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AN EXPONENTIAL DIOPHANTINE EQUATION

MAOHUA LE

Let p be an odd prime with p > 3. In this paper we give all positive integer solu-
tions (x,y,m,n) of the equation x2 + p2m = yn, gcd(x,y) = 1, n > 2 satisfying
2 |n or 2\n and p ̂  (-l)(p"1)/2(mod 4n).

1. INTRODUCTION

Let Z, N, Q be the sets of all integers, positive integers and rational numbers re-
spectively. Let p be a prime. There have been many papers concerned with solutions
(x, y, m, n) of the equation

(1) x2+pm = yn, x ) 2 / ,m,n€N, gcd(x,j/) = l, n > 2.

All solutions of (1) for p € {2,3} have been determined. The known results include the
following:

1. (Nagell [12].) If p - 2, then the only solution of (1) with m = 2 is
(x,y,m,n) = (11,5,2,3).

2. (Cohn [3].) If p - 2, then the only solution of (1) with 2 f m are
(x,y,m,n) = (5,3,1,3) and (7,3,5,4).

3. (Le [5, 6].) If p = 2, then (1) has no solutions (x,y,m,n) satisfying
2 | m and m > 2.

4. (Arif and Muriefah [1].) If p = 3, then the only solution of (1) with
2\m is (x,y,m,n) - (10,7,5,3).

5. (Luca [9].) If p — 3, then the only solution of (1) with 2 | m is
(x, y, m,n) = (46,13,4,3).

In this paper we investigate the solutions (x, y, m, n) of (1) for m even. Then (1)
may be written as

(2) x2+p2m =yn, x,j/,m,n€N, gcd(x,y) = 1, n > 2.

We prove the following two results.
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THEOREM 1 . If p> 3, then all the solutions (x,y,m,n) of (2) with 2 | m are
given as follows:

(i) p=239 , (x,y,m,n) = (28560,13,1,8).

(ii) p = E(q), (x,j/,m,n) = (((E(q))2 - l ) /2, F( 9 ) , l ,4) , where q is an

odd prime, and

(3)

THEOREM 2 . If p > 3 and p ^ (-l) ( p~1 ) / 2(mod 4n), then (2) has no solutions

(x,y,m,n) with 2 \ n.

By the above theorems, we can completely determine all solutions of (2) for the
case that p is either a Fermat prime or a Mersenne prime.

COROLLARY 1. If p is a Fermat prime with p > 3, then (2) has no solutions
(x,y,m,n).

COROLLARY 2 . If p — 7, then the only solution of (2) is (x,y,m,m) =
(24,5,1,4). If p is a Mersenne prime with p > 7, then (2) has no solutions (x, y, TO, n).

2. PRELIMINARIES

LEMMA 1 . [11, pp.12-13] Every solution (X,Y,Z) of the equation

(4) X2 + Y2 = Z2, X,Y,ZeN, g c d ( X , r ) = l , 2\X

can be expressed a s

(5) X = 2AB, Y = A2-B2, Z = A2 + B2,

where A, B are positive integers satisfying

(6) A > B, gcd (A, B) = l, 2 | AB.

LEMMA 2 . [11, pp.122-123] Let n be an odd integer with n > 1. Then every
solution (X,Y,Z) of the equation

(7) X2 + Y2 = Zn, X,Y,ZeN,

can be expressed as

(8) Z = A2 + B2, X + Ysf^l = Xi{A + A25v/=I)n , Ai,'A2 € {-1,1},
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where A, B are coprime positive integers.

LEMMA 3 . [7] The only solutions of the operation

(9) X2 + 1 = 2Y\ X, Y e N

are (X,Y) = (1,1) and (239,13).

LEMMA 4 . [8] Let D be a positive integer which is not a square. Then the
equation

(10) X4 - DY2 = - 1 , X, Y € N

has at most one solution (X,Y). Moreover, if (X, Y) is a solution of (10), then the
fundamental solution Ui + V\y/D of the Pell equation

(11)

satisfies

(12) Ui = dt2, X2 + YVD = (Ui + Vi-/E>) , d, t € N, 2 { d, d is square free.

LEMMA 5 . [13] The equation

(13) X2 + l = 2Yr, X , Y , r € N , X > Y > 1, r > 1, 2\r

has no solutions (X, Y, r).

LEMMA 6 . [4, Lemma 15] The equation

(14) X2r + l = 2Y2, X , y , r € N , X> 1, Y > 1, r > 1, 2\r

has no solutions (X, Y, r).

Let a, /3 be algebraic integers. If a + /? and a/J are nonzero coprime integers and
a//3 is not a root of unity, then (a, j3) is called a Lucas pair. Further, let a = a + /3
and c = a/3. Then we have

(15) a=

where b — a2 — 4c. We call (a, 6) the parameters of the Lucas pair (a, ft). Two Lucas
pairs (ai,j8i) and (a2,/32) are equivalent if c*i/a2 = /9i//32 = ± 1 - Given a Lucas pair
(a,p), one defines the corresponding sequence of Lucas numbers by ut = ut(a,/3) =
(a4 - /?')/(<* — /3) for t = 0 ,1 ,2 , . . . . For equivalent Lucas pairs (cti, fii) and (c*2, p\),
we have Ut(ari,/?i) = ±Ut(a2,^2) for any t ^ 0. A prime p is a primitive divisor of
u t (a , /?) if p | ut and p \ bu\ • • • u t - i .
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LEMMA 7 . [10] Let (a, 0) be a Lucas pair with parameters (a, b). If p is a

primitive divisor of ut(a,/3) (t > 2 ) , then p - ( - J = 0 (mod t) where f - J is the

Legendre symbol.

A Lucas pair (a, /?) such that ut(a,/3) has no primitive divisors will be called a
t -defective Lucas pair.

LEMMA 8. [14] Let t satisfy 4 < t < 30 and t^&. Then, up to equivalence,
all parameters of t-defective Lucas pairs are given as follows:

(i) t = 5, (a,b) = (1,5), (1,-7), (2,-40), (1,-11), (1,-15), (12,-76),
(12,-1364);

(ii) t=7, (a,6) = ( l , -7) , (1,-19);
(iii) t=S, (a,b) = (2,-24), (1,-7);
(iv) t= 10, (a, b) = (2,-8), (5,-3), (5,-47);
(v) t= 12, (a,6) = (1,5), (1,-7), (1,-11), (2,-56), (1,-15), (1,-19);

(vi) t e {13,18,30}, (a, 6) = (1,-7).

A positive integer t is called totally non-defective if no Lucas pair is t -defective.

LEMMA 9. [2] If t> 30, then t is totally non-defective.

3. PROOFS

PROOF OF THEOREM 1: Let (x, y,m, n) be a solution of (2). Since p > 3 and
n > 2, we have 2 | x and 2 \ y. If 2 | n, since gcd (j/n /2 -I- x, j / n / 2 - x) = 1, then from
(2) we get yn/2 + x- p2m and j / " / 2 - x = 1. This implies that

(16) p2m + 1 = 2j/"/2,

(17) p2m - 1 = 2x.

Since n/2 > 1, by Lemma 5, we see from (16) that n/2 has no odd prime divisors. So
we have n = 2a+1, where s is a positive integer.

When s — 1, (16) can be written as

(18) P
2m + \ = 2y2.

Then (u,v) = (pm,y) is a solution of the Pell equation

(19) u2-2i>2 = - 1 , u,veN.

Since 1 -I- \/2 is the fundamental solution of (19), we get
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On the other hand, if m has an odd prime divisor r , then (X, Y) = (pm^r,y) is a
solution of (14). However, by Lemma 6, this is impossible. Therefore, if m > 1, then
m is a power of 2 and (X, Y) = (pm/2,y) is a solution of (10) for D = 2. But, by
Lemma 4, this is impossible too. So we have m — 1. Then the positive integer I in
(20) must be an odd prime. Thus, by (17) and (20), we obtain the solution (ii).

When s > 1, we see from (16) that (X, Y) = (pm,yn/8) is a solution of (9).

Therefore, by Lemma 3, we get the solution (i). Thus, the theorem is proved. u

P R O O F OF THEOREM 2: Let (x,y,m,n) be a solution of (2) with 2 f n. Then
(X, Y, Z) = (x,pm, y) is a solution of (7). By Lemma 2, we get

(21)

where A, B are positive integers satisfying

(22) A2 + B2 = y,

From (21), we get

(23) pm -•
»=o

Let

(24) a = A + By/^l, P = A- By/^1.

We see from (22) and (24) that (a, /3) is a Lucas pair with parameters (2A, -4B2).
Further, let ut(a, /?) (t = 0,1,2,...) denote the corresponding Lucas numbers. By (23),
we get

(25) pm = ±Bun(a,0).

Notice that ( - ) = ( — ) = ( - l ) ( p " 1 ) / 2 , where ( - ) is the Legendre symbol.

By Lemma 7, if p is a primitive divisor of un(a, @), then p - ( - l ) ^ " 1 ^ 2 = o (mod n).

Since 2 \ n and p - ( - l ) ( p - 1 ) / 2 = 0 (mod 4), we get p = (-l)(p"1) /2(mod An).

Therefore, by (25), if the solution (x,y, m, n) satisfies p^ (-l)^'~1^2(mod 4ra), then
un{a,f5) has no primitive divisors. By Lemmas 8 and 9, we deduce that n = 3 and
p\B. Then, by (23), we get

(26) B = p\ ZA2 -B2 = ±pm~s, s € N, s^m.
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Since gcd(A,B) = 1, we see from (26) that p = 3. thus, if p > 3, then (2) has no
solutions (x,y,m,n) satisfying 2\n and p— ( - l ) ^ " 1 ^ 2 ^ 0 (mod 4n). The theorem
is proved. D

PROOF OF COROLLARY 1: Let p be a Fermat prime. Then we have

(27) p = 22' + 1, s g N .

Since p - ( - l ) ( p ~ 1 ) / 2 = 22°, by Theorem 2, then (2) has no solutions (x, y,m, n) with

2\n.

On the other hand, since p ^ 239, by the proof of Theorem 1, if (x, y,m, n) is a

solution of (2) with 2 | n, then we have m — 1, n = 4 and

(28) P2 + I = 2j,2.

Substitute (27) into (28), and we get

(29) 2 2 ' + 1 - 2 + (22 '-1 + l ) 2 = 2/
2.

Therefore, by Lemma 1, we obtain from (29) that

(30) 22 '-1 = 2AB, 22'-1 + l = A2-B2,y = A2 + B2,

where A, B are positive integers satisfying (6). From (30), since gcd (A, B) — 1, we get
from the first equation s > 1, A = 22*~2 and B = 1. However, by the second equation
in (30), we get

(31) 1 = 2 2 ' - 1 + 1 = 22'+1~4 - 1 = 3 (mod 4),

which is a contradiction. Thus, the corollary is proved. D

PROOF OF COROLLARY 2: Let p be a Mersenne prime. Then we have

(32) p = 2r — 1, r is an odd prime,

if p ^ 7. Since p - ( - l ) ( p ~ 1 ) / 2 = 2 r , by Theorem 2, then (2) has no solutions (x, y, m, n)

with 2\n.

By Theorem 1, if r = 3, then p = 7 and the only solution of (2) with 2 | n

is (x, y, m, n) = (24,5,1,4). Since p ^ 239, by the proof of Theorem 1, if r > 3 and
(x, y, m, n) is a solution of (2) with 2 | n, then m = 1, n — 4 and (28) holds. Substitute
(32) into (28), and we get

(33) 2 2 r - 2 + (2r-J - I)2 = y2.

By Lemma 1, we obtain from (33) that

(34) 2 r - 1 = 2AB, 2r~1 - 1 = A2 - B2, y = A2 + B2,

whence we obtain A = 2r~2 and B = 1, since gcd (A, B) = 1, but these do not satisfy
the second equation in (34), when r > 3. Thus, if p > 7, then (2) has no solutions
(x, y, m, n). The corollary is proved. D
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