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ISOPERIMETRIC INEQUALITIES ON SURFACES OF CONSTANT
CURVATURE

HSU-TUNG KU, MEI-CHIN KU AND XIN-MIN ZHANG

ABSTRACT. Inthis paper weintroduce the concepts of hyperbolic and elliptic areas
and prove uncountably many new geometric isoperimetric inequalities on the surfaces
of constant curvature.

1. Introduction. Isoperimetric problems for plane polygons and polyhedrain R®
date back to ancient times. Considerable contributions were made to this area in 19th
century by Steiner, Lindelof, Schwarz, Brunn, Minkowski, etc. Different methods and
techniques that have evolved ever since cover many branches of mathematics such as
combinatorics, calculusof variations, group theory, differential andintegral geometry, ge-
ometric measuretheory, etc. During the last two decades, advancesin computer sciences,
crystallography, geometric tomography and other practical scienceshave shown that re-
searchin geometric extremum problemsfor polygonsand polyhedraare moreinteresting
and important than ever before. However, “very little is known about the isoperimetric
problems for non-Euclidean polytopes. One reason may be that the measurement of
volume in non-Euclidean space is rather complicated” [5, p. 213]. In this paper, we
shall be concerned with isoperimetric problems for polygonal curvesin non-Euclidean
planes. It is known that the plane trigonometry laid the foundation for geometry of plane
polygons, and the Heron’s formula for a triangle and the Brahmagupta's formula for a
cyclic quadrilateral are the two keystones. These facts inspired us to approach isoperi-
metric problemsfor non-Euclidean polygons by introducing “hyperbolic” and “ elliptic”
areas and lengths that are based on non-Euclidean Heron's formulas. We then are able
to establish a unified Heron formula for a triangle, and a unified Brahmagupta formula
for a cyclic quadrilateral on surfaces of constant curvature. These new definitions of
length and area for polygons are compatible with existing ones, and can be used to give
a unified isoperimetric inequality for polygonal curves on Euclidean plane, sphere, and
hyperbolic plane. Themain techniquesused in this paper are discrete analyticinequalities
which include many new interesting inequalities involving trigonometric functions and
hyperbolic trigonometric functions. There is no doubt that these analytic inequalities are
important in their own right, and applicable to many problemsin other fields.

Let M be a complete, connected, simply connected surface with constant Gaussian
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curvature Ky = 0, —1, or 1 respectively, that is,

R?. Euclidean plane, (Km =0)
M =< H?(—1), hyperbolicsurface, (Ky =—1)
(1), unit 2-sphere, (Km = 1),

andlet P,, beann-sided polygoninM (i.e., asimple closed curve consisting of h geodesic
segmentswhich is not smooth at n-vertices) with length L(P,,) which enclosesa domain
of area A(Py). If M = R?, the classical isoperimetric inequality states that (cf. [6, 7, 8])

) L2(Py) > 4dhA(Py).  dn = ntan g.

Equality holdsif and only if P, isregular. We shall prove that the isoperimetric inequal-
ities similar to (1) also hold for P, in the surfaces H?(—1) and S?(1) .

Now let us fix some notations. We shall assume that Py, is cyclic, that is, the vertices
{Ai}1<i<n @eonacircle of radiusr (arranged in counterclockwise order and assuming
r < 1if Ky = 1) with center at O, and O is inside the domain bounded by P,. Let B;
be the point lying on the geodesic joining A; and Aj+1 (setting An+1 = Ag) so that OB; is
perpendicularto A Ai+1, 1 <i<n.Forl<i<n,set

a; = angle ZAOB;. B = angle LOAB;,
g = length of AB;, b =length of OB;, and
F; = areaof thetriangle A OAB;.

From the definition we have

@ L(Py) = 221 a
3 AP,) = 23°F..

i=1
In order to have unified statements for manifolds M with Ky, =0, —1, and 1, set

p. ifM=R?
k={h if M=H2(-1),

e. if M=S¥1),
and
w, if k=p,
4 Udw) = ¢ uh(w), ifk=h,

[ U(w), ifk=e

where u = sin, cos, tan, etc. For instance,

w. if k=p,
Snw) = { sinh(w),  ifk=h,
snw). ifk=e.
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By using (4), the law of sinescan be stated as follows. Let AABC be ageodesic triangle
in M with lengths of edges BC, CA and AB equal to a, b and c respectively. Then

sinA sinB sinC
®) Sn(@ sn(® sn( < Phoande

If wesets= %(a+b+c) and F = areaof AABC, then the well-known Heron formulas
are given asfollows (cf. [6, 10]):

(6) F={s(s—a)(s— b)(s— )}
if M = R2, and if M = H2(—1), then

1/2

) 2coshgcosht—2) coshgsjn; = {sinhssinh(s — a) sinh(s — b) sinh(s — ¢)} /.

For thetriangle AOAA+1 in H?(—1), we havea = 2a;, and b = ¢ = r, hence (7) becomes
(8  (L+coshr)cosha sinF; = {sinhssinh(s — ) sinh(s — b) sinh(s— ¢)}*/%.

Formulas similar to (7) and (8) also hold for M = S?(1). It is well-known that the main
distinction among the three geometries lies in the laws of sines (5) and cosines which
together with (7) and (8) indicate that the study of trigonometry of such as sing(a), etc.
for k = p,h and € and (1 + coscr) cos a;, k = h, e, etc., are essential and important in
these geometries. This motivates us to introduce the following concepts of hyperbolic
and dlliptic lengths and areas.

DEFINITION 1.1 (a) (Hyperbolic and Elliptic Lengths) Define
Li(Py) = 2il sn(@),  (k=p.h,e
IGCRE 2% singb).  (k=p.h.e
LPri0) =23 (cos(a) +eos (o)}, (k=h.o)
Li(Pn; u.v) = 2%1 ud@a(®),  (k=h.e

where u, v = sin, cos, tan, etc.
(b) (Hyperbolic and Elliptic Areas) For k = h, e, define

A(Pn) = {1+ cox(r)} Z: cosc(a) sinFi,

Ay(Pr) = {1+ cos(r)} Xn: cos(b)sinF;, and
i=1

A(Pr) = A(Pn) + A(Py).
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Set Ay(Pr) = Ag(Py) = A(Py) if M = R2.
(c) (Hyperbolic and Elliptic Constants)

dn(Py) = ntan %. d¥(Pn) = ntan(QK).
8n(Pn) = ncot % 5K(Py) = ncot(Q).

where

2n

(272AR) - ifk=h
Gn = (-2mAR)  f k=g,

For M = R?, set d?(Py,) = d,.
Observethat A(P,) < 2, if k = e becauser < 1, and by Gauss-Bonnet theorem [3]

N ((n—2r—AP,). ifk=h
Zi;ﬂi_{(n—Z)w+A(Pn). ifk=e

Hence we have
) 0<AP)/2n<n/n, and 0<Q <n/2 k=he

In terms of hyperbolic and elliptic lengths and areas, we shall establish the following
isoperimetric inequalities which generalize (1).

THEOREM 1.2.

(@) L2(Pn) > 4dAPr),  (k=p.h.e)

(b) LE(Pn) > 4dk(Pn)Ak(Pn), (k=p.h.€)

(©) I—E(Pn; sin,sin) > 4d,(Pn)Ax(Pn), (k=h, e).
Equality holds in any of (a), (b) and (c) if and only if P, is regular, that is, ay = a; =
"

THEOREM 1.3. Letén =ncot 7.

(@) LZ(Pn;cos.sin) > 46,A(Pn),  (k=p,h.e)

(b) LZ(Py;sin, cos) > 455(Pn)Ac(Pn),  (k=h.e)

© I—E(Pn; ©) > 45n(Pn)Ak(Pr), (k=h.e)
Equality holdsin any of (a), (b) and (c) if and only if P, isregular.

In [14], Theorem 1.2(b) for k = p was proved by Tang. Let us observe that the
definition A (Py) for k = h, eis quite natural and consistent with the definition of Ay(Py).
For if P, liesin R2, we have

l n
(10) Ap(Pn) = A(Pn) = 5 >_(2ai)b.
i=1

In section 3, we shall verify the following:

(11) AP =2 és‘nk(zau) sinb). (k= h.e).
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Hence, we can combine (10) and (11) so that (11) also holds for k = p. We can also
have uniform statements for the Heron's formula and the formula of Brahmagupta
(cf. Lemma 3.4). More precisely, we have

(12) AdPa) = {s[s— 25(a)][s— 25(a0) |[s — 2(@a) |

wherek = p. h, e, s(&) = sing(@), i = 1. 2.3, and s = s(a1) + Sk(az) + se(as); and

(13 AP = {[s— 25(a)][s— 25(a0)[s — 25(a)][s— 25(as) ]}

where s = T4, si(a), k = p,h.e. If k = p, (12) and (13) are simply the well-known
Heron's formula (6) and Brahmagupta formula. These are simply some of our results
which deal uniformly for three different geometries. In this paper we shall prove many
new isoperimetric inequalities including those which generalize both Theorem 1.2 and
Theorem 1.3.

The study of isoperimetric inequalitiesis very important in geometry and mathemati-
cal physics. It isalso useful in analysis, particularly, differential equations. For instance,
the famous Faber-Krahn inequality showed that the classical isoperimetric inequality for
simple closed plane curves is equivalent to the physical isoperimetric inequality which
is concerned with the first eigenvalue of the Dirichlet problem ([3, 11]). This inequal-
ity has important consequence in physics. Thus, we expect that our new isoperimetric
inequalities will have useful applications aswell.

2. Pseudo-Polygons. In this section we shall introduce the concept of pseudo-
polygon in the plane so that for a polygon P,, in M we can construct pseudo-polygons P,
in R2. We will show that the areas A (P,) and A(P,,) can be computed from the areas of
Pn’s. We shall use these results to proveformulas (12) and (13).

To simplify the notations, we shall denote siny, cos, and tan, simply by s, ¢« and
t respectively. Since /OBiA; = 5, 1 < i < n, the following formulas are well-known
(cf. [20]), wherek = p, h. e,

(14) sina; = s(@) /s(r).
(15) cosa = ti(by) /ti(r),
(16) tan o = te(a) /se(br).

If k =h and e, we have (Pythagorean Theorem, cf. [10])
(17) cos(r) = cos(a) cosc(bi).

Letusobservethat 0 < Fj < 7/2fori=1.2,..., n by Gauss-Bonnet theorem because
Fi :7T/2—(O(i+ﬁi)ifk: h,andoq+5i :7T/2+Fi <7Tif|(26(f0rl’ <1).
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LEMMA 2.1. Letk=h, e Thenfor 1 <i <n, we have

o Sel@n)se(by)

(a) sinF = 1+—Ck(r)
_ C(@) * c(by)
(b) coski = 1+—Ck(r)

ProoF. Lete=1lifk=hande=—-1ifk=-e.

@ sinFj = ¢ - cos(a; + G)
. { (@) te(bi) — sd(@) S&(bi)}
() () sd(r) sr)

(by (14). (15))

S(@)sk(bi)
= {W o) — 1]} (by (17))
sk(@)s(bi)
= W [Ck(r) - 1]
_ Su(@)se(ln)
C o1+l
(b) cosF; = sin(g +F)
= sin(a; + 53i)
- i("’“)ck(b‘%zr;ﬁ(bi)c"("’“) (by (14). (15). (17))
_ {dk@) — Lpodbi) + {ci(b) — Lea)
s(r)
_ E{Ck(ai)ck(bi) — 1}H{o(@) + ce() }
- c(n—1
_ Cul(@) + c(ly)
- e byan.

1167

DEFINITION 2.2 (PSEUDO-POLYGON). Let {Ai :1<i<n+1} beaset of pointson

the circle with center at the origin O in R? with radius ? such that if we identify R? with

the complex plane, then

A =texp(v'—16), 1<i<n+1

wheref; < 6, < --- <Ou1and0 < 6is1 — 6 < 7, 1 <i < n. A pseudo-polygon P, is

the polygonal path that joins the successive points Ars.

For simplicity of statement, we identify P, with the set {f, (%.&) : 1 < i < n},
where 2&; = 6i+1 — 6; and 2§ = length of A/Ai41. Notice that if Y7L, & = mr for some
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positive integer m, then P, is a polygon with A,.; = A; which is simple and convex if
m = 1. Moreover, if m > 2, nand mcoprime, and &; = --- = &, = mr/n, then P, isa
“star polygon” (cf. [4, p. 93]). Define the area A(P,,) and length L(P,) of P,, by

(18) AP,) = Z areaof AAOA ;.
i=1

and

(19) L(Pn) = 2; 4.

Let us set

RY={@ = (01.02.....0,) ER": Ln(@) — 46, >0, and 6 > 0,1 <i < n},

where Ly(@) = 221-“:1 6;. Then we have the following basic property for a pseudo-
polygon.

LEMMA 2.3. For a pseudo-polygon P, if S & > m then (&g, 82, ..., &) € Iiil.

ProoF. We need to show that

n
(20) S4—25>0, j=12....n
i=1

Thisistrueif P, is apolygon. Assume that P, is not apolygon hence 1L, & > 7 and
An1 # A1, Case (). j # 1,n. It suffices to verify that A,A,+1 is an edge of a polygon
which is a subset of the curve P,,. Observe that there exist integersxandy, 2 < x <j
andj +1 <y < n, so that the edge A,_1A« and the edge Aj/A,.; intersect at a point, say
Q. Otherwise we would have ! i + & + X,y & < . for all u, vwhere 1 < u <.

andj +1 < v < n. However, this contradicts the hypothe;s L 1oc. > 7. Thus A,A,+1
is an edge of the polygon with vertlces{Q A ..., A1 A,+1 ..... Ay} Case(n) ji=1n.

Let us provethecasej = 1. The proof forj = nissimilar. If A = Aq for someq #1,
then clearly (20) holds. Thus, Al # Aq q# 1 Lets> 3besuchthat >Slon < 7
and > 1&. > m. Then AS and A, are on the right and left of A respectively, and
S0 s = LAOAs1 > /AOA, because 7 = 2,*11 & + /AOA;. This will imply the
following:

as = length of AsAs.1 > length of AA,.

Thereis apolygon P (asa curve) such that
APy UAA C P C PaUAA;., and AdAsy ¢ P,

that is, ArA; and AdA; are two edges of P, and A¢A1 is not an edge of P. Thiswill give
the desired inequality (20).
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DEFINITION 2.4. Let P, be an n-sided polygonin M asin Section 1. Since
sinai =s(@)/s(r),  sin(r/2 — a5) = t(br) /t(r)s
sinBi = su(bi) /(1) sin(r /2 — ) = t(@) /t(r).
and by Lemma2.1
sinFi = sa)sdb)/{1+adn}.  (k=he
Sin(g_Fi): {e(@) + e}/ {1+ an)}, (k=h.e)
hence we can construct n-sided pseudo-polygons Py, «(K), Pnr(K), €tc., asfollows:
Pao() = {s). (. s(@) :1<i<nf.  (k=p.h.
Poo(d = {t0). (5 —ante®)) :1<i<nf.  (k=p.h.e)
P = {8 (B s)) s 1<i<nf. (k=phe
Pas() = {60). (5 — ft@) :1<i<n}.  (k=phe
Por() = {1+ 60, (Fi.s@)s(®) 1 1<i<nf.  (k=h.o
Prr(k) = {1+ck(r). (g — Fi, @) + o) 1 1<i < n}, (k=h,e).
LEMMA 2.5. |5n,a(k), n even and Py, ,(K) are polygons for k = p, h, e, moreover,
Pus(P) =Pno(p) and Pojs(p) =Pna(p). neven.

For any real valued function S defined on some interval in R, and for any @ € R”,

we shall set
SO) = (S(61)- H02): - - - - (b))
Thusif we let
a=(ag,a,..., an) b=(by,by,..., bn) a=(ag, 00,..., on)
ﬁ = (ﬂl.ﬂz ..... ﬁn) F= (F]_ F2 ..... Fn) then
(@) = (SK(al).sK(az), e .&(an)). and sin(e) =(sinag,...,Sinap), €tc.
LEMMA 2.6.

(@) s(@),sin(a) eR?, n>3, k=p.he

(b) t(b), cos(a) eR?, n>4, k=p.he

(©) s(b),sin(B) eR?Y, n>4, k=p.e ork=hand(n—4)r > AP,).
(d) t(a),cos(B) €R?, n>3, k=h.

© (ck(@1)+c(by). .. . &(@n)+ck(bn)), cos(F) € RY, ifk = h; or k = eand (n—2)7 >
2575 Bi
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PROOF. The results are immediate consequences of Lemma 2.1 and Lemma 2.3,
since we have

(@ Ty o6 = 7, and 5(@) = (1) sin(a).

(b) YL (5 — ) > wif n> 4, and t(b) = ti(r) cos(c).

() ¥t 15. > ifn>4,k=p,e ork=h and (n—4)r > A(P,), and s(b) =
s(r) sin( B).

(d) XLi(3 — Bi) >, if k=h, and t(b) = t(r) cos( B).

(® ZLi(5 —Fi) >rifk=hork=eand(n—2)r > 23, §i.

3. Elliptic and Hyperbolic Areas.

ProrPosITION 3.1. Ifk=hande,

(@ A(Pn) = 3 2L sc(2a)sc(bn),

(0) APn) = 3 50 s(@)sd(2b),

(©) Ax(Pn) = 2L se(@)se(bi){cw(@) + c(bi) }-

ProOCF. It follows from the definition of Ac(P,) and Lemma2.1 that

APn) = {1+cn)} Z &) Skl(?)cskk((rt;i)

- -

sk(ai)ck(ai)sc(bi)

1
= 5 2 sd2a)sdby).
i
The proof of (b) is similar, and (c) follows from (a) and (b). N
Now we shall give geometric interpretations of the areas A, (Pn), A(Pn) and Ay (Py).
Set

1
iy

_ (-1, ifk=h
5k‘<1. ifk=p.e
THEOREM 3.2, Forn > 3,
@ APn) = A(Pro(K) = ZNA(Pra(K),  (k=p.h.e)
(b) Au(Pn) = A(Pus(K) = EMA(Pns(K),  (k=p.h.e)
© Au(Pr) = A(Por(K) = A(Prr(K) = A(Pra(K) + A(Phs(K),  (k=h.e).
PrOOF. Letk = h,e. Fork = p, the proof is easy.

@ APa®) = sd@) L0 — @)}
s(@a1- 0] - £@)

sd@){ack@) ~ F@dm)]) " by an)

1
» 1Mo 1Ms 1> I

sk(@)ck(@)sc(bi)
= (Pn) (by Prop. 2.2)
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Also,
GEOA(Pro() = 0 2 w0 E0) — o)}

= o) L WO - a)gm)]
= &) (0 21— 0] — casen|
= o) 0) - @) ko) + SO}
= a0 o) a1 - @)}
=y pls(@)
= AdPy).

®) A(Pas(9) = 2 8B — §0)} 7 = AP

Similarly,

ANA(Pns(K) = (1) zl t(@){1(r) — ()} = A(Py).
(c) A simple calculationwill give

{1+6)}? - S@)Lb) = {c@) +oby)
Hence
A(Pas() = 3= s(@)s )| [1+od0)] ~ S| = AP
Likewise,
A(Brr(9) = 3-(ea) + o)1+ o) ~ [ea) + a®)}” = APy,
Asimmediate corollaries we obtain the following new Heron's type formul ae.

THEOREM 3.3 (HERON FORMULA). Lets= s(a1) + sk(a2) + s(az), k = p, h, e. Then

21 AdPa) = {sfs— 25(a0)][s— 25(a2)][s - 25d@)])

ProoF. Apply the Heron formula (6) and Theorem 3.2 to the triangle P3 (k).
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LEMMA 3.4 (BRAHMAGUPTA [2], [6]). Leta, b, c and d denotethe lengths of the sides
of a cyclic quadrilateral P4 in R2. Then

(22) AP:) = {(s—a)(s— b)(s— )(s— o)} %,
wheres = 3(a+b+c+d).

Since P4 (K) and P 4(p) are cyclic quadrilateralsin R?, it follows from Theorem 3.2
and Lemma 3.4 that we have

THEOREM 3.5.

@) A(Ps) = { [s— 2s(a1) |[s — 2s(a2)|[s — 2s¢(ag) |[s — 25c(a) ] }1/2-
wheres= Y%, s(a), andk = p. h,e.

®) Ao(Pa) = {(s— 2by)(s — 205)(s — 2bs)(s — 2b4)} /%,
wheres =", by.

We might expect that similar formulae for A (Py) exist for cyclic polygonsP,, n > 5.
Thisisnot truein general. For instance, if k = p, n = 5 (resp. 6), Robbins[12] has proved
that if weletu = 16A§(Pn), then u satisfies a monic polynomial equation of degree 7,
and if n = 7, u satisfies a monic polynomial equation of degree 38 with some of the
coefficientsthe solution of a system of linear equationswith 143,307 unknowns. Yet, we
are ableto find formulas for A (Pn) under some restrictions as follows.

Now, let n = 2m(m > 2), let P, = Pmm(K) be a cyclic 2m-gon in M with m sides of
length 2a; and remaining msides of length 2a,. Say,

Qy=az3=---=amn1. and a=az=---=amm.
THEOREM 3.6. Letn=2m> 2, andk =p. h,e. Then

@)  A(Pmn(K) = SmTE)

PROCF. In[8], MacNab has proved the following:

{[sh(an) + k(@) cos T + 25(an)s(@a) |-

m
(24) Ao(Pmm(P)) = —7~
sin(z)
Thus, we can apply Theorem 3.2 and (24) to the polygon P, ,(K) to obtain the result.
Let us observe that if we apply the inequality (1) to the polygon Py, (K), then Theo-

rem 1.2(a) follows immediately from Theorem 3.2(a). An alternate proof will be given
in Section 5.

™
{(af +aj) cos — + 2a1a2} :
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4, Pseudo-Perimetersand | soperimetric Inequalities. Let /A(n) denotethetrian-
gleinR®with vertices(1. 0, 0), (0. 717, 0) and (0,0, £),n > 3. Henceif (x.y. 2) € A(n),
wehavex >0,y >0,z> 0and

(25) 2X+2(n—1)y+nz=2.

For (x,y.2) € A(n), we have introduced the concept of pseudo-perimeter L,[X, (n —
1)y.nz/2] in [7] which is a positive function (homogeneous of degree 1)

L, [x, (n— 1)y, %Z] RN R  definedby

@8 Li[x -y @)
_ (n E 2>n(y+2) {Ln(®)}2x+(n72)y{ {Ln(@)) . 401] o {Ln(®) B 4en]}yﬂ.

It follows from (26) that
27) La(@®) = La[1.0,0](®).

For (x,y,2) and (X, Yy, Z) in A(n), define

(28) xy.2) = (X.y.Z) ifx>xandZ >z
We have the following fundamental inequality.
THEOREM 4.1. [7]. Suppose (X, Y.2) > (X,Y',Z) for (x.y,2) and (X, Yy, Z) in A(n).

Then
(29) La[x. (N = 1y. nz/2|(@) > La[X, (n— 1)Y.nZ /2|(@®)
forany@® € R?, andif (x.y, 2) # (X.Y', Z), equality holdsifand onlyif 6 = 6, = - - - = ..

DEFINITION 4.2. Let (X.y,2) € A(n), and k = p, h, e. We define various pseudo-
perimeters of P, asfollows.
(30) Li[x. (n— 1)y, nz/2|(Py) = La[x, (" — 1)y. nz/2|(s(a)).
(31) Lu[x. (n = 1)y.nz/2|(Py) = Ln[x. (n — 1)y. nz/2|(s¢(b)).-
(32) Li[x. (n— 1)y, nz/2|(Pn; ¢) = La[x. (n — 1)y. nz/2|(ck(@) + (b)),
wherek = h. €; cx(a)+ci(b) = (c(ar) +ck(by). .- ., G(@n) +Ci(bn) ), and c(a) +c(b) € RY
if (x.y.2) # (1,0.0).
(33) Li[x. (n = 1)y. nz/2](Pn; u.v) = Ln[x. (0 — 1)y, nz/ 2] (wi(u. V).
where wi (U, v) = (U@r)vi(by). - . . - Uc(an)Vi(bn) ), u. v = sin, cos, etc., and wi(u,v) € RY
if (x.y,2) #(1.0.0).

These pseudo-perimeters are well-defined by Lemma 2.6 (with some restrictions in
some cases). |n terms of pseudo-perimeterswe can restate Theorem 3.3 and Theorem 3.5
asfollows.
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THEOREM 4.3.
(34) L0, 1,0(Ps) = 4dsA(P3).  (k=p.h.e)
THEOREM 4.4,
(35 L[0.0,1](Pa) = 4dsA(Pa).  (k=p.h.e)
(36) LZ10. 0, 1](P4) = 484An(Pa)-

As immediate consequences of Theorems 4.1, 4.3 and 4.4 we have the following
general isoperimetric inequalities. These inequalities generalize Theorem 1.2(a) for n =
3,and 4.

THEOREM 4.5. For any (x.y.0) € A(3), (x,y.0) > (0,1/2,0).
LZ[x. 2y.0](P3) > 4dsA(Pa).  (k=p. h, @)
If (x,y.0) # (0,1/2,0), equality holdsif and only if P isregular.
THEOREM 4.6. For any (x,y.2) € /A(4),
@) Li[x. 3y. 27(Ps) > 4dsA(Ps)  (k=p.h.e).

(b) L21x. 3y. 22(Pa) > 46aAp(Pa).

If (x.y.2) # (0,0.1/2), equality holdsin (a) (resp. (b)) if and only if P4 isregular.
Theorem 1.2(a), Theorem 4.5 and Theorem 4.6 suggest the following conjecture.
CONJECTURE 4.7. Let (X, y.2) € A(n), (X,Y,2) #(1,0,0), n > 5. Then

LE[x (n— 1)y, nz/2|(Pn) > 4dnAk(Pn); (k=p.h.e).

Equality holdsif and only if P, isregular.
Now we establish Conjecture 4.7 in some special cases.

THEOREM 4.8. For any (x,y,2) € A(n), n=2m > 6, and any P, = Ppym(K), k = p,

h, e, we have
(37) 1+ﬂ<1—cos%)

> LIE[X (n - 1)y nz/ 2] (Pn)

- 4dnAc(Pn)

T l+cos’t

=145 (1-cos ) - m_12]

where
g= {s(an) — sc(@2)}?
2 {[Si(al) +s(ap)] cos L + 2&(31)&(32)} !

and

(39) 1-cos™ > 2%
m~ (m-1)2"

Hence Conjecture 4.7 holds for P, = Pmm(K).
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. H 21 . . .
PrOOF. Sincem > 3 and cosx = >-2%(—1)' é—l;, asimple calculation yields

m(m — 2) 2cos
(m—1)2 ~ 1+coskt’

(39)

Thisimplies (38). Applying Theorem 3.6 we see that

L2[1.0,0](Py)

(40) 40, A(Py)

T
—1+5(1—COSE).
By definition

(41) L2[0,0,1](Pyn)
4n?

T (m—1)2 {m(m —2)[si(an) + k(@) | + [P + (m— 2)2]3((a1)s((a2)},
Again, by using Theorem 3.6, it follows from (41) that

L2[0.0, 1](Py)
4dnAc(Pn)

Thus, we can use Theorem 4.1 to complete the proof of the theorem.

@ o) Lreosg,

=1+ﬁ{<1—cosﬁ1 —m

Conjecture 4.7 for P = Pmm(p) was aso provedin [7].

REMARK. L2(Pn) — 4dnAc(Py) is called the isoperimetric deficit of the polygon P,.
From (40) we have

(43) LZ(Pr) — AdhA(Pr) = 43 (1 — cos — ) A(Py).
5. Analytic and Geometric Isoperimetric Inequalities. In this section we shall
study geometric isoperimetric inequalities via analytic isoperimetric inequalities. In

particular, we prove both Theorem 1.2 and Theorem 1.3.
For a given constant o > 0, define

Hn(o) = {@z(al....an) ER": éei =no. 6 > o}.

andif 0 < o < %, set

dn(o) = ntano, on(0) =ncoto,
and .
Ha(o. 7/2) = {@ €Hn(0) :0< 6 <3, 1<i< n} .
Now for © = (61.....6n) € Hn(o.7/2), we may assume (by rearranging subscripts if

necessary) that 6; > 6, > --- > 6,. Let p, 1 < i < n, be constants with p; > p >
- >pn>0,andsetn =L piand p = Ly pifi /1.
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THEOREM 5.1. Let © € Hy(o. 7/2). Then

n 2 n n 2
(@ (Zpisinf)i) 2ntanoZpisin@icosei+{nsinu—2pisin0i} .
i=1 i=1

i=1

n 2 n n 2
(b) (Z pi cosf)i) > coto | pising; cose; + {ncosu —> pi cosf)i} .
i=1 i=1 i=1

Equality holdsin (a) (resp. (b)) ifandonlyif 6, =6, =--- =6, =0 = pu.

PROOF. Setfi(t) =tu+(1—1)8,1<i<n Then0<6(t) <rw/2for0<t <1
Noticethat if 1 > 6; (resp. p < 6;), then . > 6;(t) (resp. p < 6i(t)) for 0 <t < 1, andso

(1 — 6)(cosp — cosbi(t)) <O if u # 6.

Observethat 1 > o because

1
M—(f:n—nZ(pi —p)6 —6;) >0.

i<j

Henceto prove (@) it sufficesto prove the following inequality

(©)
n . 2 n . . n . 2
(Z pismei) > ntanp Y pi sind; cos6; + {nsmu—ZpismHi} ,
i=1 i=1 i=1
with equality if andonly if 61 =0, =--- =6,=0 = pu.

To prove this inequality, let us consider the function

F(t) = {épisinei(t)}z — ntanuépiSiHQi(t)COSQi(t)
- {nsinu—ipisinei(t)}z. 0<t<1
=1

We need to verify that F(0) > 0, with equality if andonly if 0 =6, =--- =6, =0 = pu.
Since F(1) = 0, it sufficesto verify that F'(t) < 0,0 <t < 1if® Z (o,..., o). Clearly

i pi(u — 6;) cos26;(t) = zi pi(i — 6;) cos® 6;(t)
i=1 i=1
because 3", pi(n — 6i) = 0. Hence

F'() = 20sinp > pili — ) Costi () — ntan i 3 pi(u — ) cos26i()
i=1 i=1

= 2ntanp Y pi(u — 6;)(cosp — cosbi(t)) cosbi(t) < O
i=1
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for 0 <t < 1asdesired.

Now set ¢ = 5 — 0. Then (b) follows immediately by applying (a) to (g —01,...,
5 —0n) € Ha (5.5).

If p =p2 =--- = py = 1, Theorem 5.1 was proved by Zhang in [15]. The proofs
in [14] and [7] of the following corollary contain gaps. Thus, Theorem 5.1 gives a new
proof of these two inequalities.

COROLLARY 5.2 (TANG [14]). Let© € Hy (0. 3). Then

n 2 n
@) (Z sin6i> > dn(0) 3" sing; cosé.
i=1 i=1
n 2 n
(b) (Z cosei) > 6n(0) > sind; cosb;.
i=1 i=1
Equality holdsin (a) (resp. (b)) ifandonlyif 61 =0, =--- = ;.

We are ready to prove Theorem 1.2 and Theorem 1.3.
PROOF OF THEOREM 1.2. Letk=h. e

n . 2
(@ LiPo) = 4[3 sind@)|
= 40 sna) by ()
> 4d,S(r) i singjcosa;  (by Corollary 5.2)
i=1

- T Se(@)t(b)
- SO S0

= Mnésﬂ(mck(a@)sx(m
= 4d Ac(Pr), (by Prop. 3.1)

whered, = dy(7/n). If k = p, the proof is similar.
(b) By (9),0< QK < 7/2and X, i = nQK. Hence by Corollary 5.2(a)

CiPy = 4> sno)}

40 sns |

v

42(r)dk(Ps) 3" sin i cosf
i=1

4d(Py) z; s(@)sd(b)ce()

4dK(Pr)A(Pn).
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(©) YL, Fi=no, 0<o=A(P,)/2n< m/nby (9). Thus,

L2(Py,; sin.sin)

a{ > sina)sind)
i=1

{1+ck(r)}2{zn:sinFi}2 (by Lemma2.1)
i=1
> 4{1+ o)} ch(Py) S SinF; cosF,
i=1

= mn(Pn)igsK(a)sk(bi){ck(a)+ck(bi>} (by Lemma2.1)
= 4d,(Pn)AK(Py). (by Prop. 3.1)

PROOF OF THEOREM 1.3. Theproof isalmostidentical with the proof of Theorem 1.2,
hence we give only the proof of (c). Again, using Lemma 2.1,

LZ(Pn;c) = {1+ cos(r)}z{zn: cosF; }2
i=1

v

4{1+ cos(r)}zﬁn(Pn) Zn: sinF; cosF;
i=1
= 46(Pn)Ak(Pn).

Now we shall generalize both Theorems 1.2 and 1.%. For ¢ = (x.y,2 € A(n), if
¢ # (~1, 0,0) we shall always assume that @) € R} where S = sin or cos, and
® € Hn(o.7/2), where

Hn(o, 7/2) = Ha(o, 7/2) NRY.
. dn(o), ifS=si

_ n\0 ). | =sin

Hn(0) = {6n(0), if S= cos.
Let us consider the following analytic isoperimetric inequality:
) L2[x. (n— 1)y.nz/2|(S@)) > 4n(0) T, Sin; cosb;.

with equality if only if 61 =6, = - =6y,

where® € Hy (0. 7/2). Theinequality () dependsonn, S, ¢, o and @, henceit will be
simply denoted by Alng,(S ¢, o.®). From now on, we shall assumethat k = p, h, e if
o=2andA(Py)/2n, andk = h.eif o = QL.

THEOREM 5.3. Suppose that Alnqn(sin;g. 0,®) holds for given o (¢ = 7/2n, Q
in (44) and (45) respectively) and @ € Hn(o, 7/2). Then the following geometric
isoperimetric inequalities hold:

(44) LE[x (n— 1)y.nz/2|(Pn) > 4deA(Pr)  (SI@) = sin(a));

@5 L¥[x.(n—1)y.nz/2|(Py) > 4di(PA(PY)  (SO) =sin(9)).
Equality holdsin either of (44) and (45) if and only if P, is regular.
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PrROOF. The proof is identical with the proof of Theorem 1.2. We use
Alng,(sin; ¢, 0. @) instead of Corollary 5.2(a). Let usverify (44): sinces = 7, dn(0) = dh,
and so,

LZ[x (n—1)y.nz/2|(Py) = si(r)LA[x. (n— D)y. nz/2|(sin(e))
4d,S2(r) Zn: sina; - COS

i=1
= 4dnAc(Pn)-

If ¢ = (1.0.0), Alng,(sin;¢, 7/n,@) is exactly Corollary 5.2(a). Hence this theorem
generalizes Theorem 1.2. We al so have the following generalization of Theorem 1.3.

v

THEOREM 5.4. Supposethat Alng,(cos; ¢, 0, @) holgls for giveno (o = /n, @ and
A(Pn)/2nin (46), (47) and (48) respectively) and @ € Hn(o. 7/2). Then

(46)  LZ[x (0~ Dy.nz/2|(Pr;cos sin) = 4:A(PY.  (SO) = cos(@);

47) Lg[x (n— Dy.nz/2|(Py; sin. cos) > 465(P)AcPr),  (SO) = cos());
(48) LE[X (n—1)y. nZ/Z](Pn; c) > 4(Sn(l:)n)An(Pn)- (S«E‘)) = COS(F))-
Equality holdsin any of (46), (47) and (48) if and only if P, isregular.

Next we shall establish Alng,(S; ¢. 0. @) for some special cases. These new analytic
isoperimetric inequalities will give new geometric isoperimetric inequalities of types
(44)—(48) by Theorems 5.3 and 5.4.

Letn=2mand

Kn(o.7/2) = {@ € |:|n(o,7r/2)

01+0>=20, 01=03=---=0m1
and @, =04="--- =0

Observethat Ky (o, /2) isan open subset of the 1-dimensional hypersurface
{OcR™:01+60,=20, 601=03=---=0um1, ad 62=04=--- =0}

THEOREM 5.5. For any¢ = (x.y.2) € A(n), n=2m > 6, and constant o.
(@) 1f0 <o <3 — 7, Alng,(cos; ¢, 0,@) holdsfor @ € K, (o, 7).
(b) If 7/n <o < 7/2, Alng,(sin;¢. 0. @) holdsfor @ € K, (g, g)_

PROOF. (a) Let S = cos. It suffices to prove the theorem for ¢ = (0,0.2) by
Theorem 4.1. For @ € K, (0. §), set

AO) = A0, 02) = i;smﬁi costi. and B(@®) = B(61.6,) = L7[0.0.1](5@)).

Then
A@) = g(si n26; +sin26,)
and B(@®) = am(m— 2)(cos’ 6 + cos’ ) + 2(m” — 2m+ 2) cosfy costa .
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— _4n?
where o = 07" Let

F(61.62) = B(61, 62) | A(b1. 62),

and G(61,6,) = 0, + 02, — 20. We shall verify that the function F(61,6,) under the
constraint G(61, 62) = 0 has a unique critical point at §; = 6, = ¢ by the method of
Lagrange multipliers. If 7 = (11, 172) isacritical point, thereisarea number A\ such that

VF@1.m2) = A 7 G(n1. 2)
where \7F denotesthe gradient of the function F. Hence

aA(n){m(m — 2) sin2; + 2(M? — 2m+ 2) siny; cosy; } + mB(17) cos2n;i _
A2(n) o

wherej =1,0r2,j Zi. If g1 # 12,

aA(n){m(m — 2)[sin 2y, — sin 2] + 2(m? — 2m+ 2) sin(yy — 11) }
= —mB(n)(cos2n1 — cos217).

Since 1 + 12 = 20, A(n) = msin 20 cos(ij1 — 12) and sin(n1 — 12) # 0. Hence

(49) af(m? — 2m+2) + m(m — 2) cos 20} cos(i1 — n2) = B().
Ascos® i1 + €0 1y = 1+ cos20 cos(ij1 — 172), it follows from (49) that
m(m— 2
€0S20 = cos(n1 +12) = _m?(TnH-)Z'

But by (39) we have

cosl < _Mm=2)

m ~m—2m+2’

and so

s s
C0S20 < —COS— = cos(w — —) .
m m

This contradicts the hypothesisthat 0 < o < 5 — . This provesthat = (o, 0) isthe
only critical point. Set
9%F 9%F
=— o) ad Y= ——|po), =12
g 702 [ Y= Se06, 0 |

As 2 =1fori=1,2, henceat (61, ) = (0, 0) we have

0 86/891 6G/892
0G/a01  9%F/a02  9%F /361002 | =2(y — J).
0G/a0, 0°F/002000  9%F /003
A simple calculation gives

2amsin 20

«/—ﬁ:—W[(mz—Zm+2)c0520+mz—2m]<0‘
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Hence F(61, 62) hasits minimum at (o. o) (cf. [9]). But F(o, o) = 46n(0). Therefore, we
seethat Alng,(cos; ¢, 0,@) holdsfor 0 <o < 5 — T.

(b) Set@® =(5—0r.....53—0)and& =5 — 0. Since Z < o < 3, we have
0 <& < 5 — +. Hence we have the inequality Alng,(cos; ¢, 7, @) by (a).

Observethat sin(@®) = cos(é)) € R? and dn(0) = 6n(5). Thus
Alng,(sin; ¢, 0,@) = Alng,(cos; ¢, 7. 0).
This completes the proof of (b), and hence the theorem.

REMARK. Theorem 5.5(a) for o = © was also provedin [7].

THEOREM 5.6. Let P, = Pymm(K) be a cyclic n-gon with m sides of length 2a; and the
remaining msides of length 2a;, n=2m > 6. Let{ = (XY, 2) € A(n). Then

(a) (44) and (46) hold for k =p, h, e.

(b) (45) holdsif k=hand (n—4)r > A(P,);ork=e.

(c) (47) holdsifk =h;

(d) (48) haldsif k= h.

PROOF. By Lemma 2.6, @) € R" for @) = sin(a), sin(3), cos(c), cos(3) and
cos(F). Hence the various pseudo-perimetersin (44), (45), (46), (47) and (48) are well-
defined. From the definitions we obtain,

(i) m/n < o for S=sin under the hypotheses of (44) (resp. (45)).

(i) ¢ < m/2—m/nfor S = cos under the hypotheses of (46) ((47) and (48)
respectively).

That is, the hypotheses of Theorem 5.5 are sdtisfied for these cases. Hence we can
apply Theorems 5.3 and 5.4 to compl ete the proof.

REMARKS 5.7. (8) Theorem 5.6 (44) gives a different proof of the Conjecture 4.7
for polygons P,, = Pmm(K).

(b) We provedin[7] that for any o, 0 < o < /2, there exists a neighborhood N(o)
of (o,...,0) In I:|n(o.7r/2) such that Alng,(sin; ¢, o,®) holds for any ¢ € A(n) and
® < N(o). By using the arguments of the proof of Theorem 5.5(b), Alng,(cos,{, o, ®)
also holds for any ¢ € A(n) and @ € N(o). Thus, we can apply both Theorems 5.3
and 5.4 to polygons P, with s(a), s«(b), etc., in N(0), o = 7/2, A(Pn)/2n and QK.

Suppose now that M = H2(—1) and define

(50) Lh(Py) = i sinh2a.
i=1
THEOREM 5.8.
" 2dr| L Pn
LaPr) > 20 con =57 .

with equality if and only if P, isregular.
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Proor. We proved thefollowing inequality in [7]: Let L, 6 = no, ¢ > 0, constant,
6 >0,1<i<nThen

n 2 n
(51) (Z sinh@i) < ntanho " sinhf; cosh,
i=1 i=1
with equality if and only if 6; = - - - = 6,. Again, the proof of (51) in [7] contains gaps.

But this can be proved by the method used in the proof of Theorem 5.1 above.
Applying (51) to 6; = &, 1 <i < n, wehave

n)

(52) L2(Py) < 2n tanh = Lh(Py).
It follows from (52) and Theorem 1.2 that
ChPy) > > = coth "(P“) 4d,An(Pn) = z—d” coth L(P”)Ah(Pn)

with eguality if and only |f Pn |sregular.
THEOREM 5.9.

L2(Pn) > 4dnAn(Py).

ProoF. Letf(x) = xcothx, x > 0. Thenf(x)isincreasing. Noticethat limy_of(x) = 1,
and so

(53) coth =) o _2n

on = LRy’
MOreove, I:h(Pn) > L(Py) becausesinhx > x for x > 0. Now, we apply Theorem 5.8 to
conclude the proof.

To conclude this section, many results in this paper can be stated more generally
by using Theorem 5.1 instead of Corollary 5.2. As an example, we shall give another
generalization of Theorem 1.2(a).

Let P, beacyclic polygonin M asabovewith oy > oz > -+ > o, and py > p2 >

-+ > pn > 0, pi’s are constants. Define the weighted length and area of P, by

Lk(Pn; p1. - -, pn) = 2 pis(@) and

i=1

AdPni ... Pr) = 52 siny(2a) sin(a).

wherek = p, h, e. Then we have
THEOREM 5.10.

L&Pr:P1. - - - - Pn) > 4dnA(Pr; P - - - - Pr)-
with equality if and only if P, isregular.
More generally we have the following isoperimetric inequality:
. 2
L2(Pn;p1. -+ .+ Pn) > 4dnA(Pr; Pi. - - - » pn) + {2ns(r) sinp — Li(Pri P - - - ]

with equality if and only if P, is regular, where i = 31, picy /7. This inequality with
M=R?andp; =--- = py = 1 wasalso proved in [15].
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6. Geometric Inequalitiesfor Triangles. Let P3 beageodesic triangle (not neces-
sarily cyclic) in M, M = R%, H2(—1), or S*(1) (i.e., k = p. h, €) with vertices A, B and C.
In the rest of this section, we shall denote the angles of P3 at vertices A, B, and C by «,
3, and "y respectively, and assume that,

O<apy<m/2

We shall denote the lengths of the three sides of P3, BC, CA and AB by a, b and c
respectively. By Gauss-Bonnet theorem o + 3 + ¥ = 3oy, where

/3, if k=p,
oc=1{ {m—AP3)}/3. ifk=h,
[ {mr+AP3)}/3. ifk=e

Notice that oy = 2Q¥ if k = h, e. Set

(54) @y (P3) = (@) cosa + s¢(b) cosg + s¢(c)cosy. (k=p,h.e)
(T)HEOREM 6.1. For k= p, h, e, we have the following geometric inequalities:
a

ds(ok) Pk (Ps3)
k(@) + sc(b) + se(0)

sina +sin3+siny >

(b)
3P(Ps)
k(@) + s(b) +se(€)”
Equality holdsin (a) (resp. (b)) if and only if P3 isregular.
PrOOF. According to the law of sines (5), if welet n, = sinar/s(a), then

cosa +cos3 + cosy >

(55) sina=ns(@).  sing=m&(b),  sinY =npsdc)

and ny = (sina +sing +sinv)/{s(a) + s(b) + s(0)}.
Henceit follows from Corollary 5.2(a) that

(sina+sing +siny)? > ds(oy)(sinacosa + sin3 cosS +siny cosY)
1kds(ok) Pu(Ps3)
_ dg(O'k)CDk(Pg)(Sin o+ smﬁ + Sin”Y)
(@) + sc(b) + s(c)

This proves (a). Similarly, from Corollary 5.2(b) and(a) we have

(cosa +cos3 +c0sY)? > 83(oy)(Sinacosa +sin3 cos3 + sin’y cosY)
= nkd3(ok) Pu(P3)
_ O3(o )Pk (P3)(Sina +sin3 +sin%)
- (@) + s(b) + s(c)
9d2(Ps)
~ {sd@ *sdb) +s(0)}

The proof is complete.
If M = R2, we can generalize Theorem 6.1. Here ds(op) = ds.
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THEOREM 6.2. For any (x.y.0) € A(3), (x,y.0) > (0,1/2,0), we have

. . . 203Py(Ps)
> .
@ Snac+ SN+ SNy 2 e 0@ b.9)

6q3k(P3)
(b) CoSa+ €S +C08T = o Ol b o)’

If (x.y.0) # (0.1/2,0), equality holdsin (a) (resp. (b)) if and only if P isregular.

PROOF. Becauseof therelations(55), thereisapseudo-triangle Pz inthe plane (which
isatriangle) given by

%:{ixmm«ﬂm«mQ}
7]p

It is not difficult to see that

A(P3) = a®cota + b?cot 3 + c2 coty
acosa +bcosg + ccosy
Mp

Dp(P3) /1p-

Applying the Heron's formula Theorem 4.3 and Theorem 4.1 to the triangle Ps,

L3[x. 2y.0](a. b.c) > L3[0,1.0](a. b. c)

= 4d;A(P3)
= 4dzPp(P3)/ np-
Hence _ _ .
snatsng+siny _ _ 4ds®Py(Ps)
atb+c P~ 1Zx2.0]@b.0)

Again, by Theorem 4.1,

2d3q3p(P3) L3[1. 0, 0] (a. b, C) > 2d3q3p(P3)

i +sing+si >
SN SN SNY = Y Ol(a b))~ Lax.2y.0](a.b. Q)

becauseL3[1.0.0](a, b, c) = 2(a+ b +c).
The proof of (b) is similar to the proof of Theorem 6.1(b) by using Theorem 6.2(a).

COROLLARY 6.3. LetM = R2. Then
(@) A(P3) > L2W(Py).
(b) L(P3) > 3¥(P3),

where
a?(b? +c? — %) + b?(c? + a% — b?) + (@2 + b? — ¢?)

a(b?+c?—a?) +b(c®+a?2 —b?) +c(@+b? —c?) -
Equality holdsin (a) (resp. (b)) if and only if P3 isregular.

W(P3) =
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PROOF. (a) Since A(Ps) = 4A(P3), LZ[0. 1, 0](a. b, ¢) = 16d3A(P3), hence by Theo-
rem 6.2(b),

2
(cosa + cos3 + cosy)? > 905(P2) )
~ 4dzA(P3)

Thisimpliesinequality (a) by the law of cosines.
(b) By (3) and (a).
If M = H3(—1), we also have

THEOREM 6.4. If M = H?(—1), set
®,(P3) = sinaccosha + sin 3 coshb + sin”y coshc;

then

. . . 30n(Ps)
56 < ,
(56) Shoa+snf+siny < cosha+ coshb + coshc

with equality if and only if P isregular.
PrROCOF. From [7, Theorem 3.3] we obtain

(57) (cosha + coshb + coshc)?

< 3coth @(sinhacosha+ sinhbcoshb + sinhccoshc),

with eguality if and only if P53 isregular.
Hence by (55) we get

(58) (cosha+ coshb + coshc)? < {3y (Ps) coth L(P3) /3} /.
Similarly, from (51) and (55) we have

(59) (sinha+sinhb+sinhc)? < {3y (Ps) tanh L(P3)/3} /1.
Thus, by (55), (58) and (59),

9®2(Ps)(sinha + sinhb + sinhc)?
(Sina +sing + sinv)?

(sinha+sinhb+sinhc)?- (cosha+coshb+coshc)? <

which implies (56).
Combining Theorem 6.1(a) and Theorem 6.4 we get
COROLLARY 6.5.
sinha+ sinhb + sinhc S CPh(Pg) tan & +8+7
cosha+coshb+coshc = @, (P3) 3

with equality if and only if Ps isregular.
According to the law of cosines

cosa = (coshbcoshc — cosha)/ sinhbsinhc,

hence ®,(P3) and ®y,(Ps) depend only on a, b and c.
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THEOREM 6.6. Let M’ be a Riemannian manifold with Ky < Ky = —1, and P; =
AA'B'C’ be a geodesic triangle in M’ with angles o/, 3, 7/, and the lengths of three
sides

BC' =a, CA'=bh AB =c
Set ®p(PL) = ®p(Ps) and B, (Pj) = ®y(Ps). Then

_ , , 30,(PL)
/+ /+ !’ < 3
@ Sna’+sinf +sny’ < cosha+ coshb + coshc’

3D,(P5)

b coso’ + cos@’ +cosy > — . . .
() A 7 sinha+sinhb+sinhc

Equality holdsin (a) (resp. (b)) ifand onlyif o’ = 3’ =y anda=b=c.
PrROOF. Since by Toponogov Comparison Theorem (cf. [13, p. 38]),
o <a, B <B and Y <7,
hence the theorem is an immediate consequence of Theorem 6.4 and Theorem 6.1(b).
From Corollary 6.5 we have

THEOREM 6.7. Under the hypotheses of Theorem 6.6,

sinha+sinhb+sinhc _ Gn(Py) o +5'+7
cosha+ coshb + coshc = ®,(Py) 3

Equality holdsif and onlyif o/ =3’ =7y anda=b=c.
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