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ON RATIONAL SUBDIVISIONS OF POLYHEDRA 
WITH RATIONAL VERTICES 

W. M. BEYNON 

I n t r o d u c t i o n . This short paper is devoted to the proof of a single theorem, 
which, in its simplest form, asserts t h a t if Q is a polyhedron in Kn which can be 
expressed as the union of finitely many convex polytopes whose vertices are 
a t rat ional points in Rw, and if S^ is a simplicial subdivision of Q} then there is 
an isomorphic simplicial subdivision &" of Q in which all vertices are a t 
rat ional points. 

In a subsequent paper [1], this theorem is used in generalising known results 
concerning finitely generated vector lattices to the context of finitely generated 
lattice-ordered Abelian groups. 

Pre l iminar i e s . For basic definitions relating to polyhedra and simplicial 
presentat ions of polyhedra see Stallings [3] or Glaser [2]. 

Let P be a p o l y h e d r o n , ^ a simplicial presentat ion of P , and x a vertex of Jf. 
The star of x in 5^ is the subcomplex of S^ consisting of all simplices which 
contain x as a vertex, together with all their faces. T h e link of x in Sf is the 
subcomplex of $f consisting of all simplices which belong to the s tar of x in j ^ 7 , 
bu t do not contain x as a vertex. Following common convention, the terms 
's tar ' and 'link' will also be used to refer to the polyhedral realisations of these 
subcomplexes. 

A polyhedron P is rational if P can be expressed as a finite union of convex 
polytopes Qi, Q2, . . . , Qk such t h a t for each i ^ k the vertices of Qt are a t 
rational points. 

If 5 is a subset of Kn, the notat ion conv S is used to denote the convex hull 
of 5 (the intersection of all convex subsets of Kn which contain S), and the 
notat ion aff 5 is used to denote the affine hull of S (the intersection of all affine 
subspaces of Kn which contain S). 

If C is a convex set in Kn and x is a point of C, then x is said to be in the 
relative interior of C if there is an open neighbourhood U of x in Kn such t h a t 
[ / n a f f C C C . 

T H E O R E M 1. Let Q be a rational polyhedron in R7*, and let ^ be a simplicial 
presentation of Q with vertices at the points Vi, v2, . . . , vk. For any e > 0, there is 
a set of rational points Vi , vj, . . . , vk' and a simplicial presentation 5^' of Q 
with vertices Vi , v% } . . . , vk' such that 
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(i) \vi — v/\ < e for i = 1, 2, . . . , k, and 
(ii) the map sending the vertex vt of 5^ to the vertex v( of ff/" defines an iso

morphism between the simplicial presentations y and y of Q. 

Proof. LetJ^~ be an abstract simplicial complex, and V the set of vertices of 
j JP A m a p / : V —•» Kn defines a realisation oi^~ in Kn if for any subsets A and 
B of V i n ^ ~ the relation 

c o n v / 0 1 ) C\ convf(B) = conv / ( ,4 P B) 

holds in Rw. I t is easy to show tha t the m a p / : V —> Rw defines a realisation 
of &~ in Rw if and only if, for any two disjoint subsets A and B of V in J7", the 
subsets conv/(^4) and c o n v / ( P ) in Rw have empty intersection. In particular, 
if the set of functions V —> Rn is considered as an Euclidean space in the 
natural way, then the set of functions defining a realisation of ^" in Kn is an 
open subset of this space. By vir tue of this fact, if 5^ is a (geometrical) simpli
cial complex in Rw, with vertices v = VQ, VI, . . . , vk there is an open neighbour
hood U of v such tha t if v' £ U, then v', Vi, . . . ,vk are the vertices of a simplicial 
complex j / * 7 ' isomorphic with $f via the map which sends v to v' and ^^ to ^^ for 
i = 1, 2, . . . , &. The simplicial c o m p l e x ^ ' is then said to be obtained fromSf' 
by moving the vertex y to z)'. 

Let P be a polyhedron in Rw, the union of convex polytopes P i , . . . , Pu and 
let X denote the union of the sets of vertices of Pi, . . . , Pt. The convex poly-
tope S will be called a sKce of P (relative to X) if S is contained in P and the 
vertices of S belong to X. For each point x of P the symbol SI (x) will denote 
the (non-empty) set of slices of P which contain x, and D S\(x) the intersection 
of all slices in Sl(x) . For each x in P , the set of points y of P such t h a t Sl(x) = 
Sl(;y) will be called the scope of x (relative to X ) . 

LEMMA 1. The scope of x is a relatively open subset o/aff (f) Sl (x)) . That is, 
if y lies in the scope of x there is an open neighbourhood U of y in Kn such that 
U Pi aff (Pi Sl(x)) is contained in the scope of x. In particular, the scope of x is 
{x} if and only if {x} = P )S l (x ) . 

Proof. Note first t ha t x (and hence any point in the scope of x) is relatively 
interior to Pi SI (x). T o see this, let Si, . . . ,Sm be the slices of P which contain x 
as a relatively interior point. If S £ Sl(x) then S contains S< for some i ^ m, 
hence P Sl(x) = n*=iS* . Thus 

m m 
x Ç P rel int S* Q rel int P St = rel int P SI (x). 

Now let y be in the scope of x, let V be an open neighbourhood of y in Rw 

such t h a t F P i a f f ( n Sl(x)) is contained in P Sl(x), and let Pi , . . . , Ts be 
the slices of P which do not contain y. Since each Tt is closed, there is an open 
neighbourhood W of y such tha t W C\ Tt is empty for i = 1, 2, . . . , s. 
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Let U = F H W. It is easy to verify that UC\ aff ( P Sl(x)) is contained 
in the scope of x, as required. 

If D Sl(x) = {x} then the scope of x is {x} trivially, since the scope of x is 
a subset of Pi Sl(x). Conversely, suppose that Pi Sl(x) ^ {x}. Then there is 
a point 3> distinct from x in p Sl(x), and all points of the line segment [x, y] 
sufficiently close to x lie in the scope of x, since the scope of x is a relatively 
open subset of aff P Sl(x). This completes the proof of Lemma 1. 

Now let fff be a simplicial presentation of the polyhedron P introduced 
above, and let x b e a vertex of Sf such that the scope of x is not {x}. Then 
aff ( P Sl(x)) is an affine subspace of Rn of dimension at least one, and by 
Lemma 1, there is an open w-ball W containing x, such that W C\ aff ( P Sl(x)) 
is contained in the scope of x. 

Let V be an open n-ball containing x in Rn with the property that it x' G V, 
then a simplicial complex J/7', isomorphic with £f, is obtained from Sf by 
moving the vertex x to x''. Note that, since x' and the link of x in j ^ are joinable, 
F does not meet the link of x in «5 .̂ 

Let U = VC\ WHaf f ( p S l ( x ) ) . 

LEMMA 2. If P,X,S^ and U are as defined above, and if x' (T^X) is a point of U, 
the simplicial complex obtained from Sf by moving the vertex x to x' is also a 
simplicial presentation of P. 

Proof. It will suffice to prove that the star of x in 3^ and the star of x' in &" 
coincide as polyhedra in Rre, for the vertices of Sf other than x are common 
to y and $f'. Moreover, it suffices to prove that the star of x in ^ contains 
the star of x' in j ^ 7 ' , for x and x' stand in symmetric relation. 

The ray xy with vertex x in P is said to be locally in P if there is a point a 
distinct from x on xy such that the line segment [x, q] is contained in P. The 
point z on xy is said to be beyond y on xy if y is on the line segment [x, z\. 

Because x and the link of x in f? are joinable, it follows that a ray xy with 
vertex x can meet the link of Sf in at most one point, and meets the link of x 
if and only if xy is locally in P. Since the join of x and the link of x in ff is 
the star of x in J^7, the point yi^x) of P is in the star of x in S^ if and only if 
the ray xy meets the link of x in Sf in a point beyond y. 

Now let / be the affine hull of x and x'. Then / is a 1-dimensional affine 
subspace of aff ( P Sl(x)), and U P\ / is an open interval of / containing x and 
xr and contained in the scope of x. In particular, the two rays with vertex x 
which are contained in / are locally in P, and meet the link of x in S^. Suppose 
that the line segment [x, xf] meets the link of x in S^ in p if produced beyond 
x' and in q if produced beyond x. Both p and q are outside the line segment 
[x, x'], for U is disjoint from the link of x in 5f. Thus, if y is any point of the 
line segment [p, q], then the ray x'y meets the link of x' in y (which is also 
the link of x in 5f) in a point beyond y, and y belongs to the star of x' in fff'. 
Hence all points of / which belong to the star of x in Sf also belong to the star 
of x' in ¥". 
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Let a lie in the star of x in «5 ,̂ but not on /. There is a unique plane II con
taining x, x' and a, and / divides II into two open half planes. Let H denote 
that open half plane, bounded by I, which contains a. 

Let Ti, . . . , Tm be the slices of P which do not contain x, and let N be an 
open neighbourhood of x in Rn such that N and Tt have empty intersection 
for i = 1, 2, . . . , m. Let z be a point common to N and the line segment [x, a], 
other than x itself. Since a is in the star of x in S^, z is in P, and there is a 
slice 5 of P which contains z. Since z £ N, S necessarily contains x\ hence S 
contains the scope of x in P. In particular, S contains U C\ /, an open interval 
of / containing x and xf, and, being convex, must contain the convex hull of z 
and U C\ I. It follows that if b is a point of H, the ray xfr with vertex x is locally 
in P , and meets the link of x mS^. Thus, the intersection of H with the link of 
x in S^, together with the line segment [p, q] form a polyhedral 1-spherein II. 

q 1_ ur\i—ï P 

Let K be the polyhedral 2-cell bounded by this 1-sphere. Since a lies in the 
star of x in J^7, a necessarily lies in K. 

Consider the ray x'a with vertex x'. Since a lies in K, and there is a point & 
beyond a on xra not in K, there is necessarily a point y, beyond a on the ray 
x'a, common to x'a and the boundary of K. The point y belongs to the link of 
x in S^j for a does not lie on [p, q]. On the other hand, x' and the link of x in Sf 
are joinable, so that y is the unique point of intersection of the ray x'a and 
the link of x in S^. Since the link of x in ^ is the link of x' and j ^ r it follows 
that a belongs to the star of x' in y . This completes the proof of Lemma 2. 

To complete the proof of Theorem 1, let the polyhedron Q referred to in 
the statement of the theorem be expressed as a union of convex polytopes 
(?i> (?2, • • • , Qt having vertices at rational points. Let X be the union of the sets 
of vertices of Qi, Qi, . . . , Qu 

If x is an irrational vertex of the simplicial presentation Sf of Q, then the 
scope of x cannot consist solely of the point x, for if {x} = O Sl(x), then x is 
necessarily a rational point. Hence, by Lemma 2, a new simplicial presentation 
5/" of Q isomorphic with y , is obtained from £/ by moving x to any point x' 
in a relative neighbourhood U of x in the affine hull of P) Sl(x). Since, in this 
instance, the affine hull of O Sl(x) is a rational subspace of R/\ rational points 

https://doi.org/10.4153/CJM-1977-025-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-025-7


242 W. M. BEYNON 

are dense in the neighbourhood U of x. Thus , given e > 0, there is a simplicial 
presentation y of Q, with vertices a t rational points V\ , . . . , vk

f such t h a t 
\Vi — v/\ < e for i = 1, 2, . . . , &, and such t h a t the map sending vt to v/ for 
z = 1,2, . . . ,k defines an isomorphism between the simplicial p r e s e n t a t i o n s ^ 
and 5 " of Q. 

COROLLARY. Suppose that P and Q are rational polyhedra in Kn, and that 
S^ and 3T are simplicial presentations of P and Q respectively such that ^ is a 
sub complex of ^~. 

Then there are simplicial presentations y and37~' of P and Q respectively, with 
vertices at rational points, such that S^ and ff are isomorphic,^ and^~' are 
isomorphic, and 5^' is a sub complex of^T'. 

Proof. Let Qi, Q2, . . . , Qt be a finite set of convex polytopes with rational 
vertices such tha t Q = U \=\ Qt and P = U \=\ Q% for some r ^ t. Let X be the 
union of the sets of vertices of Qi, Q2, . . . , Qt and Y the union of the sets of 
vertices of Qi, Q2, . . . , Qr, so t ha t Y Q X. 

Suppose t ha t V\, v2, . . . , vm are the vertices of !ff, and vm+i, vm+2, . . . , vn 

are the remaining vertices of $~. If i ^ m, then vt Ç Q, and the scope of vt is 
defined relative to X and relative to F. Moreover, it is clear t ha t the scope of 
Vf relative to X is a subset of the scope of Vi relative to Y in this case. 

Let Vi , v2 , . . . , vm' be vertices of a simplicial presentat ion 3f' of Q, iso
morphic with ^r, having rational vertices, constructed as in the proof of 
Theorem 1. For each i, the rational point v/ lies in the scope of Vi relative to X. 
In part icular v/ lies in the scope of vx relative to F for i = 1, 2, . . . , m. Thus , 
by Lemma 2, the subcomplex £/' of J^~' corresponding to j ^ 7 , having vertices 
Vi , v2 , . . • , fl// is itself a simplicial presentat ion of Q, giving the required result. 
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