, there is no
rational solution to 5 = 13y2 − x2, since such a solution would imply an integral
solution to 5u2 = 13v2 − w2. (After ensuring that 5 does not divide all of u, v,
and w, one examines the equation modulo 5.) Hence, K/F does not embed in a
D4-extension of type 1, and so (a2 , 1, 1) /∈ im(T). Since T is an F2-space, we get
{(1, 1, 1), (a2 , a1 , 1), (a2 , 1, a1), (1, a1 , a1)} = im(T). By Theorem 4.8, we have X ≃
F2 ⊕ F2.

Example 6.5 Let F = Q and K = Q(
√

5,
√

41). Since 5, 41, and 205 are all expressible
as sums of two rational squares, and since we can write 5 = (2)2 + (1)2 + 02 and
41 = (−1)2 + (2)2 + (6)2, we see that {(a2 , a1 , 1), (a2 , 1, a1), (1, a1 , a1), (a2 , a1 , a1)} ⊆
im(T). Hence, dim(im(T)) = 3 in this case, and we have either X ≃ Ω−1 ⊕ Ω−1 or
X ≃ Ω−2 (depending on whether [NK/K1(K×)] ∩ [NK/K2(K×)] ⊆ [Q×]).

The reader will notice that we have connected the solvability of particular embed-
ding problems to the existence of certain points on rational conics 1 = by2 − ax2.
These are in turn connected to the splitting of quaternion algebras (a, b)Q (see
[18, Theorem 2.7]). However, this connection—and the well-established track record
that the Brauer group has in encoding the solvability of certain Galois embedding
problems (see [16, 17, 21, 22])—might suggest that there is something deeper to
explore in this vein. Indeed, the solvability of each of the embedding problems
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we have discussed is encoded in the vanishing of certain element(s) drawn from
⟨(a1 , a1), (a1 , a2), (a2 , a2)⟩ ⊆ Br(Q). The focus of the follow-up paper [9] is to rein-
terpret the decomposition of J(K) provided by Theorem 1.1 through the lens of certain
equations in Br(F). In particular, this will allow us to compute the multiplicities of the
various summands by analyzing subspaces within Br(F), and ultimately show that all
listed “unexceptional” summand types (i.e., F2[G i] for i ∈ {0, 1, 2, 3, 4}, as well as Ω1

and Ω2) from Theorem 1.1 are realizable.

Acknowledgment We gratefully acknowledge discussions and collaborations with
our friends and colleagues D. Benson, B. Brubaker, J. Carlson, S. Chebolu, I. Efrat, J.
Gärtner, S. Gille, L. Heller, D. Hoffmann, J. Labute, T.-Y. Lam, R. Sharifi, N.D. Tan,
A. Topaz, R. Vakil, K. Wickelgren, and O. Wittenberg, which have influenced our
work in this and related papers. We are particularly grateful to A. Eimer and P. Guillot
for their careful consideration of a previous draft of this manuscript which omitted
Ω2 summands. Finally, we are grateful for the careful attention that our manuscript
received from two anonymous referees. The encouraging suggestions they made have
helped improve both the expositional quality of the manuscript and its accuracy.

References

[1] A. Adem, W. Gao, D. Karagueuzian, and J. Mináč, Field theory and the cohomology of some Galois
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[25] J. Mináč, A. Schultz, and J. Swallow, Galois module structure of Milnor K-theory mod ps in
characteristic p. New York J. Math. 14(2008), 225–233.
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